
U.P.B. Sci. Bull., Series C, Vol. 84, Iss. 2, 2022 ISSN 2286-3540

A STUDY ON THE ENCRYPTION TECHNIQUES AND

METHODS IMPLEMENTED WITHIN THE CRITICAL

INFRASTRUCTURES

Eugen NEACȘU1, Emil SIMION2

This paper is a study of the niche approach, the use of cryptographic

algorithms in critical infrastructures. This newly introduced notion means the existence

in a cryptosystem of the three elements necessary and sufficient for its operation: the

pseudo-random cryptographic key generator, the key storage and system management,

and the encryption and decryption application. The mentioned elements have an

interdependent operation in the achievement of the cryptographic process. The work

begins with an introduction to the operation and implementation of the XOR-MWC

generator, a new generator, obtained from the implementation of two pseudo-random

MWC generators (Multiply-With-Carry) and an XOR function (logic function or

exclusively) applied to the resulting bits at the output of the two generators. In the

application code there are given several pseudo-random generators by means of which

we are able to obtain from the database the partial keys to form the encryption key and

with the help of which, the ability to established one of its various methods of operation

is provided.

Keywords: cryptography, encryption, RPV algorithm, key generation.

1. Introduction

In today's context, where interconnected media have become available to

the general public, information needs the most effective means of protection. The

methods of information protection, specific to contemporary information

technology, are varied, depending on the types of attacks to which the information

may be exposed. Awareness of the risks in communications networks has led to

widespread use of hardware and software solutions such as antivirus, antispyware,

antispam, firewall, VPN (Virtual Private Network), intrusion prevention and

detection programs (IPS, IDS) or encryption methods. The process of securing

information has become an essential component in the contemporary information

society, which has led to the achievement of specific international standards, the

most important of which are ISO 27001 and BS 7799. [1]

Currently, the most effective methods of conserving the integrity of

information are given by cryptographic techniques. This paper makes a foray into

1 Security Engineer, Advanced Technologies Institute, Bucharest, Romania, e-mail:

neacsu.eugen@yahoo.com
2 Associate Professor, University POLITEHNICA of Bucharest, Romania, e-mail:

emil.simion@upb.ro

238 Eugen Neacșu, Emil Simion

these information security techniques and proposes, both to the cryptographic

community and to the specialists in the administration and security of information

systems, a new solution for ensuring the security of confidential data in critical

infrastructures.

A critical infrastructure is a service whose functionality is so vital that its

destruction would have a debilitating impact on the security of any country.

Basically, the system is subject to the following four attributes: availability,

integrity, reliability, and security. Disruption of any system could jeopardize the

continued operation of the entire infrastructure. In this context, section 2 presents

the cryptographic key generation component, providing the representation of the

partial key generation and the encryption key. Section 3 is mainly for the encryption

and decryption component and section 4 presents the conclusions of the security

study conducted. Classical cryptography encompasses most of the algorithms

implemented so far in communication systems. They are generally based on simple

operations: addition, displacement, multiplication, substitution, subtraction, and

division of modules. The security of systems is that an attack on them involves a

very large number of mathematical operations, which makes it impossible to find

out. With the advent of parallel computing techniques, these systems can be

vulnerable to various types of attacks, so they are trying to strengthen them by

increasing the size of the keys or by increasing the complexity of the encryption

process. Thus, two types of classical cryptographic algorithms were developed and

imposed: symmetric algorithms (with secret key) and asymmetric algorithms (with

public keys). The efficiency of these solutions has led to their recent

implementation even in environments with low computing resources, such as ad-

hoc sensor networks. [2]

Recent research in cryptography is attempting a new approach to the

encryption process by introducing new operations in addition to the classical ones,

as well as independence from increasing computing power. It is assumed that with

the advent of the quantum computer, computing resources will be virtually

unlimited, which will lead to the situation where data security systems can be

overcome much more easily by brute force attack, compromising data

confidentiality. This has led to the development of new research directions like

cryptography based on chaotic dynamic systems and quantum cryptography. [3]

The application of chaos in cryptography is suggested by its properties: sensitivity

to initial conditions and loss of information about the initialization point. The main

advantage of this method is the high degree of security offered. The disadvantages

are due to the low working speed and the complexity of the floating-point

calculations, which would make this technique difficult to implement for real-time

use.

A study on the encryption techniques and methods implemented within the critical (…) 239

2. Cryptographic key generation component

The implementation is made using a computer network in which encryption

devices and storage media (stations and servers) are considered secure (by using

firewall policies as well as antivirus and antispyware programs). If the stations on

which the data encryption is performed were considered unsafe, the whole process

would be useless. Two stations are sufficient for testing in a local network on which

the encryption application is installed together with the database.

For transmission of the database containing the partial cryptographic keys

to users of the critical infrastructure, it is recommended to use a secure data

network, or tunneling methods. In the absence of a network, for loading databases

to the stations on which this system is installed, mobile storage devices can also be

used.

A cryptographic mode combines basic cipher and a few simple operations.

The operations are simple, because the security depends on the cipher used and not

on the cryptographic mode. There are other security considerations: clear text

patterns must be hidden, entry into the encryption algorithm must be random, and

encryption of more than one message using the same key must be possible.[4]

Another aspect to consider is efficiency - a cryptographic mode must not be

less efficient than the encryption algorithm on which it is based. In some

circumstances it is important that the clear text and the ciphertext are the same

length.

Another consideration is error tolerance. Some applications require

encryption or decryption as parallel processes, while others need to be able to pre-

process as much data as possible. It is important that the decryption process can

recover bit-level errors from encrypted text, missing bits, or extra bits.

The multiply-with-carry (MWC) generator was proposed by George

Marsaglia in 1994 and analyzed by Couture and L'Ecuyer in 1997. MWC has been

proposed as a modification of the add-with-carry (AWC) generator.[5]

In the first stage, after declaring the variables, the algorithm calls the classes

in its composition (MWC1 and MWC2) to obtain from the system, using the

SetSeedFromSystemTime method, the seed values used at initialization.

namespace RNG

{

 /// <summary>

 /// </summary>

 public class MWC1

 {

 private static uint m_w;

 private static uint m_z;

240 Eugen Neacșu, Emil Simion

 public static void SetSeedFromSystemTime()

 {

 System.DateTime dt = System.DateTime.Now;

 long x = dt.ToFileTime();

 SetSeed((uint)(x >> 16), (uint)(x %

4294967296));

 }

 .

 }

}

The XOR-MWC class in the implemented program takes the values

resulting from the running of the MWC1 and MWC2 classes, calculates the result

of the XOR operation applied to them and displays in the interface both the

calculated values and the character corresponding to the extended ASCII code
.

namespace RNG {

 class XOR-MWC {

 static void Main(string[] args) {

 {

 double CDF, CDF1;

 double temp, temp1;

 int E1 = 0, E2 = 0, E3 = 0, E4 = 0;

 char a, b, c, d;

 MWC1.SetSeedFromSystemTime();

 int numReps = 255;

 double failureProbability = 0.001;

 int j0;

 double[] samples = new double[numReps];

 for (j0 = 0; j0 != numReps; ++j0)

 samples[j0] = MWC1.GetUniform();

 System.Array.Sort(samples);

 double K_plus = -double.MaxValue;

 for (j0 = 0; j0 != numReps; ++j0)

 {

 CDF = samples[j0];

 temp = (j0 + 1.0) / numReps - CDF;

 if (K_plus < temp)

 {

 K_plus = temp;

 E1 = j0;

 }

A study on the encryption techniques and methods implemented within the critical (…) 241

 }

 MWC2.SetSeedFromSystemTime();

 int numReps1 = 255;

 double failureProbability1 = 0.001;

 int j1;

 double[] samples = new double[numReps1];

 for (j1 = 0; j1 != numReps; ++j1)

 samples[j1] = MWC2.GetUniform();

 System.Array.Sort(samples);

 double K_minus = -double.MaxValue;

 for (j1 = 0; j1 != numReps; ++j1)

 {

 }

 Temp1 = CDF - (j1 + 0.0) / numReps1;

 if (K_minus < temp1)

 {

 K_minus = temp1;

 E2 = j1;

 }

 }

 double sqrtNumReps =

Math.Sqrt((double)numReps);

 double sqrtNumReps1 =

Math.Sqrt((double)numReps1);

 K_plus *= sqrtNumReps;

 K_minus *= sqrtNumReps1;

 a = Convert.ToChar(E1);

 string a1 = Convert.ToString(a);

 Console.WriteLine("Generator Val.Zecimala

Val.ASCII");

 Console.WriteLine(" MWC1: {0}

{1}", E1, a);

 b = Convert.ToChar(E2);

 string b1 = Convert.ToString(b);

 Console.WriteLine(" MWC2: {0}

{1}", E2, b);

 System.Threading.Thread.Sleep(200);

 int key = E2;

 char aa1 = (char)(a ^ key);

 int aa11 = Convert.ToInt16(aa1);

 string straa1 = Convert.ToString(aa1);

 string gval1 = Convert.ToString(a1);

 string gval2 = Convert.ToString(b1);

242 Eugen Neacșu, Emil Simion

 Console.WriteLine("\n (" + gval1 + ") XOR

" + "(" + gval2 + ") ==> Val. ASCII a Gen. XOR-MWC: " + straa1

+ "\n");

Console.WriteLine("=======================================

================[" + idrow + "]\n");

 .

.

 }

 Console.ReadLine();

 }

}

In order to be used by the RPV8x application, the results of running the

XOR-MWC generator are inserted in the Keys table of the AES-DB database made

in MySQL.

namespace RNG

{

 static void Main(string[] args)

 {

 int idrow = 0;

 for (idrow = 0; idrow < 1000; idrow++)

 {

 .

.

 SqlConnection conex_DB = new

System.Data.SqlClient. SqlConnection

("Server=localhost;DataSource=.\\SQLEXPRESS;D

atabase=AES-DB; Trusted_Connection= True");

 System.Data.SqlClient.SqlCommand comanda = new

System.Data. SqlClient.SqlCommand();

 comanda.CommandType =

System.Data.CommandType.Text;

 comanda.CommandText = "insert into dbo.Keys

(ID, PK1, PK2, PK3, PK4) values (" + idrow +

", '" + gval1 + "', '" + gval2 + "', '" + gval3

+ "', '" + gval4+"')";

 comanda.Connection = conex_DB;

 conex_DB.Open();

 comanda.ExecuteNonQuery();

 conex_DB.Close();

 }

 }

A study on the encryption techniques and methods implemented within the critical (…) 243

The idrow variable sets the number of rounds for the algorithm and also the

number of encryption keys generated. Because the RPV (Rijndael with Variable

Parameters) encryption algorithm uses 128-bit (16-character ASCII) encryption

keys, and the XOR-MWC generator generates only 8 bits after each run (one ASCII

character). A 16-generator algorithm variant (XOR-MWC16x) was used to load the

Keys table from the database. [6]

Fig. 1. Representation of partial key generation and encryption key

The XOR-MWC1-4 generators form the partial cryptographic key 1 (PK1),

the XOR-MWC5-8 generators form the partial cryptographic key 2 (PK2), the

XOR-MWC9-12 generators form the partial cryptographic key 3 (PK3) and the

XOR-MWC13 generators forms the partial cryptographic key 4 (PK4). The partial

cryptographic keys are entered in the AES-DB database, and by concatenation form

the 16-character encryption key (C1-C16). Since the 16 generators use the same

source to obtain the initialization values, they work in time lag, each with a delay

of 0.4 seconds compared to the previous generator. This gives a time of 1.6 seconds

for generating a partial key (PK1, PK2, PK3, PK4) and a total time of generating

an encryption key of 128 bits of 6.4 seconds.

The AES-DB database is installed locally or on a secure server. In the tested

version we used a MySQL sever installed on the same machine as the RPV

application.

244 Eugen Neacșu, Emil Simion

Table 1

Keys table contents

ID PK1 PK2 PK3 PK4

0 this isas ecre tkey

1 r8`d zMo[U?]v EdTq

2 k1)5 E0P< WDZj &x"a

3 :EZ[|RA@ &;8y E*Vo

4 %P"u #?|h bFd6 o)U+

5 !;I5 V#w4 8LA~ cxQ}

6 }e2u F)S$ cATt s+$F

7 G%;m lJY& o!t0 <Bt!

8 dG_y dFhq g^ a Re9y

9 [T`v 3nOu j. E xK]d

…

…

…

…

…

998 ~|s! {0$g "0-U Zg c

999 "zgU `g$% E&Kf >Z{n

Keys table keeps the partial cryptographic keys (PK1, PK2, PK3, PK4) from

which the encryption keys are formed.
Table 2

Parameters for modifying the structure of the RPV algorithm
ID Param_SR Param_MC

0 0 0

1 0 1

2 1 0

3 1 1

The values in Table 2 are read by the RPV8x algorithm during its run,

setting the working modes for the ShiftRow (Param_SR column parameters) and

MixColumns (Param_MC column parameters) transformations of the algorithm.

Microsoft SQL Server Management Studio Express can be used to view and edit

tables and their contents, or any other application capable of managing the content

of SQL databases.

Unlike classic implementations of the Rijndael algorithm, which require

you to upload a cryptographic key from a user-friendly file, RPV8x provides an

operational security measure, with users not having access to the encryption key or

the parameter IDs. [7]

3. Encryption and decryption component

The RPV8x encryption and decryption program is based on the RPV

algorithm and has a friendly, easy-to-use interface, and in the test version provides

detailed information on how to choose pseudo-random operation using

implemented PRNGs. The two implemented modules, the Encryption Module and

A study on the encryption techniques and methods implemented within the critical (…) 245

the Decryption Module have search and save file buttons (Open File and Save File),

text fields showing the path of selected or saved files, as well as encryption /

decryption and reset application option. Also, in the test version there are buttons

to check the parameters used (Check Encryption / Decryption Parameters). In

addition, the test interface provides information about:

✓ S-Box pair ID used in encryption;

✓ ShiftRows and MixColumns transform run parameter IDs;

✓ Partial key IDs selected from the database;

✓ Session ID.

The RPV algorithm is a symmetric cipher that works with 128-bit-long

blocks of data and encryption keys and is a development of the Rijndael algorithm

developed in 1998 by two Belgian cryptographers. Together with the MWC

generators that have the role of introducing the pseudo-random character of the

operation and the AES-DB database in which some of the parameters necessary for

running are stored, the RPV algorithm forms a complex cryptographic system.

Due to the properties of the invertible polynomials underlying the formation

of S-Boxes and the possibility of implementing different ways of working in the

ShiftRows and MixColumns transformations of the Rijndael algorithm, the RPV

algorithm can work in 8 different modes (of these 8 modes of operation, one is

similar to that of Rijndael). [8]

By encrypting with the RPV8x application, encrypted texts are obtained for

the same clear text and the same encryption key, modifying the diffusion and

confusion factors of the algorithm both by changing the pseudo-random parameters

of the ShiftRows and MixColumn transformations, and by accessing in direct or

reverse order of S-Boxes. At the same time, even if in the case of a brute force

attack on the algorithm the time remains the same, being determined only by the

computing power of the attacker, in the case of linear and differential cryptanalysis

there is the problem of determining how the algorithm works, thus increasing 8

times the theoretical resistance time of the algorithm in the case of these types of

attacks (hence the name of the application -RPV8x).

There are three fundamental criteria taken into account for choosing the

Rijndael cipher as the basis for the development of the RPV algorithm: [9]

- resistance against all known types of attack;

- speed and compact code structure on many platforms;

- simplicity of design.

In the case of most block digits, the round transformation has a Feistel

structure. This assumes that some of the intermediate state bits are transposed

unchanged to another position. The transformation of the round into Rijndael does

not have such a structure but is composed of three uniform invertible

transformations, called layers. The specific choices of the different layers are

largely based on the application of the Wide Trail Strategy, a design method

246 Eugen Neacșu, Emil Simion

designed to withstand linear and differential cryptanalytic attacks. In Wide Trail

Strategy, each layer has its own property: [10]

• Linear mix layer: guarantees a high degree of diffusion over multiple

rounds;

• Non-linear layer: ensures the parallel application of S-Boxes with

optimal properties for non-linearity cases;

• Key addition layer: performs a simple XOR between the round key and

the intermediate state.

A key addition is made before the first round, as any of the layers can be

discovered without the need to know the key in case of attacks on known plain text.

The addition of the key in the initial or terminal stage is successfully applied in

several designs such as: IDEA, SAFER and Blowfish. [11] Through the

SqlCommand and SqlDataReader functions, the application connects to the Keys

table in the database and reads the 4 ASCII characters corresponding to the IDk1-4

index line and PK1-4 columns.

The codes for reading the other 3 partial keys (PK2, PK3, PK4) are similar

to this one. After reading the partial keys, the encryption / decryption key EDK

(Encryption / Decryption Key) is made by concatenation.

In the idea of using a unique encryption key each time the application is run,

the C# implementation of the MD5 algorithm is used to hash the generated key. The

thus obtained hash is checked in the BlackList table of the database and if it is

 SqlCommand comanda_PK1 = connex.CreateCommand();

 SqlDataReader citeste_PK1;

 connex.Open();

commanda_PK1.CommandText = "select PK1 from dbo.Keys

where ID=" + IDPK1;

 citeste_PK1 = commanda_PK1.ExecuteReader();

 PK1 = Convert.ToString(citeste_PK1.Read());

 for (int tk1 = 0; tk1 < citeste_PK1.FieldCount;

tk1++)

 linie_PK1 +=

citeste_PK1.GetValue(tk1).ToString();

 connex.Close();

 .

.

private void FormEDK()

 {

 EDK = linie_PK1 + linie_PK2 + linie_PK3 +

linie_PK4;

 }

A study on the encryption techniques and methods implemented within the critical (…) 247

identified in the list, the PRNGs are automatically reset, performing a new

encryption key.

SqlConnection connex1 = new System.Data.SqlClient.SqlConnection

("Server= localhost;DataSource=.\\SQLEXPRESS; Database=AES-DB;

Trusted_Connection= True");

 SqlCommand commanda_BK =

connex1.CreateCommand();

 SqlCommand commanda_BK1 =

connex1.CreateCommand();

 SqlCommand commanda_BK2 =

connex1.CreateCommand();

 SqlCommand commanda_BK3 =

connex1.CreateCommand();

 SqlDataReader citeste_BK;

 SqlDataReader citeste_BK1;

 SqlDataReader citeste_BK2;

 SqlDataReader citeste_BK3;

System.Security.Cryptography.MD5CryptoServiceProvider EDKx = new

System.Security.Cryptography.MD5CryptoServiceProvider();

 byte[] EDKbs =

System.Text.Encoding.UTF8.GetBytes(EDK);

 EDKbs = EDKx.ComputeHash(EDKbs);

 System.Text.StringBuilder EDKsMD = new

System.Text.StringBuilder();

 foreach (byte b in EDKbs)

 {

 EDKsMD.Append(b.ToString("x2").ToLower());

 }

 EDKMD5 = EDKsMD.ToString();

 connex1.Open();

 commanda_BK.CommandText = "select ID from

dbo.BlackList where RejectedKeys ='" +EDKMD5 + "'";

 citeste_BK = commanda_BK.ExecuteReader();

 bool IDkbl = citeste_BK.Read();

 connex1.Close();

 if (IDkbl == false)

 {

 connex1.Open();

 commanda_BK1.CommandText = "select max(ID)

from dbo.BlackList";

248 Eugen Neacșu, Emil Simion

Encryption is performed this way: [12]

1. PRNG creats IDk1, IDk2, IDk3, IDk4, IDs and IDsrmc indexes in the

database tables;

2. AE reads the partial keys corresponding to the indexes IDk1, IDk2, IDk3,

IDk4 from the AES-DB database and composes the encryption key K;

3. AE reads the pair of replacement tables using IDs;

4. AE reads working parameters with IDsrmc identification number for

ShiftRows and MixColumns transformations in the database;

5. AE uses the encryption key formed in step 1, the pair of substitution

tables, and the ShiftRows and MixColumns transform variants to encrypt

plain text;

6. AE creates an IDses session identification number, consisting of the

concatenation of IDk1, IDk2, IDk3, IDk4, IDs and IDsrmc, which it adds to

the encrypted message to be transmitted.

Encryption is done by calling the methods in which the transformations are

implemented, according to the source code presented below.

 citeste_BK1 =

commanda_BK1.ExecuteReader();

 string valIDst =

Convert.ToString(citeste_BK1.Read());

 for (int idbl = 0; idbl <

citeste_BK1.FieldCount; idbl++)

 valID =

citeste_BK1.GetValue(idbl).ToString();

 int maxIDbl = Convert.ToInt16(valID);

 connex1.Close();

 connex1.Open();

 maxIDblp1 = maxIDbl + 1;

 commanda_BK2.CommandText = "insert into

dbo.BlackList (RejectedKeys) values ('" + EDKMD5 + "')";

 citeste_BK2 =

commanda_BK2.ExecuteReader();

 connex1.Close();

 int Encrypt(int[][] a, int[][][] rk)

 {

 int r;

 AddRoundKey(a, rk[0]);

 for (r = 1; r < ROUNDS; r++)

 {

 SubBytes(a, S);

 ShiftRows(a, 0);

A study on the encryption techniques and methods implemented within the critical (…) 249

The information contained in the previously formed IDses is required in the

decryption process and even if the IDses are not added to the encrypted message,

other methods of its secure transmission between the corresponding entities can be

used. For added security, data packets can be overwritten using a secret key and a

pair of predefined replacement tables. [13]

4. Conclusions

Depending on the situation and requirements, information security methods

need to be constantly adapted to respond effectively to individual needs. In order

for transactions to be secure and information security objectives to be met,

increasingly complex cryptographic protocols and techniques have been developed.

These, in conjunction with compliance with procedural techniques, can ensure the

desired level of security.

Today, cryptographic applications are part of everything that happens in

communications networks, regardless of the medium of transmission (terrestrial

radio networks, metal cable, fiber optics or satellite networks). The algorithms used

so far have been and are constantly "bombarded" by attempts made by specialists

to prove their vulnerabilities, before hackers take advantage of their weaknesses.

Cryptographic solutions based on symmetric block algorithms are a special

category, characterized in particular by a very good encryption speed. Their design

(and not just this type of algorithm) must meet two essential conditions: they must

be secure, and they must be fast. In recent years, great efforts have been made to

design algorithms that best meet the two stated conditions. The partial key

generation component (XOR-MWC generator) used to load the database and to

create the encryption keys, based on the MWC generator, is distinguished by the

fact that it is able to pass NIST tests, despite being taken individually, the two

generators in its composition do not succeed in this. The RPV algorithm, as part of

the complex cryptographic system, is based on the robustness demonstrated by the

Rijndael algorithm in the face of linear and differential cryptanalytic attacks and is

an optimized variant of it, by implementing different ways of working. These

modes allow you to obtain 8 variants of encrypted text, for the same clear text and

the same encryption key, thus increasing the theoretical cryptanalysis time for

 MixColumns(a);

 AddRoundKey(a, rk[r]);

 }

 SubBytes(a, S);

 ShiftRows(a, 0);

 AddRoundKey(a, rk[ROUNDS]);

 return 0;

 }

250 Eugen Neacșu, Emil Simion

attacks on the algorithm. In the case of brute force attacks, there is no improvement,

which is done by checking all possible encryption keys. [14]

The constant evolution of cryptanalytic methods, supported by continuous

technological development, determines the entire community of cryptologists to

constantly look for ways to optimize current security solutions, or to develop new

ones.

R E F E R E N C E S

[1]. Information Security Management, ISO/IEC 27001, https://www.iso.org/isoiec-27001-information-

security.html, accesed on October 2021.

[2]. Christoph D., Maria E., Hannes G., Stefan M., Florian M., Robert P., Statistical Ineffective Fault

Attacks on Masked AES with Fault Countermeasures. Advances in Cryptology - ASIACRYPT

2018 - 24th International Conference on the Theory and Application of Cryptology and

Information Security, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part II

(Lecture Notes in Computer Science, Vol. 11273). Springer, 315–342, 2018.

[3]. Fan Z., Xiaoxuan L., Xinjie Z., Shivam B., Wei H., Ruyi D., Samiya Q., Kui R., Persistent Fault

Analysis on Block Ciphers. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018, 3, 150–172, 2018.

[4]. Zeng G., Quantum Private Communication. Higher Education Press, Beijing and Springer-Verlag

Berlin Heidelberg, pp. 135-137, 2010.

[5]. Marsaglia G., Yet another RNG. Posted to electronic bulletin board at sci.stat.math, August, 1994.

[6]. Galice S., Minier M., Improving Integral Attacks Against Rijndael-256 Up to 9 Rounds. Africacrypt

2008, LNCS 5023, pp.1–15. Springer–Verlag, 2008.

[7]. Nakahara J., Freitas D., Phan R., New Multiset Attacks on Rijndael with Large Blocks. Advances in

Cryptology — Mycrypt 2005, LNCS 3715, pp. 277–295, Springer–Verlag, 2005.

[8]. Dassance F., Venelli A., Combined Attacks on the AES Key Schedule. Cryptology ePrint Archive:

Report 2012/098, http://eprint.iacr.org/2012/098, accessed on October 2021.

[9]. Koblitz A. H., Koblitz N., Menezes A., Elliptic curve cryptography, the serpentine course of a

paradigm shift. eprint.iacr.org/2008/390, 2008.

[10]. Schwartz B., Zaitsev P., Tkachenko V., Zawodny J. D., Lentz A, Balling D. J., High Performance

MySQL, Second Edition. O’Reilly Media, Inc. ISBN: 978-0-596-10171-8, Iunie, 2008.

[11]. Ji-Peng X., Xue-Cheng Z., Xu G., Ultra-low power S-boxes architecture for AES. The journal of

China Universities of post and telecommunications. Vol. 15, issue1, Martie, 2008.

[12]. IEEE P1363, IEEE Standard Specifications for Public-Key Cryptography. Computer Society, New

York, USA. Disponibil online la: http://grouper.ieee.org /groups/1363, 2004.

[13]. Behrouz A. F., Cryptography and network security, TATA-McGraw Hill Publication 2007.

[14]. NIST Special Publication 800-131, Recommendation for the Transitioning of Cryptographic

Algorithms and Key Sizes, Federal Information Processing Standards Publication (FIPS PUB)

197, National Institute of Standards and Technology (NIST), Januarie, 2010.

https://www.iso.org/isoiec-27001-information-security.html
https://www.iso.org/isoiec-27001-information-security.html

