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A NEW HYBRID BFGS-CG METHOD UNDER INEXACT LINE
SEARCH AND ITS GLOBAL CONVERGENCE

Alireza Hosseini Dehmiry' and Maryam Kargarfard?

This paper is an attempt to propose a novel hybrid BFGS-CG method with an inezact
line search (ILS) formula for solving unconstrained optimization prob-lems. This ILS
technique has recently been used to achieve the convergence of the BFGS method for non-
convex functions. We establish the global convergence of our proposed algorithm for
general functions and under standard assumptions. Numerical results confirm the
effectiveness of our approach, and show that the proposed hybrid method is comparable to
other similar techniques, and is even more efficient.
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1. Introduction

An unconstrained optimization problem is a problem of the form

mingern  f(), (1)
where f: R” — R is an objective function.

In this paper, the following assumptions are considered.
I) The level set D := {z | f(z) < f(x0)} is bounded for all 2y € dom(f).
IT) f is a twice continuously differentiable function. Moreover, its gradient is Lipschitz
continuous with constant L > 0, in the sense that

IVf(z) =Vl < Llz-yl, VryeD. (2)

Problem can be solved using various approaches. Most of these algorithms use
the following iterative formula.

Tht1 =Tk +apdy, k=0,1,...,n.

Here, x; is the kth iteration point, di is the improvement direction, and «j is the step
length. Hereafter, f(x) and g(zy) (that is, the gradient of f(x) at x) are denoted by fi
and g, respectively. The step length is calculated via a local optimization of the objective
function, known as a line search, where the direction and starting point are given. Nonlinear
descent optimization strategies heavily rely on line search techniques.

In this regard, Armijo and Wolfe’s conditions are the foundation of a wide range of
minimization approaches that use line search tactics. The generalized Wolfe conditions [5]
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are
f(zr + ardy) — f(xr) < Sarghdy, 3)

alg,{dk < ggﬂdk < Ugggdk,
where 0 < § < 01 < 1 and 09 < 0. The special cases 07 = —o9 and o5 = 0 correspond

to the strong and standard Wolfe conditions, respectively. The first condition is known as
the Armijo condition, which guarantees a sufficient decrease of the value of the objective
function, whereas the other condition is called the curvature condition, which guarantees
the non-acceptance of short steplengths.

2. The Conjugate-Gradient and Quasi-Newton Methods

The conjugate-gradient (CG) method is one of the well-known iterative methods of
solving . This method was originally suggested by Hestenes and Stiefel for minimizing
convex quadratic functions with symmetric and positive definite matrices [11, [12]. Later on,
it was extended to nonlinear unconstrained optimization problems by Fletcher and Reeves
[10]. Due to the moderate memory requirement, this method is very suitable for solving
large-scale unconstrained optimization problems.

In the CG method, the search direction dy is defined as

—0k, k= Oa
dp = 4
g { —gk + Brdr—1, k>0, @

where [ is known as the CG update parameter. There are many ways to calculate [j.
Some well-known formulas used for this purpose are as follows.

HS _ _9iyr—1 FR _ gl PRP _ 9iyr—1
k di_jyk—1’ k lgr—112" k gr—112"
BCD — __lleel® BLS _ o 9iyk—1 BPY = llgw I
k di_19k—1"’ k df . gk—1’ k dy_1Yk—1
Here, |.|| denotes the ¢ norm and yr—1 := gr — gr—1. The corresponding methods are

known as the Hesten and Stiefel (HS) [II], Fletcher and Reeves (FR) [10], Polak, Ribiere
and Polyak (PRP) [15] 16], Conjugate-Descent (CD) [9], Liu and Storey (LS) [14] and, Dai
and Yuan (DY) [] algorithms, respectively.

When f is a strong convex quadratic function, and an exact line search (ELS) is
chosen, all the six choices of the update parameter are equivalent in theory [3]. In non-
quadratic functions, each choice of the update parameter leads us to a method with different
numerical performance. By comparing these methods, we can see that the PRP, LS, and HS
algorithms have good numerical results, but fail to have good theory convergence. However,
the FR, DY, and CD methods have a completely opposite behavior.

The quasi-Newton method is another popular algorithm for solving unconstrained
optimization problems. The main difference between the quasi-Newton method and the
conjugate-gradient method is in the use of an approximation of the Hessian matrix for
finding the improvement direction [2]. Hence, the conjugate-gradient methods are preferred
especially when the problem size is large and memory is limited.

In the quasi-Newton methods, the improvement direction dj is obtained by solving
the equation

dk = *Hkgky k 2 07 (5)
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where Hj, is an approximation of the inverse Hessian. Usually, Hy is updated by the famous

Broyden- Fletcher-Goldfarb-Shanno (BFGS) formula

ngkyk> sesh iy Hy + Hyyrsy,
Yisk ) Ui sk Yi Sk

where s, = i1 — Tk = axdi, Yr = gk+1 — gk, and Hy is an arbitrarily given n x n positive

definite matrix. Another similar update formula is the Davidon—Fletcher—Powell (DFP)

Hyy1 = Hi + <1+ (6)

formula, which approximates the inverse Hessian matrix as follows.
sksi  Hiyeys H
sty yF Hiyg

Hy 1= Hy + (7)

The convex combination of @ and @ is known as the Broyden class of the quasi-Newton
update formula.

3. Motivation and the Proposed Algorithm

The number of iterations and the number of function evaluations in quasi-Newton
methods are better compared to CG methods. Moreover, under the ILS technique, the
global convergence of the BFGS algorithm has been established for general functions. These
advantages motivated us to combine the BFGS algorithm and the CG method (namely, (5)
and ) with the DY update parameter as follows.

_Hk?gka k=0.
di = 8
; { —Hygr, + BPY dj—1, k> 0. (8)

In this paper, we use a new, modified version of the ILS technique that guarantees
the global convergence of the BFGS methods for general functions. This ILS formula was
recently proposed by Dehmiry [0, [7]. It can be written as

6 2
frr1 < fr + Saggldy, —Sﬁ |di||?, )
lgh 1 di| < —ogldr + 23 ||di]?,

where § € (0,1), o € (§,1), and M is a sufficiently large positive number. In what follows,
the proposed algorithm is presented for the sake of completeness.

Algorithm 3.1 : A hybrid BFGS-CG algorithm

Step 0: Choose an initial point zo € R™, constants § € (0,3), 0 € (6,1) and € € (0,1), a
sufficiently large positive number M, and an initial n x n positive definite matrix Hy. Set
k:=0.

Step 1: If || gk|| < &, stop.
Step 2: Compute dj, by (8).

Step 3: Find ay that satisfies the inequalities @D and
M(1 — U)ggdk
< i S—
o 20l
Step 4: Set w41 1= v + apdk.

Step 5: Update Hy1 using the DFP formula @
Step 6: Set k:=k + 1 and go to Step 1.
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In Section 4, we prove some facts about Algorithm These allow us to conclude
that the algorithm is well-defined and globally convergent.

4. The Main Results

Consider the following function and its derivative to show reasonability of @D:
p(a) = frer — fx — dagidy + 7||dk||

Yo’
¢' () = gy di — Ogjt di + MHdk||2-

Theorem 4.1. Suppose that f is twice continuously differentiable and bounded from below.
If ngdk < 0, then there exists a constant 0 < a < o0 satisfying @[) and .

Proof. From the assumption it follows that ¢(0) = 0 and if « — +o00, then p(a) — +oo.
For any sufficiently small a > 0, we have

(@) = fri1 — fru — gl di, + —Hdk||2
= (fr +aglde +o(a)) — fx — Sogi dy + 7Hdk||2

= a((1=d)g dk+7lldkll) o(a) <0.

Since ¢ € C2, there exists a constant p > 0 such that ¢(p) = 0 and p(a) < 0 for all a € (0, p)
and there exists an interval I := (a*,’) such that ¢'(a) > 0 for all @ € I, where o* is a
local minimizer of ¢ on (O p) and o* < o' < p.

Now, from ¢ > § and g} dy, < 0, we can write

oo
Gh1dr > 0gi di — *Ildkllz ogi di — MlldkHz, Va € 1.

For sufficiently large values of M, one ensures that any o € I satisfies the condition
too. |

The following lemma shows that the update formula can preserve the positive
definiteness of {Hy}.

Lemma 4.1. Let {Hy} be the sequence generated by Algorithm . Then, Hy is positive
definite for all k.

Proof. Since sy = Hy 11y, it is sufficient to show that ykTsk > 0. From we obtain

M(1 - o)gldy 26ak
20||dx|?

af < — = (o —1gidy — || di||* > 0. (11)
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By @D and ,

yidi = (grt1 — gk)Td

> ogidy, — ||dk||2 — gidy,
— —(1- o)} @—QEMNQ
SELINE Mﬂuw
MWdW>o (12)
Hence, yi sy = axyl dy > 0. a

Lemma 4.2. Suppose that {z)} and {fy} are the sequences generated by Algorithm [3.1]
Then, gk dy < 0 holds for all k > 0 and therefore, {f} is a strictly descending sequence.

Proof. The proof of the first part is by induction on k. By Lemma and , the proof is
straightforward for k = 0. Let k > 0. By ,

Gdeyr = 9k+1( Hyy19k41 — BN dw)
= gk+1Hk+lgk+1 BkD_;.Ylgg.;_ldk
< gk+1Hk+1gk+1 5k+1( ogi di + 5 || di|?)
< —gi 1 Hepgrrn + (152) 820 g dy.
<0,
where the last inequality follows from Lemma and the induction hypothesis. To prove
the final part of this lemma, we use @D and to obtain

i0

[0
fri1 < fr + argldy — JHdk||2 fr +dag(gfdp — ﬁ”dkHQ) < fr-

In the next lemma, we find a lower bound for —g! dx. This bound will be used to
prove the global convergence of our proposed algorithm.

Lemma 4.3. Let {di} and {gi} be the sequences generated by Algorithm - Then, §(1+
o)|lgx||? is a lower bound for —gFdy.

Proof. By @ and we can write

o
Sl |

Gidp—1 > ogl_1di—1 —
1
> ogi_1dp—1 — 5(0 — 1)gi_qdr—1

1
= St o) idis. (13)
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On the other hand, using @ and we obtain

Yi_1di—1 = (g — gr—1)" di—1
5Oék 1

1+0)gi_ydi—1+ lldr—1?

—(
<-(1 +0)91:571dk‘71
< 29k—1dk—1-

So,
1 < 1
vl deor T —2g% di1
Now, by , and we conclude that

—grde = g8 Hege — BYY gf die—1

gk T
79k dk—
dgfﬂﬂe—l F '

(14)

=ngg -

lgx*
df_ yr—
11+ 0)gl_1dip—

- —2g¢_1dx—1

gfdk_l

I?

L+ o)l (15)
O

Theorem 4.2. Assume that {gr} and {d}} are the sequences generated by Algorithm [3.1]
Then,

0 T 7 \2
> e di)” (16)
ST
Proof. By using @[), and the Cauchy-Schwarz inequality we obtain
L > llgk+1 — gl _ llgr+1 — gl _ llgx+1 — gl ||
[#rt1 — @il [l di | o | de[|?
S [(gr1 — gr) " di|
o || d||?
(gr1 — gr) " dy
o | die[[?
ogidy, — 55 |l di|l* = gid
- OékHdkH2
(1 —o)gidy
200k || |2

Thus, oy > % Now, by assumption (I) and (9) we can write

fe = frr1 = —dargldy + JHd I? > —dargt dp,

o0

> —dargide <Y (fi = frrr) = f1— Jim fi < oo.
=0

k=0
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Hence,

501 — 0) & (gl dh)?
< 0. 17
TP D AR ()

O

Combining the previous theorem with Lemma[4-3] we obtain the following immediate
corollary.

Corollary 4.1. (Global Convergence) Suppose that {gi} is the sequence generated by Algo-
rithm [3.1. Then,
lim ||gx[l = 0. (18)
k—o0

Proof. By Theorem [4.2] and Lemma

llgxlI” *1+Ug{dk- (19)
Thus
= Jgul* 16 (gld)?
< 0. 20
2 0, anmz a2 <> 20)
O

5. Numerical results

In this section, we present some numerical experiments of Algorithm and the
similar algorithms that use the (ILS) formula (namely, the normal BFGS method [5], the
modified Yuan-Wei-Lu method [I7], and the Hui-Fukushima method (HF) [13]) to evaluate
their performance. A set of test problems are taken from [I] and are listed in Table [1] to-
gether with the related initial points.

All tests were coded in MATLAB R2020a, and were run on a PC with a 2.70 GHz
CPU, and 12.0 GB of memory running the Windows 10 OS.
The parameters of Algorithm were chosen as follows.
e Parameters: ¢ =1le — 6, § = %, o= %, and M = 10%.
¢ Dimensions of the variable x: 10, 100, 1000, and 3000.
e Stop rule: Since the results of iteration number are stable, we chose the Himmeblau
stop rule [I8]. This can be described as follows.

bet | fre—frog1]
Lk figal _
stopl := [Pl |fil > 1.6 5,
| fr — fk+1|, otherwise.

For every problem, if each of the conditions ||gx|| < € or stopl < le — 5 is satisfied, the
program stops. This program also stops when the number of iterations is greater than

1000.
Table 1: Test problems.
No Name function To
1 Rosenbrock Func. [0,0,...,0]
2 Extended Trigonometric Func. [0.2,0.2,...,0.2]
3 Extended Rosenbrock Func. [0.5,-2,...,0.5, 2]

Continued on next page
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Table 1 — Continued from previous page

No Name function T
4 Generalized Rosenbrock Func. [-1,2,1,...,—-1,2,1]
5 Extended White and Holst Func. [-1,2,1,...,—-1,2,1]
6 Extended Beale Func. [1,0.8,...,1,0.8]
7 Extended Penalty Func. [1,2,...,n]
8 Perturbed Quadratic Func. [0.5,0.5,...,0.5]
9 Generalized Tridiagonal 1 Func. 2,2,...,2]
10 Extended Tridiagonal 1 Func. 2,2,...,2]
11 Extended Frigonometric 1 Func. 2,2,...,2]
12 Diagonal 4 Func. 1,1,...,1]
13 Extended Himmelblau Func. 1,1,...,1]
14 Generalized PSC1 Func. [3,0.1,...,3,0.1]
15 Extended Powell Func. [3,-1,0,1,...,3,—1,0,1]
16 Full Hessian FH1 Func. [0.01,0.01,...,0.01]
17 Extended Cliff Func. [0,-1,...,0,—1]
18 Perturbed Quadratic Diagonal Func. [0.5,0.5,...,0.5]
19 Quadratic QF1 Func. 1,1,...,1]
20 | Extended Quadratic Penalty QP1 Func. 1,1,...,1]
21 | Extended Quadratic Penalty QP2 Func. 1,1,...,1]
22 Quadratic QF2 Func. [0.5,0.5,...,0.5]
23 FLETCHCR Func. (CUTE) [0,0,...,0]
24 TRIDIA Func. (CUTE) 1,1,...,1]
25 ARWHEAD Func. (CUTE) 1,1,...,1]
2 NONDIA Func. (CUTE) [~1,-1,...,—1]
27 Broyden Tridiagonal Func. [-1,-1,...,-1]
28 LIARWHD Func. (CUTE) [4,4,...,4]
29 POWER Func. (CUTE) 1,1,...,1]
30 ENGVAL1 Func. (CUTE) 2,2,...,2]
31 EDENSCH Func. (CUTE) [0,0,...,0]
32 NONSCOMP Func. (CUTE) 3,3,...,3]
33 LIARWHD Func. (CUTE) [4,4,...,4]
34 DIXON3DQ Func. (CUTE) [~1,-1,...,—1]
35 SINQUAD Func. (CUTE) [0.1,0.1,...,0.1]
Table 2: Numerical results for the BEFGS-CG method.
No Dim TBFG.S‘fCG NI TBFGS NI TYWL NI THF NI
1 10 0.012500 15  0.015625 23 0.014063 23 0.040625 23
1 100  0.059375 12 0.043750 11 0.064062 11 0.054688 11
1 1000 2.943750 10 2.353125 8 2278125 8 2.421875 8
1 3000 57.34218 8 49.09218 7 49.72656 7 49.09687 7
2 10 0.015625 15  0.021875 23 0.026562 23 0.029687 18
2 100 0.185938 8 0.190625 9 0.232813 9 0.240625 9

Continued on next page
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Table 2 — Continued from previous page

No Dim TBFGS—CG NI TBFGS NI TYWL NI THF NI

2 1000 9.878125 6 6.571875 5 9.535937 5 6.342187 5
2 3000 39.43593 4 35.76406 4 38.08437 4 35.30625 4
3 10 0.003125 6 0.003125 6 0.012500 6 0.009375 6
3 100 0.057813 6 0.060937 6 0.073438 6 0.087500 6
3 1000 1.510938 ) 1.539063 5 1.756250 5 1.560938 5
3 3000 34.29375 ) 34.34687 5 35.68125 5 34.40312 5
4 10 0.006250 10 0.023438 10 0.007813 10 0.015625 10
4 100 0.060937 7 0.068750 6 0.087500 6 0.090625 6
4 1000 1.528125 5 1.573438 5 1.857813 5 1.678125 5
4 3000 35.42812 5 35.42187 5 37.69218 5 35.25468 5
5 10 0.003125 5 0.004687 5 0.009375 5 0.009375 5
5 100 0.075000 4 0.076563 4 0.090625 4 0.100000 4
5 1000 4.078125 4 4.131250 4 6.290625 4 4.062500 4
5 3000 51.65156 4 51.66093 4 71.49843 4 51.14687 4
6 10 0.004687 6 0.012500 9 0.009375 9 0.010937 9
6 100 0.120313 6 0.120313 6 0.145313 6 0.114062 6
6 1000 5.237500 ) 5.403125 5 8.307813 5 5.312500 5
6 3000 68.05937 ) 67.66093 5 93.85000 5 67.38281 5
7 10 0.004687 6 0.009375 7 0.012500 7 0.012500 7
7 100 0.025000 3 0.029687 3 0.026562 3 0.026562 3
7 1000 0.389062 2 0.406250 2 0.468750 2 0.453125 2
7 3000 8.807813 2 8.809375 2 9.195313 2 8.795312 2
8 10 0.007813 17 0.015625 27 0.026562 27 0.054688 27
8 100 0.064062 7 0.060937 6 0.082812 6 0.065625

8 1000 1.585938 ) 1.595312 5 1.823438 5 1.646875 5
8 3000 26.12031 4 26.13593 4 28.73125 4 26.22968 4
9 10 0.042188 37 0.045312 41 0.046875 44  0.050000 44
9 100 0.146875 9 0.146875 9 0.201563 9 0.148438 9
9 1000 2.339062 5 2.360937 5 3.428125 5 2.564062 5
9 3000 41.83125 ) 41.88281 5 48.61406 5 41.27812

10 10 0.004687 10 0.025000 31 0.004687 31 0.045312 31
10 100  0.170313 9 0.178125 9 0.170313 9 0.185938 9
10 1000 5.706250 6 4.367188 5 6.734375 5 4.593750 5
10 3000 60.64687 5 60.48750 5 60.48750 5 60.46406 5
11 10 0.004687 5 0.009375 5 0.012500 5 0.004687 5
11 100  0.045312 5 0.048438 5 0.070313 5 0.045312 5
11 1000 1.121875 4 1.121875 4 1.335938 4 1.207812 4
11 3000 25.91406 4 26.00000 4 27.18437 4 25.82343 4
1210 0.014063 15 0.025000 31 0.028125 31 0.045312 31
12 100  0.064062 7 0.062500 6 0.068750 6 0.048438 6
12 1000 1.092188 4 1.521875 5 1.629687 5 1.489062 5
12 3000 25.46093 4 25.65781 4 26.36406 4 25.77343 4
13 10 0.006250 15 0.017188 13 0.017188 13  0.009375 13

Continued on next page
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Table 2 — Continued from previous page

No Dwm TBFGS—CG NI TBFGS NI TYWL NI THF NI
13 100  0.059375 7 0.067187 7 0.089063 7 0.075000 7
13 1000 1.475000 ) 1.481250 5 1.706250 5 1.523438 5
13 3000 34.08750 5 33.97187 5 35.30468 5 34.22812 5
14 10 0.007813 12 0.012500 13 0.014063 13  0.021875 13
14 100  0.140625 7 0.140625 7 0.193750 7 0.190625 7
14 1000 6.564063 5 6.626563 5 10.70312 10 6.676563 5
14 3000 43.37656 77.94218 5 106.3359 5 77.98906

15 10 0.010937 0.018750 12 0.025000 12  0.020313 12
15 100  0.223438 12 0.173437 9 0.240625 9 0.179688 9
15 1000 9.826562 9 6.178125 6 9.362500 6 5.600000 6
15 3000 96.36562 7 79.18906 6 109.5046 6 75.29218 6
16 10 0.006250 9 0.012500 9 0.007813 9 0.012500 9
16 100  0.103125 5 0.148438 5 0.132813 5 0.104688 5
16 1000 13.11406 2 13.16093 2 20.94375 2 11.98125 2
16 3000 297.6812 2 297.0953 2 492.7656 2 341.1718 2
17 10 0.000625 2 0.001250 2 0.001250 2 0.001563 2
17 100  0.014063 2 0.014063 2 0.023438 2 0.006250 2
17 1000 0.515625 2 0.545312 2 0.704688 2 0.543750 2
17 3000 10.33125 2 10.68593 2 12.11875 2 9.962500 2
18 10 0.031250 17 0.051562 25 0.071875 25 0.170313 25
18 100  0.198437 7 0.182812 6 0.264062 6 0.201563 6
18 1000 6.551563 4 4.146875 3 5.696875 3 4.062500 3
18 3000 66.52187 3 66.12343 3 78.35781 3 65.69843 3
19 10 0.014063 17 0.023438 27 0.021875 27  0.029687 27
19 100  0.051562 7 0.059375 7 0.089063 7 0.068750 7
19 1000 1.385938 5 1.437500 5 1.671875 5 1.545313 5
19 3000 25.43750 4 25.53750 4 26.32968 4 25.84375 4
20 10 0.004687 11 0.018750 16 0.018750 16  0.015625 16
20 100  0.053125 7 0.062500 6 0.068750 6 0.081250 6
20 1000 1.225000 4 1.651563 5 1.954687 5 1.753125 5
20 3000 26.85937 4 26.84375 4 28.931256 4 26.92968 4
21 10 0.003125 8 0.009375 8 0.007813 8 0.009375 8
21 100  0.076563 5 0.076563 5 0.101563 5 0.076563 5
21 1000 3.303125 4 3.443750 4 4.620312 4 3.376562 4
21 3000 44.97031 4 45.49062 4 55.20156 4 44.93750 4
22 10 0.009375 17 0.018750 32 0.021875 32 0.053125 32
22 100  0.065625 7 0.065625 7 0.081250 7 0.073438 7
22 1000 1.575000 5 1.614062 5 1.857813 5 1.650000 5
22 3000 26.46875 4 26.81250 4 27.50625 4 26.27656 4
23 10 0.007813 12 0.015625 11 0.017188 11 0.017188 11
23 100  0.084375 8 0.081250 8 0.104688 8 0.084375 8
23 1000 2.020313 6 2428125 6 2.428125 6 2.176563 6
23 3000 44.84062 6 45.13593 6 47.39375 6 44.66406 6

Continued on next page




A new hybrid BFGS-CG method under inexact line search and its global convergence

121

Table 2 — Continued from previous page

No Dim TBFGS—CG NI TBFGS NI TYWL NI THF NI

24 10 0.006250 19 0.017188 33 0.025000 33 0.057813 33
24 100  0.070313 7 0.071875 7 0.082812 7 0.065625 7
24 1000 1.590625 ) 1.629687 5 1.806250 5 1.635938 5
24 3000 26.26093 4 26.41562 4 27.82031 4 26.63437

25 10 0.004687 13 0.021875 15 0.020313 15 0.023438 15

25 100  0.081250 8 0.087500 8 0.092188 8 0.079687 8
25 1000 1.962500 6 1.959375 6 2.289063 6 2.070313 6
25 3000 35.03906 5 34.70000 5 36.84531 5 34.94218 5
26 10 0.009375 8 0.014063 9 0.014063 9 0.010937 9
26 100  0.056250 6 0.040625 5 0.073438 5 0.042188 5
26 1000 1.529688 5 1.509375 5 1.789063 5 1.573438 5
26 3000 25.81406 4 25.72343 4 27.30156 4 26.14218 4

27 10 0.012500
27 100  0.087500
27 1000 2.178125
27 3000 36.02343
28 10 0.003125
28 100  0.062500

—_

5 0.015625 24 0.017188 24 0.051562 24
0.093750 8 0.101563 8 0.107813
2.203125 6 2.603125 6 2.189062 6
36.10156 5 38.96562 5 36.15781 5
0.015625 13 0.020313 13 0.015625 13
0.067187 6 0.084375 6 0.065625 6

28 1000 1.628125 1.745313 5 1.996875 5 1.729688 5

28 3000 35.04281 35.05000 5 37.72500 5 36.00937 5

29 10 0.017188 14 0.026562 27 0.026562 27 0.034375 27

29 100  0.040625 ) 0.056250 6 0.082812 6 0.057813 6

29 1000 1.104688 4 0.728125 3 0.865625 3 0.756250 3

29 3000 17.02812 3 16.95468 3 17.52187 3 17.20781 3

30 10 0.004687 14 0.025000 16 0.017188 16 0.018750 16

30 100  0.062500 7 0.068750 7 0.109375 7 0.087500 7

30 1000 1.696875 ) 1.723437 5 2.003125 5 1.687500 5

30 3000 35.91781 ) 35.92031 5 38.39375 5 35.76406 5

31 10 0.012500 15 0.014063 15 0.017188 15 0.029687 20

31 100  0.081250 9 0.084375 9 0.121875 9 0.259375 8

31 1000 1.834375 6 1.914063 6 2.142187 6 0.042188 5

31 3000 42.70937 6 42.94687 6 44.51406 6 101.9750 5

32 10 0.006250 12 0.017188 11 0.018750 11  0.046875 11

32 100  0.065625 7 0.067187 7 0.067187 7 0.075000 7

32 1000 1.646875 5 1.720312 5 1.960938 5 1.621875 5

32 3000 34.97656 5 26.41406 4 27.87968 4 25.76093 4

33 10 0.012500 10 0.018750 14 0.023438 14 0.025000 14

33 100  0.064062 7 0.071875 7 0.107813 7 0.092188 7

33 1000 1.659375 5 1.737500 5 2.059375 5 1.682813 5

33 3000 35.60468 ) 35.24531 5 37.45781 5 35.50937 5

34 10 0.014063 18 0.017188 27 0.026562 27  0.039063 27

34 100 0.078125 8 0.079687 8 0.098437 8 0.085938 8

34 1000 1.960938 6 1.562500 5 1.798437 5 1.489062 5

UL Ot O © Ut Oy 0o

Continued on next page
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Table 2 — Continued from previous page
No Dim TBFGS—CG NI TBFGS NI TYWL NI THF NI
34 3000 34.11562 5 34.54843 5 35.77031 5 34.52343 5
35 10 0.009375 14 0.015625 30 0.025000 30 0.059375 30

35 100  0.170313 12 0.131250 9 0.171875 9 0.139063 9
35 1000 6.531250 9 4.475000 7 6.223438 7 4.621875 7
35 3000 64.36406 7 53.50468 6 61.51093 6 53.35625 6

The numerical results are listed in Table Moreover, the results are depicted in
Figures [} and [2] in which a performance measure introduced by Dolan and More [§] is also
employed.
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r
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F1GURE 1. Performance profiles of hybrid BFGS-CG method
(The number of iterations).

From Figures [I] and Q we observe that for most problems, the proposed method
performs much better than the other three famous methods. It follows that Algorithm
is efficient and can compete with other algorithms.
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FI1GURE 2. Performance profiles of hybrid BFGS-CG method
(CPU time).

6. Conclusion

This study proposed a new hybrid BFGS-CG method, one that used a novel ILS technique, and
proved its global convergence for general functions. We compared it with three well-known
algorithms according to the (PU time and the number of iterations. TThe numerical results
were depicted in Figures 1 and 2, and indicated the faster convergence of the new algorithm to the
answer in most test problems. According to these results, we found that the proposed method was
acceptably effi-cient and promising. Modification of this formula for achieving a higher
convergence rate may be a good idea for future research.
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