U.P.B. Sci. Bull., Series C, Vol. 84, Iss. 2, 2022 ISSN 2286-3540

A STUDY ON THE ENCRYPTION TECHNIQUES AND
METHODS IMPLEMENTED WITHIN THE CRITICAL
INFRASTRUCTURES

Eugen NEACSU?, Emil SIMION?

This paper is a study of the niche approach, the use of cryptographic
algorithms in critical infrastructures. This newly introduced notion means the existence
in a cryptosystem of the three elements necessary and sufficient for its operation: the
pseudo-random cryptographic key generator, the key storage and system management,
and the encryption and decryption application. The mentioned elements have an
interdependent operation in the achievement of the cryptographic process. The work
begins with an introduction to the operation and implementation of the XOR-MWC
generator, a new generator, obtained from the implementation of two pseudo-random
MWC generators (Multiply-With-Carry) and an XOR function (logic function or
exclusively) applied to the resulting bits at the output of the two generators. In the
application code there are given several pseudo-random generators by means of which
we are able to obtain from the database the partial keys to form the encryption key and
with the help of which, the ability to established one of its various methods of operation
is provided.

Keywords: cryptography, encryption, RPV algorithm, key generation.
1. Introduction

In today's context, where interconnected media have become available to
the general public, information needs the most effective means of protection. The
methods of information protection, specific to contemporary information
technology, are varied, depending on the types of attacks to which the information
may be exposed. Awareness of the risks in communications networks has led to
widespread use of hardware and software solutions such as antivirus, antispyware,
antispam, firewall, VPN (Virtual Private Network), intrusion prevention and
detection programs (IPS, IDS) or encryption methods. The process of securing
information has become an essential component in the contemporary information
society, which has led to the achievement of specific international standards, the
most important of which are 1ISO 27001 and BS 7799. [1]

Currently, the most effective methods of conserving the integrity of
information are given by cryptographic techniques. This paper makes a foray into

! Security Engineer, Advanced Technologies Institute, Bucharest, Romania, e-mail:
neacsu.eugen@yahoo.com

2 Associate Professor, University POLITEHNICA of Bucharest, Romania, e-mail:
emil.simion@upb.ro

238 Eugen Neacsu, Emil Simion

these information security techniques and proposes, both to the cryptographic
community and to the specialists in the administration and security of information
systems, a new solution for ensuring the security of confidential data in critical
infrastructures.

A critical infrastructure is a service whose functionality is so vital that its
destruction would have a debilitating impact on the security of any country.
Basically, the system is subject to the following four attributes: availability,
integrity, reliability, and security. Disruption of any system could jeopardize the
continued operation of the entire infrastructure. In this context, section 2 presents
the cryptographic key generation component, providing the representation of the
partial key generation and the encryption key. Section 3 is mainly for the encryption
and decryption component and section 4 presents the conclusions of the security
study conducted. Classical cryptography encompasses most of the algorithms
implemented so far in communication systems. They are generally based on simple
operations: addition, displacement, multiplication, substitution, subtraction, and
division of modules. The security of systems is that an attack on them involves a
very large number of mathematical operations, which makes it impossible to find
out. With the advent of parallel computing techniques, these systems can be
vulnerable to various types of attacks, so they are trying to strengthen them by
increasing the size of the keys or by increasing the complexity of the encryption
process. Thus, two types of classical cryptographic algorithms were developed and
imposed: symmetric algorithms (with secret key) and asymmetric algorithms (with
public keys). The efficiency of these solutions has led to their recent
implementation even in environments with low computing resources, such as ad-
hoc sensor networks. [2]

Recent research in cryptography is attempting a new approach to the
encryption process by introducing new operations in addition to the classical ones,
as well as independence from increasing computing power. It is assumed that with
the advent of the quantum computer, computing resources will be virtually
unlimited, which will lead to the situation where data security systems can be
overcome much more easily by brute force attack, compromising data
confidentiality. This has led to the development of new research directions like
cryptography based on chaotic dynamic systems and quantum cryptography. [3]
The application of chaos in cryptography is suggested by its properties: sensitivity
to initial conditions and loss of information about the initialization point. The main
advantage of this method is the high degree of security offered. The disadvantages
are due to the low working speed and the complexity of the floating-point
calculations, which would make this technique difficult to implement for real-time
use.

A study on the encryption techniques and methods implemented within the critical (...) 239

2. Cryptographic key generation component

The implementation is made using a computer network in which encryption
devices and storage media (stations and servers) are considered secure (by using
firewall policies as well as antivirus and antispyware programs). If the stations on
which the data encryption is performed were considered unsafe, the whole process
would be useless. Two stations are sufficient for testing in a local network on which
the encryption application is installed together with the database.

For transmission of the database containing the partial cryptographic keys
to users of the critical infrastructure, it is recommended to use a secure data
network, or tunneling methods. In the absence of a network, for loading databases
to the stations on which this system is installed, mobile storage devices can also be
used.

A cryptographic mode combines basic cipher and a few simple operations.
The operations are simple, because the security depends on the cipher used and not
on the cryptographic mode. There are other security considerations: clear text
patterns must be hidden, entry into the encryption algorithm must be random, and
encryption of more than one message using the same key must be possible.[4]

Another aspect to consider is efficiency - a cryptographic mode must not be
less efficient than the encryption algorithm on which it is based. In some
circumstances it is important that the clear text and the ciphertext are the same
length.

Another consideration is error tolerance. Some applications require
encryption or decryption as parallel processes, while others need to be able to pre-
process as much data as possible. It is important that the decryption process can
recover bit-level errors from encrypted text, missing bits, or extra bits.

The multiply-with-carry (MWC) generator was proposed by George
Marsaglia in 1994 and analyzed by Couture and L'Ecuyer in 1997. MWC has been
proposed as a modification of the add-with-carry (AWC) generator.[5]

In the first stage, after declaring the variables, the algorithm calls the classes
in its composition (MWC1 and MWC2) to obtain from the system, using the
SetSeedFromSystemTime method, the seed values used at initialization.

namespace RNG
{
/// <summary>
/// </summary>
public class MWC1l
{
private static uint m w;
private static uint m z;

240 Eugen Neacsu, Emil Simion

public static void SetSeedFromSystemTime ()

{
System.DateTime dt = System.DateTime.Now;
long x = dt.ToFileTime () ;
SetSeed ((uint) (x >> 16), (uint) (x

oe

4294967296)) ;

The XOR-MWC class in the implemented program takes the values
resulting from the running of the MWC1 and MWC2 classes, calculates the result
of the XOR operation applied to them and displays in the interface both the
calculated values and the character corresponding to the extended ASCII code

namespace RNG {
class XOR-MWC {
static void Main(string[] args) {
{

double CDF, CDF1;
double temp, templ;
int E1 = 0, E2 = 0, E3 =0, E4 = 0;
char a, b, c, d;
MWC1l.SetSeedFromSystemTime () ;

int numReps = 255;
double failureProbability = 0.001;

int jO;
double[] samples = new double[numReps];
for (jO = 0; jO != numReps; ++30)

samples[j0] MWC1.GetUniform() ;

System.Array.Sort (samples) ;

double K plus = -double.MaxValue;
for (jO = 0; jO != numReps; ++30)
{
CDF samples[j0];

temp = (jO + 1.0) / numReps - CDF;
if (K plus < temp)

{

K plus = temp;

E1 = jO;

A study on the encryption techniques and methods implemented within the critical (...) 241

}
MWC2 .SetSeedFromSystemTime () ;
int numRepsl = 255;
double failureProbabilityl = 0.001;

int j1;

double[] samples = new double[numRepsl];

for (j1 = 0; jl != numReps; ++31)
samples[jl] = MWC2.GetUniform() ;

System.Array.Sort (samples) ;

double K minus = -double.MaxValue;

for (j1 = 0; jl != numReps; ++31)

{
}
Templ = CDF - (j1 + 0.0) / numRepsl;
if (K minus < templ)
{

K minus = templ;
E2 = j1;
}
}
double sgrtNumReps =
Math.Sqgrt ((double) numReps) ;
double sqgqrtNumRepsl =

Math.Sqgrt ((double) numRepsl) ;

K plus *= sqgrtNumReps;

K minus *= sqrtNumRepsl;

a = Convert.ToChar (E1l);

string al = Convert.ToString(a);

Console.WritelLine ("Generator Val.Zecimala
Val.ASCII");

Console.WriteLine (" MWC1: {0}
(11", E1, a);

b = Convert.ToChar (E2);

string bl = Convert.ToString(b);

Console.WriteLine (" MWC2 : {0}
{11", E2, D)

System.Threading.Thread.Sleep (200) ;

int key = E2;

char aal = (char) (a © key):;

int aall = Convert.TolIntlé6 (aal);
string straal = Convert.ToString(aal);
string gvall = Convert.ToString(al);

string gval2 = Convert.ToString(bl);

242 Eugen Neacsu, Emil Simion

Console.WriteLine ("\n (" + gvall + ") XOR
"+ "(" + gval2 + ") ==> Val. ASCII a Gen. XOR-MWC: " + straal
+ "\n");
Console.WriteLine ("
[" + idrow + "]\n");

}

Console.ReadLine () ;

In order to be used by the RPV8x application, the results of running the
XOR-MWC generator are inserted in the Keys table of the AES-DB database made
in MySQL.
namespace RNG

{

static void Main(string[] args)
{
int idrow = 0;
for (idrow = 0; idrow < 1000; idrow++)

{

SglConnection conex DB = new
System.Data.SglClient. SglConnection
("Server=localhost;DataSource=.\\SQLEXPRESS;D
atabase=AES-DB; Trusted Connection= True");
System.Data.SglClient.SglCommand comanda = new
System.Data. SglClient.SglCommand () ;
comanda.CommandType =
System.Data.CommandType.Text;

comanda.CommandText = "insert into dbo.Keys
(ID, PK1l, PK2, PK3, PK4) wvalues (" + idrow +
", LELL S gVall + "l, LIS gValZ + Hl, LI gval3
+ mwi , T + gval4+"]) ",.

comanda.Connection = conex DB;

conex DB.Open();
comanda.ExecuteNonQuery () ;
conex DB.Close();

}

A study on the encryption techniques and methods implemented within the critical (...) 243

The idrow variable sets the number of rounds for the algorithm and also the
number of encryption keys generated. Because the RPV (Rijndael with Variable
Parameters) encryption algorithm uses 128-bit (16-character ASCII) encryption
keys, and the XOR-MWC generator generates only 8 bits after each run (one ASCI|I
character). A 16-generator algorithm variant (XOR-MWC16x) was used to load the
Keys table from the database. [6]

XOR-MWCL
. PK1
=
CiCaC3Cq
XOR-mwcs | L 0 A]\
XOR-MWC4 :
XOR-MWCS
. PK2
HOR-MWCE T —
| CsCsC7Cs
Commer) | ==5%
i Encryption key
| f———if T 4
3 [C1 C2CzCaCs5Cs Cr Cale Ca0Caa C12LC13 C1aCis CuiJ H
XOR-MWCS T - 4 [
1 PK3

XOR-MWC10

i CoCio0C11 CEJ
XOR-MWC11 i

XOR-MWC12

XOR-MWC13

PK4
XOR-MWC14

i| €23 Caa Cas Cis |

XOR-MWC16

x b3
o o
7 IIII
E 2
[]

KOR-MWC16x “w.__ Keystable in AES-DB database

Fig. 1. Representation of partial key generation and encryption key

The XOR-MWC1-4 generators form the partial cryptographic key 1 (PK1),
the XOR-MWC5-8 generators form the partial cryptographic key 2 (PK2), the
XOR-MWC9-12 generators form the partial cryptographic key 3 (PK3) and the
XOR-MWC13 generators forms the partial cryptographic key 4 (PK4). The partial
cryptographic keys are entered in the AES-DB database, and by concatenation form
the 16-character encryption key (C1-C16). Since the 16 generators use the same
source to obtain the initialization values, they work in time lag, each with a delay
of 0.4 seconds compared to the previous generator. This gives a time of 1.6 seconds
for generating a partial key (PK1, PK2, PK3, PK4) and a total time of generating
an encryption key of 128 bits of 6.4 seconds.

The AES-DB database is installed locally or on a secure server. In the tested
version we used a MySQL sever installed on the same machine as the RPV
application.

244 Eugen Neacsu, Emil Simion

Table 1
Keys table contents
1D PK1 PK2 PK3 PK4
0 this isas ecre tkey
1 rg'd zMo[U?]v EdTq
2 k1)5 EOP< WDZj &x"a
3 EZ] IRA@ &;8y E*Vo
4 %P"u #?h bFd6 o0)U+
5 115 Vw4 8LA~ cxQ}
6 }e2u F)S$ CATt S+$F
7 G%;m Y& olt0 <Bt!
8 dG vy dFhq gha Re9y
9 [T'v 3nOu j.E xK]d
998 ~|s! {0%g "0-U Zgc
999 "zgU "g$% E&KT >Z{n

Keys table keeps the partial cryptographic keys (PK1, PK2, PK3, PK4) from
which the encryption keys are formed.

Table 2
Parameters for modifying the structure of the RPV algorithm
ID Param_SR Param_MC
0 0 0
1 0 1
2 1 0
3 1 1

The values in Table 2 are read by the RPV8x algorithm during its run,
setting the working modes for the ShiftRow (Param_SR column parameters) and
MixColumns (Param_MC column parameters) transformations of the algorithm.
Microsoft SQL Server Management Studio Express can be used to view and edit
tables and their contents, or any other application capable of managing the content
of SQL databases.

Unlike classic implementations of the Rijndael algorithm, which require
you to upload a cryptographic key from a user-friendly file, RPV8x provides an
operational security measure, with users not having access to the encryption key or
the parameter IDs. [7]

3. Encryption and decryption component

The RPV8x encryption and decryption program is based on the RPV
algorithm and has a friendly, easy-to-use interface, and in the test version provides
detailed information on how to choose pseudo-random operation using
implemented PRNGs. The two implemented modules, the Encryption Module and

A study on the encryption techniques and methods implemented within the critical (...) 245

the Decryption Module have search and save file buttons (Open File and Save File),
text fields showing the path of selected or saved files, as well as encryption /
decryption and reset application option. Also, in the test version there are buttons
to check the parameters used (Check Encryption / Decryption Parameters). In
addition, the test interface provides information about:

v" S-Box pair ID used in encryption;

v" ShiftRows and MixColumns transform run parameter IDs;

v Partial key IDs selected from the database;

v" Session ID.

The RPV algorithm is a symmetric cipher that works with 128-bit-long
blocks of data and encryption keys and is a development of the Rijndael algorithm
developed in 1998 by two Belgian cryptographers. Together with the MWC
generators that have the role of introducing the pseudo-random character of the
operation and the AES-DB database in which some of the parameters necessary for
running are stored, the RPV algorithm forms a complex cryptographic system.

Due to the properties of the invertible polynomials underlying the formation
of S-Boxes and the possibility of implementing different ways of working in the
ShiftRows and MixColumns transformations of the Rijndael algorithm, the RPV
algorithm can work in 8 different modes (of these 8 modes of operation, one is
similar to that of Rijndael). [8]

By encrypting with the RPV8x application, encrypted texts are obtained for
the same clear text and the same encryption key, modifying the diffusion and
confusion factors of the algorithm both by changing the pseudo-random parameters
of the ShiftRows and MixColumn transformations, and by accessing in direct or
reverse order of S-Boxes. At the same time, even if in the case of a brute force
attack on the algorithm the time remains the same, being determined only by the
computing power of the attacker, in the case of linear and differential cryptanalysis
there is the problem of determining how the algorithm works, thus increasing 8
times the theoretical resistance time of the algorithm in the case of these types of
attacks (hence the name of the application -RPV8Xx).

There are three fundamental criteria taken into account for choosing the
Rijndael cipher as the basis for the development of the RPV algorithm: [9]

- resistance against all known types of attack;
- speed and compact code structure on many platforms;
- simplicity of design.

In the case of most block digits, the round transformation has a Feistel
structure. This assumes that some of the intermediate state bits are transposed
unchanged to another position. The transformation of the round into Rijndael does
not have such a structure but is composed of three uniform invertible
transformations, called layers. The specific choices of the different layers are
largely based on the application of the Wide Trail Strategy, a design method

246 Eugen Neacsu, Emil Simion

designed to withstand linear and differential cryptanalytic attacks. In Wide Trail
Strategy, each layer has its own property: [10]
e Linear mix layer: guarantees a high degree of diffusion over multiple
rounds;
e Non-linear layer: ensures the parallel application of S-Boxes with
optimal properties for non-linearity cases;
¢ Key addition layer: performs a simple XOR between the round key and
the intermediate state.

A key addition is made before the first round, as any of the layers can be
discovered without the need to know the key in case of attacks on known plain text.
The addition of the key in the initial or terminal stage is successfully applied in
several designs such as: IDEA, SAFER and Blowfish. [11] Through the
SglCommand and SqlDataReader functions, the application connects to the Keys
table in the database and reads the 4 ASCII characters corresponding to the IDki-4
index line and PKy.4 columns.

SqlCommand comanda PK1 = connex.CreateCommand () ;
SglDataReader citeste PKI1;

connex.Open () ;

commanda PKI1.CommandText = "select PK1l from dbo.Keys
where ID=" + IDPK1;
citeste PKl = commanda PKl.ExecuteReader();

PK1 = Convert.ToString(citeste PKIl.Read()):
for (int tkl = 0; tkl < citeste PKl.FieldCount;
tkl++)
linie PK1 +=
citeste PKl.GetValue (tkl) .ToString();
connex.Close () ;

private void FormEDK ()
{
EDK = 1linie PK1 + 1linie PK2 + 1linie PK3 +
linie PK4;

}

The codes for reading the other 3 partial keys (PK2, PK3, PK4) are similar
to this one. After reading the partial keys, the encryption / decryption key EDK
(Encryption / Decryption Key) is made by concatenation.

In the idea of using a unique encryption key each time the application is run,
the C# implementation of the MD5 algorithm is used to hash the generated key. The
thus obtained hash is checked in the BlackList table of the database and if it is

A study on the encryption techniques and methods implemented within the critical (...) 247

identified in the list, the PRNGs are automatically reset, performing a new
encryption key.

SglConnection connexl = new System.Data.SglClient.SglConnection
("Server= localhost;DataSource=.\\SQLEXPRESS; Database=AES-DB;
Trusted Connection= True");

SqglCommand commanda BK =
connexl.CreateCommand() ;

SglCommand commanda BKI1 =
connexl.CreateCommand () ;

SglCommand commanda_ BK2 =
connexl.CreateCommand() ;

SglCommand commanda_ BK3 =
connexl.CreateCommand () ;

SglDataReader citeste BK;

SglDataReader citeste BKI1;

SglDataReader citeste BK2;

SglDataReader citeste BK3;

System.Security.Cryptography.MD5CryptoServiceProvider EDKx = new
System.Security.Cryptography.MD5CryptoServiceProvider () ;
bytel[] EDKbs =
System.Text.Encoding.UTF8.GetBytes (EDK) ;
EDKbs = EDKx.ComputeHash (EDKbs) ;
System.Text.StringBuilder EDKsMD = new
System.Text.StringBuilder () ;
foreach (byte b in EDKbs)
{
EDKsMD.Append (b.ToString ("x2") .ToLower ()) ;
}
EDKMD5 = EDKsMD.ToString() ;
connexl.Open () ;
commanda BK.CommandText = "select ID from
dbo.BlackList where RejectedKeys ='" +EDKMD5 + "'";
citeste BK = commanda BK.ExecuteReader();
bool IDkbl = citeste BK.Read();
connexl.Close();
if (IDkbl == false)
{
connexl.Open();
commanda BKI1.CommandText = "select max (ID)
from dbo.BlackList";

248 Eugen Neacsu, Emil Simion

citeste BKI1 =
commanda BKIl.ExecuteReader () ;

string valIDst =
Convert.ToString(citeste BKI1.Read());

for (int idbl = 0; idbl <
citeste BKl.FieldCount; idbl++)

valID =

citeste BKl.GetValue (idbl) .ToString()

int maxIDbl = Convert.ToIntl6 (valID):;

connexl.Close() ;

connexl.Open();

maxIDblpl = maxIDbl + 1;

commanda BK2.CommandText = "insert into
dbo.BlackList (RejectedKeys) values ('" + EDKMDS + "')";

citeste BK2 =
commanda BKZ.ExecuteReader () ;

connexl.Close() ;

Encryption is performed this way: [12]

1. PRNG creats IDk1, IDk2, IDks, 1Dk4, IDs and IDsme indexes in the
database tables;

2. AE reads the partial keys corresponding to the indexes 1Dk, IDk2, IDks,
IDws from the AES-DB database and composes the encryption key K;

. AE reads the pair of replacement tables using IDs;

. AE reads working parameters with IDsmc identification number for
ShiftRows and MixColumns transformations in the database;

5. AE uses the encryption key formed in step 1, the pair of substitution
tables, and the ShiftRows and MixColumns transform variants to encrypt
plain text;

6. AE creates an IDses session identification number, consisting of the
concatenation of 1Dk1, IDk2, IDk3, 1Dks, IDs and IDsrme, Which it adds to
the encrypted message to be transmitted.

Encryption is done by calling the methods in which the transformations are

implemented, according to the source code presented below.

B~ w

int Encrypt(int[][] a, int[][][] rk)
{

int r;

AddRoundKey (a, rk[0]);

for (r = 1; r < ROUNDS; r++)

{
SubBytes (a, S);
ShiftRows (a, 0);

A study on the encryption techniques and methods implemented within the critical (...) 249

MixColumns (a) ;
AddRoundKey (a, rk[r]);
}
SubBytes (a, S);
ShiftRows (a, 0);
AddRoundKey (a, rk[ROUNDS]) ;
return 0;

}

The information contained in the previously formed IDses is required in the
decryption process and even if the 1Dses are not added to the encrypted message,
other methods of its secure transmission between the corresponding entities can be
used. For added security, data packets can be overwritten using a secret key and a
pair of predefined replacement tables. [13]

4. Conclusions

Depending on the situation and requirements, information security methods
need to be constantly adapted to respond effectively to individual needs. In order
for transactions to be secure and information security objectives to be met,
increasingly complex cryptographic protocols and techniques have been developed.
These, in conjunction with compliance with procedural techniques, can ensure the
desired level of security.

Today, cryptographic applications are part of everything that happens in
communications networks, regardless of the medium of transmission (terrestrial
radio networks, metal cable, fiber optics or satellite networks). The algorithms used
so far have been and are constantly "bombarded” by attempts made by specialists
to prove their vulnerabilities, before hackers take advantage of their weaknesses.

Cryptographic solutions based on symmetric block algorithms are a special
category, characterized in particular by a very good encryption speed. Their design
(and not just this type of algorithm) must meet two essential conditions: they must
be secure, and they must be fast. In recent years, great efforts have been made to
design algorithms that best meet the two stated conditions. The partial key
generation component (XOR-MWC generator) used to load the database and to
create the encryption keys, based on the MWC generator, is distinguished by the
fact that it is able to pass NIST tests, despite being taken individually, the two
generators in its composition do not succeed in this. The RPV algorithm, as part of
the complex cryptographic system, is based on the robustness demonstrated by the
Rijndael algorithm in the face of linear and differential cryptanalytic attacks and is
an optimized variant of it, by implementing different ways of working. These
modes allow you to obtain 8 variants of encrypted text, for the same clear text and
the same encryption key, thus increasing the theoretical cryptanalysis time for

250 Eugen Neacsu, Emil Simion

attacks on the algorithm. In the case of brute force attacks, there is no improvement,
which is done by checking all possible encryption keys. [14]

The constant evolution of cryptanalytic methods, supported by continuous
technological development, determines the entire community of cryptologists to
constantly look for ways to optimize current security solutions, or to develop new
ones.

REFERENCES

[1]. Information Security Management, ISO/IEC 27001, https://www.iso.org/isoiec-27001-information-
security.html, accesed on October 2021.

[2]. Christoph D., Maria E., Hannes G., Stefan M., Florian M., Robert P., Statistical Ineffective Fault
Attacks on Masked AES with Fault Countermeasures. Advances in Cryptology - ASIACRYPT
2018 - 24th International Conference on the Theory and Application of Cryptology and
Information Security, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part Il
(Lecture Notes in Computer Science, Vol. 11273). Springer, 315-342, 2018.

[3]. Fan Z., Xiaoxuan L., Xinjie Z., Shivam B., Wei H., Ruyi D., Samiya Q., Kui R., Persistent Fault
Analysis on Block Ciphers. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018, 3, 150-172, 2018.

[4]. Zeng G., Quantum Private Communication. Higher Education Press, Beijing and Springer-Verlag
Berlin Heidelberg, pp. 135-137, 2010.

[5]. Marsaglia G., Yet another RNG. Posted to electronic bulletin board at sci.stat.math, August, 1994.

[6]. Galice S., Minier M., Improving Integral Attacks Against Rijndael-256 Up to 9 Rounds. Africacrypt
2008, LNCS 5023, pp.1-15. Springer—Verlag, 2008.

[7]. Nakahara J., Freitas D., Phan R., New Multiset Attacks on Rijndael with Large Blocks. Advances in
Cryptology — Mycrypt 2005, LNCS 3715, pp. 277-295, Springer—Verlag, 2005.

[8]. Dassance F., Venelli A., Combined Attacks on the AES Key Schedule. Cryptology ePrint Archive:
Report 2012/098, http://eprint.iacr.org/2012/098, accessed on October 2021.

[9]. Koblitz A. H., Koblitz N., Menezes A., Elliptic curve cryptography, the serpentine course of a
paradigm shift. eprint.iacr.org/2008/390, 2008.

[10]. Schwartz B., Zaitsev P., Tkachenko V., Zawodny J. D., Lentz A, Balling D. J., High Performance
MySQL, Second Edition. O’Reilly Media, Inc. ISBN: 978-0-596-10171-8, lunie, 2008.

[11]. Ji-Peng X., Xue-Cheng Z., Xu G., Ultra-low power S-boxes architecture for AES. The journal of
China Universities of post and telecommunications. VVol. 15, issuel, Martie, 2008.

[12]. IEEE P1363, IEEE Standard Specifications for Public-Key Cryptography. Computer Society, New
York, USA. Disponibil online la: http://grouper.ieee.org /groups/1363, 2004.

[13]. Behrouz A. F., Cryptography and network security, TATA-McGraw Hill Publication 2007.

[14]. NIST Special Publication 800-131, Recommendation for the Transitioning of Cryptographic
Algorithms and Key Sizes, Federal Information Processing Standards Publication (FIPS PUB)
197, National Institute of Standards and Technology (NIST), Januarie, 2010.

https://www.iso.org/isoiec-27001-information-security.html
https://www.iso.org/isoiec-27001-information-security.html

