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REMARKS ON THE AUTOCOMMUTATOR SUBGROUP AND

ABSOLUTE CENTER OF A GROUP

Azam Pourmirzaei1, Rasoul Hatamian2, Mitra Hassanzadeh3

Let L(G) and K(G) denote the absolute center and the autocommutator

subgroup of a group G, respectively. In this paper, we prove some new results regarding

the relation between G/L(G) and K(G). Also, we consider some generalizations of the
absolute center and obtain similar results.
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1. Introduction

A very famous theorem of Schur asserts that in a group G, if G/Z(G) is finite, then G′

is finite. Many questions arise from this theorem. The most natural one may be about the
validity of the converse of this theorem. Derek Holt considered a group G with generators
xi, yi, i > 0, and z, subject to the relations xpi = ypi = zp = 1, [xi, xj ] = [yi, yj ] = 1, and
[xi, yi] = z, [xi, yj ] = 1, i = j, and [z, xi] = [z, yi] = 1, for all i. He showed that G′ = Z(G)
is finite, but G/Z(G) is infinite.(See [9]). By considering this infinite extra special p-group
the answer is obviously negative. Hekster [7] proved that a partially converse is valid if the
group is finitely generated. There are many results in literature, related to Schur’s theorem.
For instance, Mann [11] showed that if G/Z(G) is locally finite of exponent n, then G′ is
locally finite and its exponent is bounded by a function of n. Hilton [8] proved that in a
nilpotent group G, G/Z(G) is a p-group if and only if G′ is p-group, where p > 0 is a prime
number.
Hegarty [6] took a different approach regarding this topic. His work started by introducing
two new subgroups called the autocommmutator subgroup and absolute center of a group.
In the following we recall these definitions. Before reviewing the following definition note
that we denote by Aut(G), the group of automorphisms of a group G.

Definition 1.1. Let G be a group. The set

L(G) = {g ∈ G : α(g) = g, for all α ∈ Aut(G)}

is called the absolute center of G.

Clearly L(G) is a central subgroup of G.
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Definition 1.2. For a group G, the subgroup generated by all [g, α] = g−1α(g), g ∈ G
and α ∈ Aut(G), is called the autocommutator subgroup of G. This subgroup is denoted by
K(G).

Hegarty [6] proved that if G/L(G) is finite, then K(G) is finite. In [5], Hegarty give
an example of a group with finite autocommutator subgroup and infinite absolute central
factor. This means that the converse of the mentioned theorem is not valid. Now one may
ask whether there are conditions on G to validate a converse. One of these conditions is
stated by Hegarty [5] as ”Aut(G) is finite”.
In the present work, in Theorem 2.2 we prove that if G is a group with G/L(G) finitely
generated and K(G) finite, then G/L(G) is finite. Also, for capable groups, in Corollary 2.1
we show that if Z(G)/L(G) is finitely generated and K(G) is finite, then G/L(G) is finite.
Furthermore, we argue on some other properties which transfer from G/L(G) to K(G) or
vice versa in a group G. For instance,

(a) In theorem 2.3, we prove that if G/L(G) is locally finite, then K(G) is locally finite.
(b) In Theorem 2.4, we show that if K(G) is locally finite and G/L(G) is a torsion group,

then G/L(G) is locally finite.
(c) In Theorem 2.5, we prove that the order of K(G) is bounded above by f(n) =

n
1
2 log2n+[log2n].

(d) In Theorem 2.6, we show that if G is a finite group and G/L(G) is a p-group,then
K(G) is also a p-group.

(e) In Theorem 2.7, we show that if G is a locally nilpotent torsion group, then G/L(G)
is a p-group if and only if K(G) is a p-group.

(f) In Theorem 2.10, we prove that for a nilpotent group G of class c, if G/L(G) is a
p-group of exponent m, then K(G) is a p-group of exponent dividing mc.

(g) In Theorem 2.11, we prove that for a nilpotent group G of class c, if K(G) is a p-group
of exponent m, then G/L(G) is a p-group of exponent dividing mc.

Eventually, we focus on class preserving automorphisms and central automorphisms and we
introduce two central subgroups related to them. In this direction we obtain some results
which are achieved fairly straightforward but interesting (See Theorem 2.13, Theorem 2.14
and Theorem 2.15).

2. Autocommutator subgroup

Definition 2.1. Let G be a group and set γ1(G) = G. Suppose that γi(G) is defined
inductively for i ≥ 1. By setting γi+1(G) = [γi(G), G] a series of subgroups is obtained as
follows

G = γ1(G) ≥ γ2(G) ≥ . . .
which is called the lower central series of G.

Note that γn(G)/γn+1(G) lies in the center of G/γn+1(G) and that each γn(G) is a
fully-invariant subgroup of G. There is an ascending series that is dual to the lower central
series. This is the upper central series

1 = Z0(G) ≤ Z1(G) ≤ Z2(G) ≤ . . .

which is defined by
Zn+1(G)

Zn(G)
= Z

(
G

Zn(G)

)
.

Each Zn(G) is characteristic but not necessarily fully-invariant in G. This series need not
reach G.
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Now, we recall the main theorem from [4] which is severally used throughout the
paper.

Theorem 2.1. If G is a group, γn+1(G) is finite and G/Zn(G) is finitely generated, then∣∣∣∣ G

Zn(G)

∣∣∣∣ ≤ |γn+1(G)|d(G/Zn(G))n
,

where d(X) is the minimal number of generators of the group X.

Theorem 2.2. For an arbitrary group G, if G/L(G) is finitely generated and K(G) is finite
then G/L(G) is finite.

Proof. First we note that G/Z(G) is a factor group of G/L(G). Now the assumption
”G/L(G) is finitely generated” yields that G/Z(G) is finitely generated. Since G′ is a
subgroup of K(G), it is finite. Use Theorem 2.1 in case n = 1 to have G/Z(G) is finite. The
following isomorphism

G

Z(G)
∼=

G/L(G)

Z(G)/L(G)

implies that Z(G)/L(G) is a finitely generated abelian group. Therefore

Z(G)

L(G)
∼= Zm1

⊕ Zm2
⊕ . . .⊕ Zmt ⊕ Z⊕ Z⊕ . . .⊕ Z

in which for every 1 ≤ i ≤ t, mi > 1.
Let r denotes the Betti number of Z(G)/L(G). We now prove that r = 0; then Z(G)/L(G)
is finite and since G/Z(G) is finite as shown above, the assertion follows. Suppose that
r > 0. Then Z(G)/L(G) has an element of infinite order say gL(G). By definition of the
absolute center and the choice of gL(G), for each n ∈ N, there exists an automorphism αn
such that αn(gn) 6= gn. Let s be the order of K(G) and set m = (s + 1)!. Obviously, for
every t | m, we have αm(gt) 6= gt i.e. [gt, αm] 6= 1. So Definition 1.2 and a simple argument
show that [gi, αm] 6= [gj , αm], for every 1 ≤ i 6= j ≤ (s + 1). This yields at least (s + 1)
pairwise distinct generators for K(G) which is a contradiction. �

A group G is called capable if it is the group of inner automorphisms of some group.
Podoski and Szegedy proved in [12] that if H is a capable group and |H ′| = n, then [H :
Z(H)] ≤ n2 log2 n. Using this theorem we have the following corollary.

Corollary 2.1. Let G be a capable group such that Z(G)/L(G) is finitely generated and
K(G) is finite. Then G/L(G) is finite.

Proof. Since G is capable and G′ ≤ K(G) is finite, Podoski’s result shows that G/Z(G) is
finite. Therefore G/L(G) is finitely generated. Now the assertion follows from the previous
theorem. �

If χ is a property of groups, a group G is called a locally χ -group if each finite subset
of G is contained in a χ-subgroup of G. For a group G, if G/L(G) is locally finite, then
K(G) is locally finite. This fact was proved by Dietrich and Moravec in [2]. (They also
find a bound for the order of K(G) corresponding to the order of G/L(G)). The following
theorem can be investigated when we use a theorem of Mann [11,Theorem1] and elementary
group theory techniques.

Theorem 2.3. Let G be a group such that G/L(G) is locally finite. Then K(G) is locally
finite.

Proof. Since G/L(G) is locally finite, it follows that G/Z(G) is locally finite. Hence by
[11,Theorem 1] G′ is locally finite. To prove the statement it is enough to show that K(G)/G′

is locally finite.
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First, we show that K(G)/G′ is a torsion group. Let [x, α]G′ be an arbitrary generator
of K(G)/G′, where x ∈ G and α ∈ Aut(G). Since G/L(G) is locally finite, there exists a
natural number n such that xn ∈ L(G). Since K(G)/G′ is abelian, we have

[x, α]nG′ = x−nα(xn)G′ = x−nxnG′ = G′.

Therefore every finitely generated subgroup of K(G)/G′ is an abelian torsion group which
immediately achieve the goal. �

Our next aim is to find a sufficient condition such that the converse of the above
theorem holds. In order to do so, we recall two definitions and a lemma from [7].

Definition 2.2. A group S is called a stem group if Z(S) ≤ S′.

Definition 2.3. Let G and H be two groups. An isoclinism from G to H is a pair of
isomorphisms (α, β) with α : G/Z(G) → H/Z(H) and β : G′ → H ′ such that the following
diagram is commutative:

G
Z(G) × G

Z(G)

γ(2,G)−−−−→ G′

α2 ↓ β ↓
H

Z(H) × H
Z(H)

γ(2,H)−−−−→ H ′.

Whenever the groups G and H are isoclinic, we write G ∼ H.

Lemma 2.1 ([7], Lemma 6.1). For every group G, there exists a stem group S such that
G ∼ S.

We recall that a torsion group G is a group whose elements have finite order.

Theorem 2.4. Let G be a group such that K(G) is locally finite and G/L(G) is a torsion
group. Then G/L(G) is locally finite.

Proof. Assume that H/L(G) is a finitely generated subgroup of G/L(G). One may observe
that H/Z(H) is a homomorphic image of H/L(G) and so it is torsion and finitely generated.
From Lemma 2.1 it follows that there exists a stem group S isoclinic to H. Thus S/Z(S)
is also a finitely generated torsion group and since Z(S) = Z(S) ∩ S′ ≤ φ(S), where φ(S)
denotes the Frattini subgroup of S, S is finitely generated (Note that the Frattini subgroup
of a group is the set of non-generators of the group.). Therefore S/S′ is a finite abelian
group which yields S′ and thus H ′ are finitely generated. From Theorem 2.1 it follows
that H/Z(H) is finite and therefore Z(H)/L(G) is a subgroup of finite index of the finitely
generated group H/L(G). This follows that Z(H)/L(G) is finitely generated. Go back to
the assumption ”G/L(G) is locally finite” to have the result. �

The following proposition is very interesting despite its easy proof.

Proposition 2.1. If G/L(G) is locally nilpotent, then G is locally nilpotent and also K(G)
is locally nilpotent.

Proof. Let H be a finitely generated subgroup of G. Clearly HZ(G)/Z(G) is a finitely
generated subgroup of the locally nilpotent group G/Z(G) which implies that it is nilpotent.
Therefore H/Z(H) and so H is nilpotent. �

The following theorem is proved by using basic results of group theory. First we recall
that for a torsion group G, if the order of its elements is bounded, the exponent of G which
is denoted by exp(G), is the least common multiple of all the orders of its elements.

Theorem 2.5. For a group G, if G/L(G) is of order n, then K(G) is finite and the order

of K(G) is bounded by f(n) = n
1
2 log2 n+[log2 n].
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Proof. It is clear that the order of G/Z(G) is at most n. Hence with respect to the bound

obtained by Wiegold [15], we have |G′| ≤ n
1
2 log2 n. From the proof of Theorem 2.3 it

follows that K(G)/G′ is a torsion abelian group of exponent at most n. Thus if G/L(G) =
〈g1L(G), g2L(G), . . . gkL(G)〉 where k is the minimal number of generators of G/L(G) then
we claim that K(G)/G′ is also generated with at most k elements. For this, consider
[g, α]G′ ∈ K(G)/G′ such that g ∈ G and α ∈ Aut(G). One can see that g = gm1

1 gm2
2 . . . gmkk l,

where l ∈ L(G) and for every 1 ≤ i ≤ k, mi ≥ 0. Since K(G)/G′ is abelian, we have
[g, α]G′ = [g1, α]m1 [g2, α]m2 . . . [gk, α]mkG′. Now we conclude that K(G)/G′ is a finite group
and an easy argument shows that k ≤ [log2 n]. Therefore∣∣∣∣K(G)

G′

∣∣∣∣ ≤
∣∣∣∣∣∣
k∏
j=1

Zn

∣∣∣∣∣∣ = nk ≤ n[log2 n].

The result is now clear. �

Theorem 2.6. Let G be a finite group. If G/L(G) is a p-group for some prime number p,
then K(G) is also a p-group.

Proof. As L(G) is a finite abelian group, by concentrating on the presentation of finitely
generated abelian groups, one can write L(G) = A × B, where A is a π-group and B is a
π′-group when π = {p}. Moreover

[G : B] = [G : L(G)][L(G) : B] = pγ ,

for some natural number γ. This means that B is a Hall π′-group. By the Schur-Zassenhouse
Theorem [13], there is a subgroup H of G such that G = HB and H ∩ B = 1. Clearly H
is a p-group since |H| = [G : B]. Suppose that [g, α], g ∈ G,α ∈ Aut(G), be an arbitrary
generator of K(G). There are elements h ∈ H and b ∈ B in which g = hb. Thus

[g, α] = [hb, α] = (hb)−1α(hb) = h−1α(h).

The last equality holds since b ∈ L(G) ≤ Z(G). Let α(h) = h′b′ for some h′ ∈ H and b′ ∈ B
and |H| = pβ , β ∈ N. Then

1 = (α(h))p
β

= (h′b′)p
β

= h′p
β

b′p
β

= b′p
β

.

But (|b′| , pβ) = 1, hence b′ = 1. Thus α(h) ∈ H and K(G) ≤ H. This shows that [g, α] is a
p-element. �

In the following we show that in locally nilpotent, torsion groups G, the property
’being p-group’ of K(G) carries over to G/L(G) and vice versa.

Theorem 2.7. Let G be a locally nilpotent torsion group. Then K(G) is a p-group if and
only if G/L(G) is a p-group.

Proof. First suppose that the autocommutator subgroup of G is a p-group. Assume by
contradiction that G/L(G) is not a p-group. Then it has an element, say xL(G), of order
qn for some prime number q 6= p and n ≥ 1. Set H = 〈x, L(G)〉. It is clear that H/L(G)
is a finite q-group. Since G is a torsion group, it follows that cyclic group 〈x〉 is finite. So
〈x〉 = Zpα1

1
⊕ . . . ⊕ Zpαtt , for some prime numbers pi such that 1 ≤ i ≤ t. Put Zpαii = 〈xi〉,

for each 1 ≤ i ≤ t. Hence x = x1x2...xt where for each i, 1 ≤ i ≤ t and xi is the generator
of pi-Sylow subgroup of 〈x〉. Obviously, for some i, pi = q. Assume p1 = q. From the fact
q | |xL(G)| and xi ’s are members of distinct Sylow subgroups, we find out x1 does not
belong to L(G). Thus there is an automorphism β of G such that β(x1) 6= x1. Consider the
subgroup M/L(G) = 〈x1L(G), β(x1)L(G)〉 of G/L(G). Thus since G is locally nilpotent, it
follows that M/L(G) is a nilpotent group and since it is finitely generated and torsion, it is
finite. Therefore it is the product of its Sylow subgroups. Consequently q |

∣∣x−11 β(x1)L(G)
∣∣
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which is a contradiction.
Now suppose that K(G) is not a p-group whereas G/L(G) is a p-group. In this case since G
is a torsion group, there exists a q-element, in K(G) where q 6= p is a prime number. For an
arbitrary element x ∈ K(G), we have x =

∏m
i=1 g

−1
i αi(gi) in which gi ∈ G and αi ∈ Aut(G)

for every 1 ≤ i ≤ m. Consider the finitely generated subgroup

H = 〈g1, g2, ..., gm, α1(g1), α2(g2), ..., αm(gm)〉.
Clearly H is a finitely generated torsion nilpotent group and so it is finite. Let H =∏k
j=1 Pj ×Q, where Pj is a pj-Sylow subgroups and Q is a q-Sylow subgroups of H. Thus

for each i, gi = xi1xi2 ...xikyi in which xij ∈ Pj and yi ∈ Q. Note that the elements of distinct
Sylow subgroups commutates and so one can readily deduce the following inequality.

g−1i αi(gi) = x−1i1 αi(xi1)x−1i2 αi(xi2)...x−1ik αi(xik)y−1i αi(yi).

Since x ∈ Q, for some i we have y−1i αi(yi) 6= 1 and thus yi is not contained in L(G). This
implies that q | |yiL(G)| which is a contradiction. �

Hilton [8] Proved two remarkable theorems about the relation between the central
factor group and the derived subgroup in a nilpotent group in the aspects of ’exponent’
and ’being p-group’. In the following, invoking them, we prove similar statements for the
absolute center and the autocommutator subgroup. We recall that for a nilpotent group G,
the length of a shortest central series of G is the nilpotent class of G.

Theorem 2.8 ([8], Theorem 1.4). Let G be a nilpotent group of class c. If G/Z(G) is a
p-group of exponent m, then G′ is a p-group of exponent dividing mc−1.

Theorem 2.9 ([8], Theorem 1.3). In a nilpotent group G, if G′ is a p-group of exponent m,
then G/Z(G) is a p-group of exponent dividing mc−1, where c is the nilpotency class of G.

Theorem 2.10. Let G be a nilpotent group of class c. If G/L(G) is a p-group of exponent
m, then K(G) is also a p-group of exponent dividing mc.

Proof. From Theorem 2.7, K(G) is a p-group. As exp (G/L(G)) = m and

G

Z(G)
∼=

G/L(G)

Z(G)/L(G)
,

it follows that the exponent of G/Z(G) divides m. Denote the latter number by n. By
Theorem 2.8, exp(G′)|nc−1. On the other hand K(G)/G′ is an abelian group. Now it is
enough to argue on its generators to bound its exponent. Let g ∈ G and α ∈ Aut(G).
([g, α]G′)

m
= g−mα(gm)G′ = G′. Consequently, exp (K(G)/G′) | m. Now the result is

clear. �

Theorem 2.11. Suppose that G is a nilpotent group of class c. If the subgroup K(G) is a
p-group and exp (K(G)) = m, then G/L(G) is a p-group. Furthermore exp (G/L(G)) | mc.

Proof. The first assertion follows from Theorem 2.7. For the second part, assume that g ∈ G
and gm

c

/∈ L(G). By definition of the absolute center there is an automorphism α such that
α
(
gm

c) 6= gm
c

i.e. [gm
c

, α] 6= 1.
Clearly G′ is a subgroup of K(G) which yields that it is a p-group of exponent dividing m.

From Theorem 2.9 we deduce that gm
c−1 ∈ Z(G). Therefore [gm

c

, α] = [gm
c−1

, α]m = 1.
The latter equality which is obtained from the fact exp (K(G)) = m leads to a contradiction
and hence exp(G/L(G)) | mc. �

In the following, we consider two special classes of automorphisms and we introduce
several subgroups related to them which are similar to L(G) and K(G). For this aim we
review the definitions of class preserving automorphisms and central automorphisms from
[14].
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Definition 2.4. A class preserving automorphism of a group G is an automorphism α of
G such that for each x ∈ G, there exists an element gx ∈ G such that α(x) = g−1x xgx.

It is easy to show that the set of all class preserving automorphisms of a group G is
a normal subgroup of Aut(G). This subgroup is denoted by Autc(G). More precisely,

Autc(G) = {α ∈ Aut(G) : ∀x ∈ G,∃gx ∈ G;α(x) = g−1x xgx}.
Note that Autc(G) contains Inn(G), where Inn(G) denotes the set of inner automorphisms
of G.

Definition 2.5. An automorphism ϕ of a group G is called a central automorphism if for
all elements g ∈ G, we have g−1ϕ(g) ∈ Z(G).

It is obvious that the set of all central automorphisms of G is also a normal subgroup
of Aut(G). This group is denoted by Autz(G). For a survey about these two subgroups of
Aut(G), the reader is referred to [1, 14, 16]. Now, we introduce two normal subgroups of G
related to Autc(G) and Autz(G) respectively, as follows:

Definition 2.6. Let G be a group. The set

{g ∈ G : [g, α] = 1, for all α ∈ Autc(G)}
is denoted by Lc(G).

Definition 2.7. Let G be a group. The set

{g ∈ G : [g, α] = 1, for all α ∈ Autz(G)}
is denoted by Lz(G).

Note that Autz(G) may not contain Inn(G). However merely

Autz(G) = CAut(G) (Inn (G))

and Inn (G) ∩ Autz (G) = Z (Inn (G)). So Lz(G) is not central but Lz(G) E G. Clearly
Lc(G) is a central subgroup and so it is normal.
Now we can define Kc(G) and Kz(G) in the way of defining K(G), i.e.

Definition 2.8. For a group G, the subgroup

〈[g, α] = g−1α(g) : α ∈ Autc(G)〉
is denoted by Kc(G).

Note that Kc(G) = [G,Autc(G)] hence G′ = [G, Inn(G)] ≤ Kc(G). On the other
hand by the definition of a class preserving automorphism it is very simple to see Kc(G) ≤ G′
and therefore Kc(G) = G′.

Definition 2.9. For a group G, the subgroup

〈[g, α] = g−1α(g) : α ∈ Autz(G)〉
is denoted by Kz(G).

In fact Kz(G) = [G,Autz(G)].
Let ϕ be an automorphism of a group G and let [G,ϕ] = 〈x−1ϕ(x) : x ∈ G〉 be the
commutator subgroup of ϕ. Endimioni and Moravec [3] prove a converse of Schur’s theorem
for the commutator subgroup of G as follows:

Theorem 2.12. Let ϕ be an automorphism of a group G such that the subgroup [G,ϕ] is
finite. Then the index of CG(ϕ) in G is finite.

This theorem can help us to state the following.
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Theorem 2.13. Let Kz(G) and Autz(G) are finite groups. Then the index of Lz(G) in G
is finite.

Proof. First note that for each α ∈ Autz(G), the subgroup [G,α] of Kz(G) is finite. From
Theorem 2.12 it follows that the index of CG(α) in G is finite. By definition it is easy to see
that Lz(G) =

⋂
α∈Autz(G) CG(α) and the proof is done. �

Theorem 2.14. For a group G, if G′ and Autc(G) are finite, then G/Lc(G) is finite.

Proof. Let α ∈ Autc(G). Then [G : CG(α)] is finite, since G′, is finite. But Lc(G) =⋂
α∈Autc(G) CG(α), and since this is a finite intersection, it follows that [G : Lc(G)] = [G :⋂
α∈Autc(G) CG(α)] ≤

∏
α∈Autc(G)[G : CG(α)]. Hence G/Lc(G) is finite. �

Theorem 2.15. Let G be a group such that G′ is finite and G/Lc(G) is finitely generated.
Then G/Lc(G) is finite.

Proof. It is known that Lc(G) is a central subgroup and so G/Z(G) is finitely generated. Use
Theorem 2.1 to observe that G/Z(G) is finite. Consequently Z(G)/Lc(G) is finite. Notice
that the former is an abelian group and the proof is complete when we show that it is a
torsion group. Consider an element xLc(G) ∈ Z(G)/Lc(G) of infinite order. Clearly for
every natural number n, xn is not a member of Lc(G). Therefore there exists an element
gx ∈ G such that (xn)gx 6= xn but xn ∈ Z(G) and this is a contradiction. �
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