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A NEW HYBRID BFGS-CG METHOD UNDER INEXACT LINE 
SEARCH AND ITS GLOBAL CONVERGENCE

Alireza Hosseini Dehmiry1 and Maryam Kargarfard2

This paper is an attempt to propose a novel hybrid BFGS-CG method with an inexact 
line search (ILS) formula for solving unconstrained optimization prob-lems. This ILS 
technique has recently been used to achieve the convergence of the BFGS method for non-

convex functions. We establish the global convergence of our proposed algorithm for 
general functions and under standard assumptions. Numerical results confirm the 
effectiveness of our approach, and show that the proposed hybrid method is comparable to 
other similar techniques, and is even more efficient.
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1. Introduction

An unconstrained optimization problem is a problem of the form

minx∈Rn f(x), (1)

where f : Rn −→ R is an objective function.

In this paper, the following assumptions are considered.

I) The level set D := {x | f(x) 6 f(x0)} is bounded for all x0 ∈ dom(f).

II) f is a twice continuously differentiable function. Moreover, its gradient is Lipschitz

continuous with constant L > 0, in the sense that

‖∇f(x)−∇f(y)‖ 6 L‖x− y‖, ∀x, y ∈ D. (2)

Problem (1) can be solved using various approaches. Most of these algorithms use

the following iterative formula.

xk+1 = xk + αkdk, k = 0, 1, . . . , n.

Here, xk is the kth iteration point, dk is the improvement direction, and αk is the step

length. Hereafter, f(xk) and g(xk) (that is, the gradient of f(x) at xk) are denoted by fk
and gk, respectively. The step length is calculated via a local optimization of the objective

function, known as a line search, where the direction and starting point are given. Nonlinear

descent optimization strategies heavily rely on line search techniques.

In this regard, Armijo and Wolfe’s conditions are the foundation of a wide range of

minimization approaches that use line search tactics. The generalized Wolfe conditions [5]
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are
f(xk + αkdk)− f(xk) 6 δαkgTk dk,
σ1g

T
k dk 6 g

T
k+1dk 6 σ2g

T
k dk,

(3)

where 0 < δ < σ1 < 1 and σ2 6 0. The special cases σ1 = −σ2 and σ2 = 0 correspond

to the strong and standard Wolfe conditions, respectively. The first condition is known as

the Armijo condition, which guarantees a sufficient decrease of the value of the objective

function, whereas the other condition is called the curvature condition, which guarantees

the non-acceptance of short steplengths.

2. The Conjugate-Gradient and Quasi-Newton Methods

The conjugate-gradient (CG) method is one of the well-known iterative methods of

solving (1). This method was originally suggested by Hestenes and Stiefel for minimizing

convex quadratic functions with symmetric and positive definite matrices [11, 12]. Later on,

it was extended to nonlinear unconstrained optimization problems by Fletcher and Reeves

[10]. Due to the moderate memory requirement, this method is very suitable for solving

large-scale unconstrained optimization problems.

In the CG method, the search direction dk is defined as

dk =

{
−gk, k = 0,

−gk + βkdk−1, k > 0,
(4)

where βk is known as the CG update parameter. There are many ways to calculate βk.

Some well-known formulas used for this purpose are as follows.

βHSk =
gTk yk−1

dTk−1yk−1
, βFRk = ‖gk‖2

‖gk−1‖2 , βPRPk =
gTk yk−1

‖gk−1‖2 ,

βCDk = − ‖gk‖2
dTk−1gk−1

, βLSk = − gTk yk−1

dTk−1gk−1
, βDYk = ‖gk‖2

dTk−1yk−1
.

Here, ‖.‖ denotes the `2 norm and yk−1 := gk − gk−1. The corresponding methods are

known as the Hesten and Stiefel (HS) [11], Fletcher and Reeves (FR) [10], Polak, Ribiere

and Polyak (PRP) [15, 16], Conjugate-Descent (CD) [9], Liu and Storey (LS) [14] and, Dai

and Yuan (DY) [4] algorithms, respectively.

When f is a strong convex quadratic function, and an exact line search (ELS) is

chosen, all the six choices of the update parameter are equivalent in theory [3]. In non-

quadratic functions, each choice of the update parameter leads us to a method with different

numerical performance. By comparing these methods, we can see that the PRP, LS, and HS

algorithms have good numerical results, but fail to have good theory convergence. However,

the FR, DY, and CD methods have a completely opposite behavior.

The quasi-Newton method is another popular algorithm for solving unconstrained

optimization problems. The main difference between the quasi-Newton method and the

conjugate-gradient method is in the use of an approximation of the Hessian matrix for

finding the improvement direction [2]. Hence, the conjugate-gradient methods are preferred

especially when the problem size is large and memory is limited.

In the quasi-Newton methods, the improvement direction dk is obtained by solving

the equation

dk = −Hkgk, k > 0, (5)
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where Hk is an approximation of the inverse Hessian. Usually, Hk is updated by the famous

Broyden- Fletcher-Goldfarb-Shanno (BFGS) formula

Hk+1 = Hk +

(
1 +

yTkHkyk
yTk sk

)
sks

T
k

yTk sk
− sky

T
kHk +Hkyks

T
k

yTk sk
, (6)

where sk = xk+1 − xk = αkdk, yk = gk+1 − gk, and H0 is an arbitrarily given n× n positive

definite matrix. Another similar update formula is the Davidon–Fletcher–Powell (DFP)

formula, which approximates the inverse Hessian matrix as follows.

Hk+1 = Hk +
sks

T
k

sTk yk
− Hkyky

T
kHk

yTkHkyk
. (7)

The convex combination of (6) and (7) is known as the Broyden class of the quasi-Newton

update formula.

3. Motivation and the Proposed Algorithm

The number of iterations and the number of function evaluations in quasi-Newton

methods are better compared to CG methods. Moreover, under the ILS technique, the

global convergence of the BFGS algorithm has been established for general functions. These

advantages motivated us to combine the BFGS algorithm and the CG method (namely, (5)

and (4)) with the DY update parameter as follows.

dk =

{
−Hkgk, k = 0.

−Hkgk + βDYk dk−1, k > 0.
(8)

In this paper, we use a new, modified version of the ILS technique that guarantees

the global convergence of the BFGS methods for general functions. This ILS formula was

recently proposed by Dehmiry [6, 7]. It can be written as

fk+1 6 fk + δαkg
T
k dk −

δα2
k

2M ‖dk‖
2,

|gTk+1dk| 6 −σgTk dk + δαk

M ‖dk‖
2,

(9)

where δ ∈ (0, 12 ), σ ∈ (δ, 1), and M is a sufficiently large positive number. In what follows,

the proposed algorithm is presented for the sake of completeness.

Algorithm 3.1 : A hybrid BFGS-CG algorithm

Step 0: Choose an initial point x0 ∈ Rn, constants δ ∈ (0, 12 ), σ ∈ (δ, 1) and ε ∈ (0, 1), a
sufficiently large positive number M , and an initial n×n positive definite matrix H0. Set
k := 0.

Step 1: If ‖gk‖ 6 ε, stop.

Step 2: Compute dk by (8).

Step 3: Find αk that satisfies the inequalities (9) and

αk < −
M(1− σ)gTk dk

2δ‖dk‖2
. (10)

Step 4: Set xk+1 := xk + αkdk.
Step 5: Update Hk+1 using the DFP formula (7).
Step 6: Set k := k + 1 and go to Step 1.
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In Section 4, we prove some facts about Algorithm 3.1. These allow us to conclude

that the algorithm is well-defined and globally convergent.

4. The Main Results

Consider the following function and its derivative to show reasonability of (9):

ϕ(α) := fk+1 − fk − δαgTk dk +
δα2

2M
‖dk‖2,

ϕ′(α) = gTk+1dk − δgTk dk +
δα

M
‖dk‖2.

Theorem 4.1. Suppose that f is twice continuously differentiable and bounded from below.

If gTk dk 6 0, then there exists a constant 0 < α <∞ satisfying (9) and (10).

Proof. From the assumption it follows that ϕ(0) = 0 and if α → +∞, then ϕ(α) → +∞.

For any sufficiently small α > 0, we have

ϕ(α) = fk+1 − fk − δαgTk dk +
δα2

2M
‖dk‖2

= (fk + αgTk dk + o(α))− fk − δαgTk dk +
δα2

2M
‖dk‖2

= α((1− δ)gTk dk +
δα

2M
‖dk‖2) + o(α) < 0.

Since ϕ ∈ C2, there exists a constant ρ > 0 such that ϕ(ρ) = 0 and ϕ(α) < 0 for all α ∈ (0, ρ)

and there exists an interval I := (α∗, α′) such that ϕ′(α) > 0 for all α ∈ I, where α∗ is a

local minimizer of ϕ on (0, ρ) and α∗ < α′ < ρ.

Now, from σ > δ and gTk dk < 0, we can write

gTk+1dk > δg
T
k dk −

δα

M
‖dk‖2 > σgTk dk −

δα

M
‖dk‖2, ∀α ∈ I.

For sufficiently large values of M , one ensures that any α ∈ I satisfies the condition (10)

too. �

The following lemma shows that the update formula (7) can preserve the positive

definiteness of {Hk}.

Lemma 4.1. Let {Hk} be the sequence generated by Algorithm 3.1. Then, Hk is positive

definite for all k.

Proof. Since sk = Hk+1yk, it is sufficient to show that yTk sk > 0. From (10) we obtain

αk < −
M(1− σ)gTk dk

2δ‖dk‖2
⇒ (σ − 1)gTk dk −

2δαk
M
‖dk‖2 > 0. (11)
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By (9) and (11),

yTk dk = (gk+1 − gk)T dk

> σgTk dk −
δαk
M
‖dk‖2 − gTk dk

= −(1− σ)gTk dk −
δαk
M
‖dk‖2

>
2δαk
M
‖dk‖2 −

δαk
M
‖dk‖2

=
δαk
M
‖dk‖2 > 0. (12)

Hence, yTk sk = αky
T
k dk > 0. �

Lemma 4.2. Suppose that {xk} and {fk} are the sequences generated by Algorithm 3.1.

Then, gTk dk < 0 holds for all k > 0 and therefore, {fk} is a strictly descending sequence.

Proof. The proof of the first part is by induction on k. By Lemma 4.1 and (8), the proof is

straightforward for k = 0. Let k > 0. By (8),

gTk+1dk+1 = gTk+1(−Hk+1gk+1 − βDYk+1dk)

= −gTk+1Hk+1gk+1 − βDYk+1g
T
k+1dk

6 −gTk+1Hk+1gk+1 − βDYk+1(−σgTk dk + δαk

M ‖dk‖
2)

< −gTk+1Hk+1gk+1 + ( 1+σ
2 )βDYk+1g

T
k dk

6 0,

where the last inequality follows from Lemma 4.1 and the induction hypothesis. To prove

the final part of this lemma, we use (9) and (17) to obtain

fk+1 6 fk + δαkg
T
k dk −

δα2
k

2M
‖dk‖2 = fk + δαk(

¡0︷ ︸︸ ︷
gTk dk −

αk
2M
‖dk‖2) < fk.

�

In the next lemma, we find a lower bound for −gTk dk. This bound will be used to

prove the global convergence of our proposed algorithm.

Lemma 4.3. Let {dk} and {gk} be the sequences generated by Algorithm 3.1. Then, 1
4 (1 +

σ)‖gk‖2 is a lower bound for −gTk dk.

Proof. By (9) and (10) we can write

gTk dk−1 > σg
T
k−1dk−1 −

δαk−1
M
‖dk−1‖2

> σgTk−1dk−1 −
1

2
(σ − 1)gTk−1dk−1

=
1

2
(1 + σ)gTk−1dk−1. (13)
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On the other hand, using (9) and (10) we obtain

yTk−1dk−1 = (gk − gk−1)T dk−1

6 −(1 + σ)gTk−1dk−1 +
δαk−1
M
‖dk−1‖2

6 −(1 + σ)gTk−1dk−1

6 −2gTk−1dk−1.

So,

1

yTk−1dk−1
>

1

−2gTk−1dk−1
. (14)

Now, by (5), (13) and (14) we conclude that

−gTk dk = gTkHkgk − βDYk gTk dk−1

= gTkHkgk −
‖gk‖2

dTk−1yk−1
gTk dk−1

> − ‖gk‖2

dTk−1yk−1
gTk dk−1

> −
1
2 (1 + σ)gTk−1dk−1

−2gTk−1dk−1
‖gk‖2

=
1

4
(1 + σ)‖gk‖2. (15)

�

Theorem 4.2. Assume that {gk} and {dk} are the sequences generated by Algorithm 3.1.

Then,
∞∑
k=0

(gTk dk)2

‖dk‖2
<∞. (16)

Proof. By using (9), (2) and the Cauchy-Schwarz inequality we obtain

L >
‖gk+1 − gk‖
‖xk+1 − xk‖

=
‖gk+1 − gk‖
‖αkdk‖

=
‖gk+1 − gk‖‖dk‖

αk‖dk‖2

>
|(gk+1 − gk)T dk|

αk‖dk‖2

>
(gk+1 − gk)T dk

αk‖dk‖2

>
σgTk dk −

δαk

M ‖dk‖
2 − gTk dk

αk‖dk‖2

> − (1− σ)gTk dk
2αk‖dk‖2

.

Thus, αk > − (1−σ)gTk dk
2L‖dk‖2 . Now, by assumption (I) and (9) we can write

fk − fk+1 > −δαkgTk dk +
δα2

k

2M
‖dk‖2 > −δαkgTk dk,

∞∑
k=0

−δαkgTk dk 6
∞∑
k=0

(fk − fk+1) = f1 − lim
k→∞

fk <∞.
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Hence,

δ(1− σ)

2L

∞∑
k=0

(gTk dk)2

‖dk‖2
<∞. (17)

�

Combining the previous theorem with Lemma 4.3, we obtain the following immediate

corollary.

Corollary 4.1. (Global Convergence) Suppose that {gk} is the sequence generated by Algo-

rithm 3.1. Then,

lim
k→∞

‖gk‖ = 0. (18)

Proof. By Theorem 4.2 and Lemma 4.3,

‖gk‖2 6 −
4

1 + σ
gTk dk. (19)

Thus
∞∑
k=0

‖gk‖4

‖dk‖2
<

∞∑
k=0

16

(1 + σ)2
(gTk dk)2

‖dk‖2
<∞. (20)

�

5. Numerical results

In this section, we present some numerical experiments of Algorithm 3.1 and the

similar algorithms that use the (ILS) formula (namely, the normal BFGS method [5], the

modified Yuan-Wei-Lu method [17], and the Hui-Fukushima method (HF) [13]) to evaluate

their performance. A set of test problems are taken from [1] and are listed in Table 1 to-

gether with the related initial points.

All tests were coded in MATLAB R2020a, and were run on a PC with a 2.70 GHz

CPU, and 12.0 GB of memory running the Windows 10 OS.

The parameters of Algorithm 3.1 were chosen as follows.

� Parameters: ε = 1e− 6, δ = 1
3 , σ = 2

3 , and M = 104.

� Dimensions of the variable x: 10, 100, 1000, and 3000.

� Stop rule: Since the results of iteration number are stable, we chose the Himmeblau

stop rule [18]. This can be described as follows.

Let

stop1 :=

{
|fk−fk+1|
|fk| , |fk| > 1e− 5,

|fk − fk+1|, otherwise.

For every problem, if each of the conditions ‖gk‖ 6 ε or stop1 < 1e− 5 is satisfied, the

program stops. This program also stops when the number of iterations is greater than

1000.

Table 1: Test problems.

No Name function x0
1 Rosenbrock Func. [0, 0, . . . , 0]

2 Extended Trigonometric Func. [0.2, 0.2, . . . , 0.2]

3 Extended Rosenbrock Func. [0.5,−2, . . . , 0.5,−2]

Continued on next page
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Table 1 – Continued from previous page

No Name function x0
4 Generalized Rosenbrock Func. [−1, 2, 1, . . . ,−1, 2, 1]

5 Extended White and Holst Func. [−1, 2, 1, . . . ,−1, 2, 1]

6 Extended Beale Func. [1, 0.8, . . . , 1, 0.8]

7 Extended Penalty Func. [1, 2, . . . , n]

8 Perturbed Quadratic Func. [0.5, 0.5, . . . , 0.5]

9 Generalized Tridiagonal 1 Func. [2, 2, . . . , 2]

10 Extended Tridiagonal 1 Func. [2, 2, . . . , 2]

11 Extended Frigonometric 1 Func. [2, 2, . . . , 2]

12 Diagonal 4 Func. [1, 1, . . . , 1]

13 Extended Himmelblau Func. [1, 1, . . . , 1]

14 Generalized PSC1 Func. [3, 0.1, . . . , 3, 0.1]

15 Extended Powell Func. [3,−1, 0, 1, . . . , 3,−1, 0, 1]

16 Full Hessian FH1 Func. [0.01, 0.01, . . . , 0.01]

17 Extended Cliff Func. [0,−1, . . . , 0,−1]

18 Perturbed Quadratic Diagonal Func. [0.5, 0.5, . . . , 0.5]

19 Quadratic QF1 Func. [1, 1, . . . , 1]

20 Extended Quadratic Penalty QP1 Func. [1, 1, . . . , 1]

21 Extended Quadratic Penalty QP2 Func. [1, 1, . . . , 1]

22 Quadratic QF2 Func. [0.5, 0.5, . . . , 0.5]

23 FLETCHCR Func. (CUTE) [0, 0, . . . , 0]

24 TRIDIA Func. (CUTE) [1, 1, . . . , 1]

25 ARWHEAD Func. (CUTE) [1, 1, . . . , 1]

26 NONDIA Func. (CUTE) [−1,−1, . . . ,−1]

27 Broyden Tridiagonal Func. [−1,−1, . . . ,−1]

28 LIARWHD Func. (CUTE) [4, 4, . . . , 4]

29 POWER Func. (CUTE) [1, 1, . . . , 1]

30 ENGVAL1 Func. (CUTE) [2, 2, . . . , 2]

31 EDENSCH Func. (CUTE) [0, 0, . . . , 0]

32 NONSCOMP Func. (CUTE) [3, 3, . . . , 3]

33 LIARWHD Func. (CUTE) [4, 4, . . . , 4]

34 DIXON3DQ Func. (CUTE) [−1,−1, . . . ,−1]

35 SINQUAD Func. (CUTE) [0.1, 0.1, . . . , 0.1]

Table 2: Numerical results for the BFGS-CG method.

No Dim TBFGS−CG NI TBFGS NI TYWL NI THF NI

1 10 0.012500 15 0.015625 23 0.014063 23 0.040625 23

1 100 0.059375 12 0.043750 11 0.064062 11 0.054688 11

1 1000 2.943750 10 2.353125 8 2.278125 8 2.421875 8

1 3000 57.34218 8 49.09218 7 49.72656 7 49.09687 7

2 10 0.015625 15 0.021875 23 0.026562 23 0.029687 18

2 100 0.185938 8 0.190625 9 0.232813 9 0.240625 9

Continued on next page
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Table 2 – Continued from previous page

No Dim TBFGS−CG NI TBFGS NI TYWL NI THF NI

2 1000 9.878125 6 6.571875 5 9.535937 5 6.342187 5

2 3000 39.43593 4 35.76406 4 38.08437 4 35.30625 4

3 10 0.003125 6 0.003125 6 0.012500 6 0.009375 6

3 100 0.057813 6 0.060937 6 0.073438 6 0.087500 6

3 1000 1.510938 5 1.539063 5 1.756250 5 1.560938 5

3 3000 34.29375 5 34.34687 5 35.68125 5 34.40312 5

4 10 0.006250 10 0.023438 10 0.007813 10 0.015625 10

4 100 0.060937 7 0.068750 6 0.087500 6 0.090625 6

4 1000 1.528125 5 1.573438 5 1.857813 5 1.678125 5

4 3000 35.42812 5 35.42187 5 37.69218 5 35.25468 5

5 10 0.003125 5 0.004687 5 0.009375 5 0.009375 5

5 100 0.075000 4 0.076563 4 0.090625 4 0.100000 4

5 1000 4.078125 4 4.131250 4 6.290625 4 4.062500 4

5 3000 51.65156 4 51.66093 4 71.49843 4 51.14687 4

6 10 0.004687 6 0.012500 9 0.009375 9 0.010937 9

6 100 0.120313 6 0.120313 6 0.145313 6 0.114062 6

6 1000 5.237500 5 5.403125 5 8.307813 5 5.312500 5

6 3000 68.05937 5 67.66093 5 93.85000 5 67.38281 5

7 10 0.004687 6 0.009375 7 0.012500 7 0.012500 7

7 100 0.025000 3 0.029687 3 0.026562 3 0.026562 3

7 1000 0.389062 2 0.406250 2 0.468750 2 0.453125 2

7 3000 8.807813 2 8.809375 2 9.195313 2 8.795312 2

8 10 0.007813 17 0.015625 27 0.026562 27 0.054688 27

8 100 0.064062 7 0.060937 6 0.082812 6 0.065625 6

8 1000 1.585938 5 1.595312 5 1.823438 5 1.646875 5

8 3000 26.12031 4 26.13593 4 28.73125 4 26.22968 4

9 10 0.042188 37 0.045312 41 0.046875 44 0.050000 44

9 100 0.146875 9 0.146875 9 0.201563 9 0.148438 9

9 1000 2.339062 5 2.360937 5 3.428125 5 2.564062 5

9 3000 41.83125 5 41.88281 5 48.61406 5 41.27812 5

10 10 0.004687 10 0.025000 31 0.004687 31 0.045312 31

10 100 0.170313 9 0.178125 9 0.170313 9 0.185938 9

10 1000 5.706250 6 4.367188 5 6.734375 5 4.593750 5

10 3000 60.64687 5 60.48750 5 60.48750 5 60.46406 5

11 10 0.004687 5 0.009375 5 0.012500 5 0.004687 5

11 100 0.045312 5 0.048438 5 0.070313 5 0.045312 5

11 1000 1.121875 4 1.121875 4 1.335938 4 1.207812 4

11 3000 25.91406 4 26.00000 4 27.18437 4 25.82343 4

12 10 0.014063 15 0.025000 31 0.028125 31 0.045312 31

12 100 0.064062 7 0.062500 6 0.068750 6 0.048438 6

12 1000 1.092188 4 1.521875 5 1.629687 5 1.489062 5

12 3000 25.46093 4 25.65781 4 26.36406 4 25.77343 4

13 10 0.006250 15 0.017188 13 0.017188 13 0.009375 13

Continued on next page
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Table 2 – Continued from previous page

No Dim TBFGS−CG NI TBFGS NI TYWL NI THF NI

13 100 0.059375 7 0.067187 7 0.089063 7 0.075000 7

13 1000 1.475000 5 1.481250 5 1.706250 5 1.523438 5

13 3000 34.08750 5 33.97187 5 35.30468 5 34.22812 5

14 10 0.007813 12 0.012500 13 0.014063 13 0.021875 13

14 100 0.140625 7 0.140625 7 0.193750 7 0.190625 7

14 1000 6.564063 5 6.626563 5 10.70312 10 6.676563 5

14 3000 43.37656 4 77.94218 5 106.3359 5 77.98906 5

15 10 0.010937 6 0.018750 12 0.025000 12 0.020313 12

15 100 0.223438 12 0.173437 9 0.240625 9 0.179688 9

15 1000 9.826562 9 6.178125 6 9.362500 6 5.600000 6

15 3000 96.36562 7 79.18906 6 109.5046 6 75.29218 6

16 10 0.006250 9 0.012500 9 0.007813 9 0.012500 9

16 100 0.103125 5 0.148438 5 0.132813 5 0.104688 5

16 1000 13.11406 2 13.16093 2 20.94375 2 11.98125 2

16 3000 297.6812 2 297.0953 2 492.7656 2 341.1718 2

17 10 0.000625 2 0.001250 2 0.001250 2 0.001563 2

17 100 0.014063 2 0.014063 2 0.023438 2 0.006250 2

17 1000 0.515625 2 0.545312 2 0.704688 2 0.543750 2

17 3000 10.33125 2 10.68593 2 12.11875 2 9.962500 2

18 10 0.031250 17 0.051562 25 0.071875 25 0.170313 25

18 100 0.198437 7 0.182812 6 0.264062 6 0.201563 6

18 1000 6.551563 4 4.146875 3 5.696875 3 4.062500 3

18 3000 66.52187 3 66.12343 3 78.35781 3 65.69843 3

19 10 0.014063 17 0.023438 27 0.021875 27 0.029687 27

19 100 0.051562 7 0.059375 7 0.089063 7 0.068750 7

19 1000 1.385938 5 1.437500 5 1.671875 5 1.545313 5

19 3000 25.43750 4 25.53750 4 26.32968 4 25.84375 4

20 10 0.004687 11 0.018750 16 0.018750 16 0.015625 16

20 100 0.053125 7 0.062500 6 0.068750 6 0.081250 6

20 1000 1.225000 4 1.651563 5 1.954687 5 1.753125 5

20 3000 26.85937 4 26.84375 4 28.93125 4 26.92968 4

21 10 0.003125 8 0.009375 8 0.007813 8 0.009375 8

21 100 0.076563 5 0.076563 5 0.101563 5 0.076563 5

21 1000 3.303125 4 3.443750 4 4.620312 4 3.376562 4

21 3000 44.97031 4 45.49062 4 55.20156 4 44.93750 4

22 10 0.009375 17 0.018750 32 0.021875 32 0.053125 32

22 100 0.065625 7 0.065625 7 0.081250 7 0.073438 7

22 1000 1.575000 5 1.614062 5 1.857813 5 1.650000 5

22 3000 26.46875 4 26.81250 4 27.50625 4 26.27656 4

23 10 0.007813 12 0.015625 11 0.017188 11 0.017188 11

23 100 0.084375 8 0.081250 8 0.104688 8 0.084375 8

23 1000 2.020313 6 2.428125 6 2.428125 6 2.176563 6

23 3000 44.84062 6 45.13593 6 47.39375 6 44.66406 6

Continued on next page
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Table 2 – Continued from previous page

No Dim TBFGS−CG NI TBFGS NI TYWL NI THF NI

24 10 0.006250 19 0.017188 33 0.025000 33 0.057813 33

24 100 0.070313 7 0.071875 7 0.082812 7 0.065625 7

24 1000 1.590625 5 1.629687 5 1.806250 5 1.635938 5

24 3000 26.26093 4 26.41562 4 27.82031 4 26.63437 4

25 10 0.004687 13 0.021875 15 0.020313 15 0.023438 15

25 100 0.081250 8 0.087500 8 0.092188 8 0.079687 8

25 1000 1.962500 6 1.959375 6 2.289063 6 2.070313 6

25 3000 35.03906 5 34.70000 5 36.84531 5 34.94218 5

26 10 0.009375 8 0.014063 9 0.014063 9 0.010937 9

26 100 0.056250 6 0.040625 5 0.073438 5 0.042188 5

26 1000 1.529688 5 1.509375 5 1.789063 5 1.573438 5

26 3000 25.81406 4 25.72343 4 27.30156 4 26.14218 4

27 10 0.012500 15 0.015625 24 0.017188 24 0.051562 24

27 100 0.087500 8 0.093750 8 0.101563 8 0.107813 8

27 1000 2.178125 6 2.203125 6 2.603125 6 2.189062 6

27 3000 36.02343 5 36.10156 5 38.96562 5 36.15781 5

28 10 0.003125 9 0.015625 13 0.020313 13 0.015625 13

28 100 0.062500 6 0.067187 6 0.084375 6 0.065625 6

28 1000 1.628125 5 1.745313 5 1.996875 5 1.729688 5

28 3000 35.04281 5 35.05000 5 37.72500 5 36.05937 5

29 10 0.017188 14 0.026562 27 0.026562 27 0.034375 27

29 100 0.040625 5 0.056250 6 0.082812 6 0.057813 6

29 1000 1.104688 4 0.728125 3 0.865625 3 0.756250 3

29 3000 17.02812 3 16.95468 3 17.52187 3 17.20781 3

30 10 0.004687 14 0.025000 16 0.017188 16 0.018750 16

30 100 0.062500 7 0.068750 7 0.109375 7 0.087500 7

30 1000 1.696875 5 1.723437 5 2.003125 5 1.687500 5

30 3000 35.91781 5 35.92031 5 38.39375 5 35.76406 5

31 10 0.012500 15 0.014063 15 0.017188 15 0.029687 20

31 100 0.081250 9 0.084375 9 0.121875 9 0.259375 8

31 1000 1.834375 6 1.914063 6 2.142187 6 0.042188 5

31 3000 42.70937 6 42.94687 6 44.51406 6 101.9750 5

32 10 0.006250 12 0.017188 11 0.018750 11 0.046875 11

32 100 0.065625 7 0.067187 7 0.067187 7 0.075000 7

32 1000 1.646875 5 1.720312 5 1.960938 5 1.621875 5

32 3000 34.97656 5 26.41406 4 27.87968 4 25.76093 4

33 10 0.012500 10 0.018750 14 0.023438 14 0.025000 14

33 100 0.064062 7 0.071875 7 0.107813 7 0.092188 7

33 1000 1.659375 5 1.737500 5 2.059375 5 1.682813 5

33 3000 35.60468 5 35.24531 5 37.45781 5 35.50937 5

34 10 0.014063 18 0.017188 27 0.026562 27 0.039063 27

34 100 0.078125 8 0.079687 8 0.098437 8 0.085938 8

34 1000 1.960938 6 1.562500 5 1.798437 5 1.489062 5

Continued on next page
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Table 2 – Continued from previous page

No Dim TBFGS−CG NI TBFGS NI TYWL NI THF NI

34 3000 34.11562 5 34.54843 5 35.77031 5 34.52343 5

35 10 0.009375 14 0.015625 30 0.025000 30 0.059375 30

35 100 0.170313 12 0.131250 9 0.171875 9 0.139063 9

35 1000 6.531250 9 4.475000 7 6.223438 7 4.621875 7

35 3000 64.36406 7 53.50468 6 61.51093 6 53.35625 6

The numerical results are listed in Table 2. Moreover, the results are depicted in

Figures 1 and 2, in which a performance measure introduced by Dolan and More [8] is also

employed.

From Figures 1 and 2 we observe that for most problems, the proposed method 
performs much better than the other three famous methods. It follows that Algorithm 3.1 
is efficient and can compete with other algorithms.
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Figure 1. Performance profiles of hybrid BFGS-CG method
(The number of iterations).
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            6. Conclusion

This study proposed a new hybrid BFGS-CG method, one that used a novel ILS technique, and 
proved its global convergence for general functions. We compared it with three well-known 
algorithms according to the CPU t ime and the number of iterations. TThe numerical results 
were depicted in Figures 1 and 2, and indicated the faster convergence of the new algorithm to the 
answer in most test problems. According to these results, we found that the proposed method was 
acceptably effi-cient and promising. Modification of this formula for achieving a higher 
convergence rate may be a good idea for future research.
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