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AN EXPONENTIAL STABILITY TEST

FOR A MESSENGER RNA–MICRO RNA ODE MODEL

Mircea Olteanu1 and Radu Ştefan2

In this paper we obtain a numerically tractable test (sufficient condition)

for the exponential stability of the unique positive equilibrium point of an ODE

system. The result (Theorem 3.1) is based on Lyapunov theory and Linear Ma-

trix Inequalities techniques. The ODE model is related to the messengerRNA-

microRNA interaction.
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1. Introduction

Consider the following ODE matematical model

dmi

dt
= bi − dimi −

 M∑
j=1

k+ijµj

mi +

M∑
j=1

k−ijcij , i = 1, N

dµj
dt

= βj − δjµj −

(
N∑
i=1

k+ijmi

)
µj +

N∑
i=1

(k−ij + κij)cij , j = 1,M (1)

dcij
dt

= −(σij + k−ij + κij)cij + k+ijmiµj , i = 1, N, j = 1,M.

The notation is the usual one, as in the original papers [4] and [5]: mi

(i = 1, N) represent the concentrations of the messengerRNAs, µj (j = 1,M)

are the concentrations of the microRNAs, while cij stand for the concentrations

of the complexes. Let us remark that di, δj and σij are the elimination rates of the

messengerRNAs, microRNAs and complexes, respectively. The kinetic constants

associated with the mass action rates of the enzymatic reactions are k+ij , k
−
ij and

κij . Finally, bi and βj stand for the transcription rates of the messengerRNAs and

microRNAs, respectively. We assume throughout the paper that all coeficients are

strictly positive.
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During the last years, such mathematical models received a lot of attention

in the literature (see [7], [4], [2], [9], [3]). The case with two messenger and two

micro RNA species appears to be relevant for many issues raised by the interaction

mechanisms. Therefore we decided to concentrate here exclusively on the situation

when M = N = 2. In this case (1) rewrites as a system with 8 equations

dmi

dt
= bi − dimi −

(
k+i1µ1 + k+i2µ2

)
mi +

(
k−i1ci1 + k−i2ci2

)
, i = 1, 2

dµj
dt

= βj − δjµj −
(
k+1jm1 + k+2jm2

)
µj +

(
(k−1j + κ1j)c1j + (k−2j + κ2j)c2j

)
j = 1, 2

dcij
dt

= −(σij + k−ij + κij)cij + k+ijmiµj , i, j = 1, 2. (2)

Further, we will analyze the behavior of the above system (2) under the Quasi

Steady State Assumption (QSSA). To be more specific, this means that

dcij
dt

= 0, or, equivalently, cij =
k+ij

σij + k−ij + κij
miµj , i, j = 1, 2.

The QSSA is consistent with the experimental fact that complexes often reach the

steady-state (equilibrium) much faster than the RNA species (see [4], [5]). Under

this hypothesis, we get the following ODE model comprising four equations

dm1

dt
= b1 − d1m1 − (a11µ1 + a12µ2)m1

dm2

dt
= b2 − d2m2 − (a21µ1 + a22µ2)m2

dµ1
dt

= β1 − δ1µ1 − (α11m1 + α21m2)µ1 (3)

dµ2
dt

= β2 − δ2µ2 − (α12m1 + α22m2)µ2

where

aij =
σij + κij

σij + k−ij + κij
k+ij , (4)

αij =
σij

σij + k−ij + κij
k+ij . (5)

Obviously, αij < aij < k+ij .

Remark 1.1.

(1) The above system of differential equations is defined by a polynomial vector

field, hence the existence and uniqueness theorem applies to the Cauchy prob-

lem associated with (3). Moreover, the solutions are bounded (see [5]).

(2) By using a similar technique as in [6], it can be shown that the positive ortant

R4
+ is a positively invariant set for the system.

We shall prove the existence of a unique equilibrium point in the positive

ortant of R4 and then give conditions for the exponential stability of this equilibria.
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2. Equilibria

The equilibrium points are the solutions of the following system of equations:

mi =
bi

di + ai1µ1 + ai2µ2
, i = 1, 2,

µj =
βj

δj + α1jm1 + α2jm2
, j = 1, 2. (6)

The following existence and uniqueness result holds.

Theorem 2.1. For every positive set of parameters bi, βj, di, δj , σij, k
+
ij , k−ij and κij,

i, j = 1, 2, the system (6) has a unique solution (m∗
1,m

∗
2, µ

∗
1, µ

∗
2) with mi ∈

(
0 ,

bi
di

)
and µj ∈

(
0 ,

βj
δj

)
, i, j = 1, 2.

Proof. Consider the maps

gi(mi, µ1, µ2) = mi (di + ai1µ1 + ai2µ2) , i = 1, 2,

hj(m1,m2, µj) = µj (δj + α1jm1 + α2jm2) , j = 1, 2.

Obviously, the equilibrium points of the system are the solutions of the following

system of equations

gi(mi, µ1, µ2) = bi, i = 1, 2,

hj(m1,m2, µj) = βj , j = 1, 2.

Let us first notice that for any i, j = 1, 2

∂gi
∂mi

> 0,
∂hj
∂µj

> 0,
∂gi
∂µj

> 0 and
∂hj
∂mi

> 0.

From system (6), at equilibrium, the uniqueness results from

∂mi

∂µj
< 0,

∂µj
∂mi

< 0, i, j = 1, 2.

Then observe that gi(0, µ1, µ2) = 0 and that gi(
bi
di
, µ1, µ2) > bi, hence for every pair

(µ1, µ2) ∈ R2
+ there exist unique m∗

1 = m∗
1(µ1, µ2) > 0 and m∗

2 = m∗
2(µ1, µ2) > 0

such that gi(mi, µ1, µ2) = bi, i = 1, 2.

Considering now the system hj (m∗
1(µ1, µ2),m

∗
2(µ1, µ2), µj) = βj , j = 1, 2, one gets

h1 (m∗
1(0, µ2),m

∗
2(0, µ2), 0) = 0

h1

(
m∗

1(
β1
δ1
, µ2),m

∗
2(
β1
δ1
, µ2),

β1
δ1

)
> β1.

Thus there exists a unique µ∗1 = µ∗1(µ2) such that h1 (m∗
1(µ

∗
1, µ2),m

∗
2(µ

∗
1, µ2), µ

∗
1) =

β1. By a similar reasoning it follows that the last equation

h2 (m∗
1(µ

∗
1, µ2),m

∗
2(µ

∗
1, µ2), µ2) = β2

has also a unique solution µ∗2 ∈
(

0 ,
β2
δ2

)
and the proof is completed. �
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3. Exponential stability of the equilibrium point

The analysis of the stability properties of the origin will make use of the clas-

sical Lyapunov’s stability theorems. Introduce a quadratic form as a Lyapunov

function candidate, that is, V (z) = zTPz. We will derive an LMI (Linear Matrix

Inequality) sufficient condition in terms of P which ensures the exponential stability

of the equilibrium point. The solution is then obtained by using the cvx program-

ming environment developed by Boyd et. al [1] and running the SDPT3 semidefinite

programming package.

Translate first the system (3) to the origin. Define the deviations with respect to

the equilibrium point in Theorem 2.1 as xi := mi−m∗
i , yj := µj−µ∗j , i, j = 1, 2 and

let zT := [x1 x2 y1 y2]. Then write the equivalent translated system as

ż = Az + g(z), (7)

where

A =


−d̃1 0 −a11m∗

1 −a12m∗
2

0 −d̃2 −a21m∗
1 −a22m∗

2

−α11µ
∗
1 −α21µ

∗
1 −δ̃1 0

−α12µ
∗
2 −α22µ

∗
2 0 −δ̃2

 ,
d̃1 = d1 + a11µ

∗
1 + a12µ

∗
2, d̃2 = d2 + a21µ

∗
1 + a22µ

∗
2,

δ̃1 = δ1 + α11m
∗
1 + α21m

∗
2, δ̃2 = δ2 + α12m

∗
1 + α22m

∗
2

and g : R4 → R4 is defined by

g1(x1, x2, y1, y2) = − (a11y1 + a12y2)x1, g2(x1, x2, y1, y2) = − (a12y1 + a22y2)x2,

g3(x1, x2, y1, y2) = − (α11x1 + α21x2) y1, g4(x1, x2, y1, y2) = − (α12x1 + α22x2) y2.

Proposition 3.1.

For every r > 0, there exists γr > 0 such that

‖g(z)‖ ≤ γr ‖z‖, ∀‖z‖ < r. (8)

Proof. Let r > 0 and assume that ‖z‖ < r. Then

g21(z) = (a11y1 + a12y2)
2 x21 ≤ (a11 + a12)

2 r2 x21.

One can also bound from above in the same manner g2i (z), i = 2, 4. Define

γr := r
√

max{(a11 + a12)2, (a21 + a22)2, (α11 + α21)2, (α12 + α22)2} (9)

Then, we see that

‖g(z)‖2 =

4∑
i=1

g2i (z) ≤ γ2r ‖z‖2,

hence ‖g(z)‖ ≤ γr ‖z‖, ∀‖z‖ < r.

�

Now we can state the main result of the section.
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Theorem 3.1. If there exist a positive definite matrix of appropriate dimensions

P > 0 and positive real numbers c > 0, γ > 0, all depending on A, such that[
ATP + PA+ cP + γ2I P

P −I

]
< 0, (10)

then the origin is an exponentially stable equilibrium point for the system (7).

Proof. Consider the quadratic Lyapunov function candidate V (z) = zTPz. Accord-

ing to a standard Lyapunov stability result (see Chapter 9 in [8]), the exponential

stability of the origin is guaranteed if the derivative of V (z) along the trajectories

of the system verifies

0 > −c V (z) > V̇ (z) = zT
(
ATP + PA

)
z + gT (z)Pz + zTPg(z),

or, equivalently,

zT
(
ATP + PA+ cP

)
z + zTPg(z) + gT (z)Pz < 0. (11)

Let z ∈ R4 and let r > 0 such that ‖z‖ < r; Proposition 3.1 applies and (8) holds.

It follows that whenever the inequality below

zT
(
ATP + PA+ cP

)
z + zTPg(z) + gT (z)Pz + γ2rz

T z − gT (z)g(z) < 0 (12)

or, equivalently,[
zT gT (z)

] [AT + PA+ cP + γ2r I P

P −I

] [
z

g(z)

]
< 0

is satisfied for a given P = P T > 0 and c > 0, then the origin is exponentially stable.

Hence it is sufficient that the LMI (10) holds.

�

As it was already mentioned, the inequality (10) is an LMI in the unknown

P and parameters c and γ, and can be solved by using existing semidefinite pro-

gramming software packages. If a solution exists, then automatically the equilibrium

point in Theorem 2.1 is an exponentially stable equilibrium for the system (3).

4. Numerical examples. Conclusions.

Consider the following parameters (coefficients): b1 = 4, b2 = 8, β1 = 1.5, β2 =

1; d1 = 5, d2 = 2.8, δ1 = 8, δ2 = 6.7; k+11 = 8.2, k+12 = 0.5, k+21 = 0.3, k+22 = 4.8;

k−11 = 0.3, k−12 = 0.1, k−21 = 2, k−22 = 1.2; κ11 = 0.8, κ12 = 1, κ21 = 1.3, κ22 = 0.5 and

σ11 = 1.5, σ12 = 3.8, σ21 = 7, σ22 = 10.

In this case the feasibility problem (10) has a positive definite solution (Λ denotes

here the spectrum):

P =


3.8925 −0.1070 −0.9507 −0.1833

−0.1070 1.2117 0.0251 −0.7505

−0.9507 0.0251 3.7720 0.0755

−0.1833 −0.7505 0.0755 2.5543

 , ΛP = {0.866, 2.841, 2.923, 4.800} .
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Furthermore, the LMI is fulfilled since the spectrum of the left-hand side in (10) is

Λ = {−68.4193,−64.2490,−31.6846,−3.3227,−0.0544,−0.3398,−0.8601,−0.9551}.
As expected, A is stable with ΛA = {−17.8122,−12.1811,−5.4813,−2.8975}.

We have also noticed that if the values of di or δj , i, j = 1, 2 are small

enough, the LMI (10) is not feasible anymore, but A remains stable. For in-

stance, by taking d1 = 2 we do not get a solution for P anymore, but ΛA =

{−13.8627,−17.9746,−3.4381,−2.8929} still belongs to the left complex half-plane.

This only shows that this type of sufficient LMI conditions always contain a certain

degree of conservatism, implicitly present in the numerical procedure: if (10) is not

feasible, this does not imply that the matrix A or the origin are not (exponentially)

stable.

A sufficient condition for exponential stability of the single positive equilibrium

point of an ODE system modeling messengerRNA - microRNA interaction has been

derived. This condition can be verified numerically in a sound manner.
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