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LARGE MARGIN LOSS FOR IMAGE RETRIEVAL

Andrei RACOVITEANU?, Corneliu FLOREA?, Mihai BADEA?

Over the years the research community has searched for the most efficient
descriptors for the task of image retrieval. Along with the development of hardware
resources that led to the widespread use of convolutional networks, new alternatives
emerged. Although the results were promising, there are still many possibilities to
improve the efficiency of the descriptors provided by the convolutional networks.
This paper proposes an efficient method based on CNN features extracted using a
large margin loss to provide a better separability in the descriptor space for an
image retrieval task. The method was tested in two scenarios on a complex database
that contains images of different places. The first scenario was testing the large
margin loss on the entire database, while the second involved more particular
situations where the potential of this type of loss is better isolated. In both scenarios,
promising results were obtained regarding most of the retrieval metrics.
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1. Introduction

Convolutional networks have emerged as one of the most popular methods
in the fields of Image Processing and Computer Vision as a result of the
development of corresponding hardware equipment. Besides the classical
problems of classification, segmentation or detection, CNNs (Convolutional
Neural Networks) can be used in image retrieval tasks, especially in finding
similar images. The applicability of image retrieval is vast and includes
recommendation systems or finding relevant images in fields such as medicine or
photography. With the development of Internet browsers and the necessity to
access useful information, the first image retrieval algorithms appeared. These
approaches are still used by the majority of search engines to locate relevant
photos based on certain keywords. However, in these first stages, the visual
information included in the images was not taken into account. Later, research
started to focus on methods of extracting the relevant visual features according to
the tasks that had to be addressed [1].

One of the most well-known visual descriptors in Computer Vision
problems is HOG (Histogram of oriented gradients) [1] and LBP (Local Binary

1 Ph.D. student, Applied Electronics and Information Technology Department, University
POLITEHNICA of Bucharest, Romania, e-mail: andrei.racoviteanu@upb.ro

2 Professor, Applied Electronics and Information Technology Department, University
POLITEHNICA of Bucharest, Romania, e-mail: corneliu.florea@upb.ro

3 Ph.D. student, Applied Electronics and Information Technology Department, University
POLITEHNICA of Bucharest, Romania, e-mail: mihai_sorin.badea@upb.ro


mailto:mihai_sorin.badea@upb.ro

144 Andrei Racoviteanu, Corneliu Florea, Mihai Badea

Pattern) [3]. HOG was effective at filtering image details (contours, corners),
while LBP excelled in recognizing textures. HOG [2] is derived from the previous
SIFT (Scale Invariant Feature Transform) construction [4], which complements
the descriptor with a keypoint locator that is not sensitive to rotation and scale
changes. SIFT has proven to be very effective in terms of matching or finding
objects in images, yet, Bay et al. [5] found room for improvement by means of
using integral image to propose SURF (Speeded Up Robust Features). Binary
Robust Independent Elementary Features (BRIEF) [6] was proposed for choosing
key areas in the image through a simple binary comparison between the pixel
intensity values in a image patch.

With the appearance of convolutional networks, the descriptors provided
by them were used more and more often. Due to the increased ability of CNNs to
find relevant features, pre-trained models on completely different data than those
that had to be retrieved were also tried. Zhou et al. [7] used a pre-trained network
on a different task for extracting effective embeddings for image retrieval. In
addition, they proposed a novel small CNN which provides more relevant
descriptors and reduces dimensionality at the same time. In [8] a method is
presented that combines several local features from convolutional layers with the
help of VLAD [9] encoding to obtain a unique descriptor vector per image. It was
showed that intermediate layers can be, under certain conditions, more effective
than the last fully-connected (FC) layer.

The paper is organized as follows: in the next section we emphasize the
main steps of the proposed method, including large margin loss functionality and
the framework used; Section 3 is dedicated to experimental results; Section 4
outlines the main conclusions of the paper.

2. Method

This article's main topic is a large margin loss, inspired by Center [10] and
Island Loss [11]. For the best final classification using a convolutional network,
the FC features should form a sparse descriptive space. This makes adjusting the
separation boundary easier without confusing network decisions. Unfortunately,
perfect data separation is not always possible, so methods to improve it were
sought. Wen et al. [10] introduced Center Loss to reduce embedding density.
Reducing intra-class compactness improves delimitation. The algorithm assigns
each class a center and reduces the distance between samples and their own
center. Unlike Center Loss, Island Loss forces a greater distance between
descriptive space clusters. Thus, overlapping classes are more separated. Fisher
loss [12] was defined as a combination of the 2 previously mentioned losses. In
this case, the distance between the centroids, and not the angle measurement
(island loss), is taken into account. More recently, Sun et al. [13] improved the
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triplet loss [14] by weighting the positive and negative examples differently in
relation to the distance of the anchor(reference).

2.1. Large Margin Loss

Center Loss [10] can be useful but does not affect other classes. Even with
more compact data, there may be overlaps. The proposed loss should create a
large gap between embeddings clusters which could lead to improved results.

The large margin loss can be defined as:
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where X; is the embedding belongmg to class j and c; is the centroid
associated to this class. Basically, left term describes the Center Loss effect of
gathering the data samples around the centroids. N represents the batch size, C is
the number of classes and implicitly the number of centers and cx is a different
centroid compared to the belonging prototype to each sample c;j . The second term
considers the Euclidian distance between the current sample and other cluster
centers, imposing large margin effect between embeddings
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Large margins enforce cluster sparseness compared to Center Loss.
Normalizing the data and using the Euclidian distance for the second term differs
for Island Loss. Normalizing the data improves numerical stability during
training, while using a Euclidian distance emphasizes magnitude. In large margin
loss, the focus is on embedding location relative to other classes.

The overall system is trained with a combined loss defined in eq. (3),
where L. is the classical cross entropy classification loss and L;,, denotes the
large margin loss. The parameter B is a weighting constant to balance the
influence of the two terms in the total loss. In the experiments 8 was set to 0.01.

Lror = Leg + BLim (3)

Fig. 1 depicts large margin loss behavior more intuitively. The figure
depicts network descriptors provided by the network. Red and green dots
represent the class centers. Given 2 new images and their embeddings X1 and X2,
the principle of the loss should minimize the distance from the data sample to its
own centroid (red and green double continuous arrow) and enlarge the distance
from the data sample to the other class centers (red and green double dash arrow).
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Thus, the two pictures should approach the centers of the classes to which they
belong, while the clusters move apart simultaneously.

Fig.1. Behavior of Large Margin Loss

2.2. Framework and Dataset

Dataset. Due to the diversity of classes, image retrieval tasks increasingly
use datasets with images of places or scenes. SUN [15] contains 130,519 images
in 397 categories for scene recognition. The number of training samples is
insufficient for deep learning. Inspired by the SUN work [15], Zhou et al.
proposed a new more consistent dataset called Places [16] to cover the data needs
of convolutional networks. Images were acquired using search engines, while
Amazon Mechanical Turk was used to label the pictures. Each annotator was
given 750 pictures from various categories and had to determine which belonged
to the actual tag. They also checked 60 annotated examples by other persons [16].

Automatic classifiers were used to label images to increase the number of
samples. The final dataset contains over 10 million images from 434 place
categories and was divided into several subsets. Places365-Standard contains 1.8
million samples and 365 classes. Each class has 3,068 to 5,000 training images.
The validation set has 100 images per class, while the test split has 900. Only
images from the validation set were used [16]. Fig.2 shows Places365-Standard
images.
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Fig.2. Images from Places365-Standard
optimizer was used for experiments. Fig. 3 shows the framework. The penultimate
fully connected layer (orange in Fig. 3) before the output provided image retrieval
embeddings. Every image was represented by 512 features. The output layer
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(yellow in Fig. 3) had 365 neurons, one for each class. On the 512-neuron fully-
connected layer, the large margin principle was used to improve embedding
separation for retrieval. The last output layer's cross-entropy loss was applied
using the Softmax activation function.

Two scenarios tested the large margin method. First, a ResNet-18 network
was fine-tuned on Places 365 and all convolutional layers were frozen (red arrows
in Fig. 3) and only the connections with the descriptive layer (512 FC layer) were
kept. Freezing convolutional layers may prevent the large margin loss from
changing weights, leading to a better descriptive space representation. For the
second part, the entire network was retrained. The second scenario consisted of
testing the large margin loss in a different situation: a problem with non-separable
data where classes are easily confused. The choice of classes to simulate these
situations was a problem. The easiest solution was to use a pre-trained network on
the Places dataset to check if subjectively chosen classes met the imposed
conditions. These classes were extracted from the total 365 places from the
dataset and were organized as followed: roof garden, tree farm, vegetable garden,
yard and zen garden.
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Fig.3. Framework of the method proposed

Fig. 4 displays the embedding space for the proposed situation to
demonstrate the efficient choice of labels for the scenario. In addition, a figure
with separable classes was created to highlight the differences. The points
represented in the figure are the embeddings provided by the orange FC layer
(Fig.3.) with the pre-trained ResNet-18 architecture on Places365. To address the
major challenge of representing the descriptive vectors with 512 features in a
human-perceivable map (2-3D), we used the t-SNE model [17] which is a
dimensionality reduction technique mostly used for visualizing data in 2D and 3D
spaces. Although the figures below were built with a pre-trained model on
Places365, the embeddings for the scenario with 5 difficult classes are completely
tangled as if the network was not really trained.
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Fig.4. t-SNE representation of the 2 different situations. a — Non separable data scenario; b-
Separable data scenario

3. Experimental results

As previously mentioned, 2 scenarios were tested. First, a ResNet-18 was
trained on the Places365 training set. In the first phase, the pre-trained network
was used to determine retrieval performance. mAP, top 1 and 5 error rate were
used as performance metrics. mAP is based on average precision, another
common retrieval metric (AP). The AP for an independent class can be defined as
in the left-hand part of eq. (4). There, Ntp is the number of true positive images or
the returned images with class of the query images. No represents the number of
retrieved images and Nic is the number of same-class test images. In this manner,
it is computed an average precision per every class. Finally, to determine mAP, all
APs are divided by the number of classes (left hand part of eq. 4).

Nic [o
1 (Nzp); 1
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The other performance metric is the error rate of the system, not its ability
to return relevant images. Top 1 error rate is only measured for the system's first
image. It measures the percentage of first retrieved images that are not the test
image's class. Top 5 error rate measures the same thing, but for the first five
returned photos. The Top 1 error rate formula, where NT is the number of test
images:

Ny — 307 (Nrp); :
N (5)

Table 1 shows the first scenario results. The first row shows the results
with the pre-trained ResNet-18 on Places365. The second row presents the values
achieved with the fine-tuned pre-trained model only on the FC layers weights
(convolutional part frozen), while the third row brings into consideration the
results when a new model is trained from scratch. The network was trained for 90

Top_ leror =
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epochs with the ADAM optimizer and a starting learning rate of 10 which was
decreased at every 30 epochs with a factor of 10.

The performance metrics were computed for a considerable part of the
Places365 validation set. The validation set contains 36500 images from 365
classes. 29200 images were randomly chosen for the references database
(80/class) and 2920 for the query dataset (8/class). mAP was computed for 5 and
8 retrieved images, but error rates were only used for 5. In addition to retrieval
statistics, the table also includes accuracy. The accuracy was determined using the
entire validation set.

Discussing the results, in the first 2 cases, retrieval metrics are similar.
Freezing convolutional layers limits the contribution of the large margin loss to a
more efficient descriptive space structuring. However, the accuracy is about 1.5%
better and comparable with [16], despite using a ResNet-152 architecture instead
of a ResNet-18. It must be highlighted that a better accuracy does not necessarily
bring the optimal performance on the retrieval side because the retrieval task
performance is usually measured on more images compared to a classification
problem. Instead, the model trained from scratch increased mAP by 1.5%, despite
being less accurate.

The area under the Precision-Recall curve was also calculated to evaluate
the large margin loss retrieval performance. The curve was created by calculating
precision and recall for each retrieval (starting from 1 to the entire reference
database). Even in this case, when the large margin was used, an improvement of
approximately 2% was achieved. Even though the fine-tuned model was more
accurate, the AUC measure was not improved, confirming that due to frozen
convolutional layers, the dominant factor in changing weights is still the cross
entropy loss.

Apart from the objective performance measures, a visual analysis of the
retrieval images provided by the 2 methods (CE-baseline vs LM from scratch) is
also important. Fig. 5 exposes the first 5 images retrieved for CE and LM.
Visually, the returned images are usually related to the query image, even if they
have a different label (red bullet). CE and LM commit image class errors
depending on the picture. Considering the high probability of a major overlap in a
problem with 365 classes, the results are not surprising. Many similar classes in
Places365 make retrieval difficult as is seen in Fig. 5. The first image in the CE
case looks like a bedroom, but it is in the hotel room class which is not the only
similar category with bedroom. For the ruin image the LM method gathers 5
consecutive mistakes, but the classes of wrong images are quite similar with the
one requested (cemetery, temple-asia, castle or amphitheater). . It was crucial to
provide a metric that measures performance for any amount of retrieved pictures
to prove the utility of large margin loss because for a particular number of queries,
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the classical CE trained network could have better results. But what matters is the
retrieval capacity on the entire data set.
Table 1
Experimental results on Places365 (MAP-mean average precision; AUC — area under curve;
CE- cross entropy, LM- large margin)

Scenario/Metric MAP-5- mMAP-8- Top-1- Top-5- AUC - PR
Accuracy
[%0] query query err-rate | err-rate curve
CE-pre-trained- | g gq 28.35 66.74 3753 53.10 9.17
baseline
LM-fine-tuned 29.89 28.56 66.99 37.95 54.69 9.23
LM-from-scratch 31.35 29.98 66.18 37.79 53.51 11.18
Resnet-152 [16] - - - - 54.74 -

Even with powerful tools like t-SNE, it is difficult to visually represent a
problem with so many categories. Having so many classes may cause overlap.
Even though the principle of large margin loss should better spread the
descriptors, for difficult problems with many similar classes, it is obvious that its
potential is limited. Even if a large margin effect is forced, many data samples
will move away from certain classes and overlap with others. This is the reason
why one more particular scenario with fewer classes was proposed. In this way,
the impact of a large margin loss on situations involving a different data
separation could be studied.

Having less data and classes available, the t-SNE technique was used
again to visualize what happens to the embeddings during training. For this
particular scenario the same ResNet-18 architecture was used, trained from
scratch with the ADAM optimizer and constant learning rate of 10 for 25
epochs. The weighting constant g for large margin loss had the same value 1/100.
The training set was created by randomly selecting 1000 images from Places365
for each class. Images from Places365 validation set were used to create test data.
The search (reference) database was another 1000 random images from
Places365's training set, while the query data was all the validation set images.
Each class was represented by 1000 examples in the training and reference set and
100 instances in the validation and query set, which were identical.

Figures 6 provide a comparison regarding the change in descriptive space
between training with large margin loss case versus training with cross entropy
only. Cross entropy loss gathers the data to some extent but does not increase
cluster distances. In contrast, large margin loss increases data class compactness
and cluster space. The impact increases with the degree of initial class overlap.
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[Query | [ First 5 retrleved images with CE ] First 5 retrleved images with LM |
Fig.5. Examples of first 5 images retrieved with CE and LM. Red bullets mark retrieved images
with a different class compared to query image. Green bullets describe correctly retrieved images

When problems are more difficult due to easier to confuse classes, the
spacing is improved sometimes by large margin leading to results superior to
cross entropy. Yet the results is not guaranteed as for instance in Fig 6 (which
shows samples from the validation/query dataset), where the dark orange and dark
blue classes are too similar even for large margin. The results obtained are
presented in Table 2. LM outperformed CE in all metrics except Top 5 error rate
for easily confused classes. Now, mAP is up 4%, accuracy is up 3%, and AUC is
up over 7%. A graphic representation of the precision-recall curves for LM and
CE for the case with inseparable data and initial case with the entire Places dataset

can be seen in Fig. 7.
Table 2
Experimental results on (mAP-mean average precision; AUC — area under curve; CE- cross
entropy, LM- large margin, Acc- Accuracy)

Scenario/Metric mAP-5- | mAP-10- Top-1- Top-5- AUC -
Acc
[%%6] query query err-rate | err-rate PR curve
CE-non-separable data 55.83 56.00 43.61 12.69 67.20 37.25
LM-non-separable data 59.75 58.97 40.60 13.45 70.08 44.75

Even if the data are overlapping, the proposed method describes the
embeddings space more efficiently, though it can't reach the ideal delimitation.
Figure 8 shows the difference in reference set descriptor representation (the one in
which the retrieval results are sought). Large margin loss samples are more
compact and farther apart. Border examples (between classes) have a lower risk of
being misclassified. Large margin loss reduces the cluster of overlapping points in
the left figure. Dark blue and orange classes that almost completely overlap
remain difficult to separate.
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Epoch 1 Epoch 12 Epoch 25

Fig.6. The modification of the descriptive space during the training process for the case with non-
separable data (LM —up, CE- bottom)

The experiments were run on a Nvidia GeForce GTX 1080 video card. For
the entire dataset and a batch of 128 images, the training time for an epoch with
Cross Entropy only, is about 50 minutes. Adding the Large Margin loss increases
the training time per epoch by 35 seconds. Referring only to a single batch, the
temporal addition is approximately 2.5 ms due to the forward and backward step
for the Large Margin.

The centers are trainable parameters of the network and change directly
through the gradients provided by the large margin component. However, if the
position of the centroids is explicitly computed for each given batch the time for
an iteration can increase with 10ms or even more in comparison with Cross
Entropy, which can lead to an increase of 4-5 hours in the total training time (90
epochs). It should be mentioned that the previously specified times were obtained
when the network was trained from scratch.
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Fig.7. PR- curves for LM and CE. a- non separable data scenario; b- initial scenario with the entire
Places365 database
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Fig. 8. The descriptors representation associated with the reference set with CE (left) and LM
(right) for non-separable data scenario

4. Conclusions

The field of convolutional networks contributed to obtaining some useful
descriptors for image retrieval problems. In the experiments presented throughout
the paper, the use of a large margin type loss for a more efficient representation of
the embeddings space was demonstrated. Introduced during training, this loss
improves accuracy and retrieval.

The method was tested in several scenarios, but the best improvement was
with non-separable classes. In this scenario, accuracy gained 3% and retrieval
metrics such as mean average precision and area under precision-recall curve
doubled. Performance gains on retrieval tasks can be much higher even if
accuracy gains are weak or nonexistent. Due to the data complexity, there are still
limitations. Some separable features in a first phase may move to other classes or
overlap with other samples, but the large margin loss is more efficient overall.
Considering these factors, the proposed method is a good retrieval alternative.
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