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HYBRID GRASSHOPPER OPTIMIZATION ALGORITHM
INCORPORATING WHALE OPTIMIZATION ALGORITHM

Wei LIUY", Guangyu HAN?, Tong LI3, Tengteng REN*, Wenlv YAN?®

In order to address the issues with the original grasshopper optimization
algorithm, this work offers a hybrid grasshopper optimization algorithm (WOGOA).
First, the initial population of grasshoppers was mapped by Logistic mapping.
Second, the parameter ¢ was changed, and the nonlinear weight was added. Finally,
Levy flight was integrated into the spiral bubble net hunting behavior of the whale
optimization algorithm and then introduced into the grasshopper optimization
algorithm as a whole. The algorithm was benchmarked on 9 test functions. According
to the experimental data, WOGOA can deliver outcomes that are highly competitive
in terms of convergence ability and accuracy.

Keywords: Grasshopper optimization algorithm; Whale optimization algorithm;
Logistic chaotic maps; Levy fight

1. Introduction

Fusion algorithm refers to the combination of certain behaviors of two or
more algorithms to complement each other's strengths and weaknesses, so as to
better achieve the effect before fusion. For example, reference [1] proposed a new
improved whale optimization algorithm (IWOA) of multi-strategy hybrid
algorithm, which enhanced the speed of convergence and global search capabilities
of whale optimization algorithm. The various performances of the algorithm were
benchmarked on 23 benchmark functions, proving the superiority of IWOA. In
reference [2], the author demonstrated the use of modified whale optimization
algorithm (MWOA) search based Selective Harmonic Elimination Pulse Width
Modulation application, which has contributed to the field of power quality in micro
grid systems. Reference [3] proposed a new multi-objective particle swarm
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optimization algorithm and used it to optimize the geometric shape of permanent
magnet motors and compared it with two other multi-objective optimization particle
swarm algorithms, demonstrating its superiority. Through this literature, we can
comprehend that the fusion algorithm performs well in both its own right and other
disciplines, demonstrating its effectiveness.

The whale optimization algorithm (WOA) [4] and grasshopper optimization
algorithm (GOA) [5] both imitate the predatory tendencies of their respective
animal counterparts in the wild. The principle of GOA is easy to understand, the
parameters are few, and it is easy to implement. However, the algorithm
convergence speed is slow and prone to premature convergence. Improved in
response to the limitations of GOA, this article enhances its effectiveness. Due to
the initial population distribution of GOA is random, the richness and uniformity
of the population are reduced. Therefore, this article uses Logistic chaotic mapping
to initiate the grasshopper population. Additionally, the GOA parameter ¢ has a
significant impact on the algorithm's capacity for exploration and exploitation.
However, a linear decrease in ¢ does not promote optimal balance within the
algorithm. Therefore, the linearly reduced parameter c is changed to a non-linear
reduction. WOA only updates its position based on the best individual, which
results in a lack of population diversity and low global search ability. Furthermore,
numerous academics have demonstrated that Levy flight can depart from local
optima. Add the above methods to GOA to obtain WOGOA. The data results of
WOGOA on the test function prove that WOGOA has high optimization ability.

2. Fundamental principles of algorithm
2.1. Grasshopper Optimization Algorithm

It imitates the swarming and foraging behaviors of grasshoppers in the wild.
The goal of algorithmic biomimetic is to quickly translate the small-scale
movement behavior of grasshopper larvae to local development. The large-scale
mobility behavior of adult grasshoppers is mapped to a long-term global search.
The algorithm's optimization phase is the process of looking for food sources.
Equation (1) can be used to explain grasshopper swarm behavior.

N _ e R
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where X; is the position of grasshopper; ub and Ib are the upper and lower bounds
of the search space, respectively; x; and x; are different grasshoppers; dij is the
distance between different x; and xi grasshoppers; T, is the optimal location. s is
calculated by formula (2), where f=0.5 and I=1.5.

r

s(r) = fol —e (2)
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The parameter outside the parentheses ¢ of equation (1) can balance the entire
grasshopper swarm's exploration and exploitation. The purpose of the parameter ¢
inside the parentheses is to limit the range of the repulsion force between
grasshoppers. It is calculated as equation (3):

Crax = Cnin
C= Crax-t o0 (3)

nax
where t denotes the current iteration count and Tmax denotes the maximum number
of iterations; Cmax is equal to 1 and cmin is equal to 0.0004.

2.2. Bubble net hunting behavior in Whale Optimization Algorithm

Humpback whales engage in one of two bubble-net behaviors: shrinking
encircle and spiral updating position. The bubble net behavior is shown in Fig. 1.
The spiral update position is shown in equation (4):

Xt +1) = D-e” -cos(27l) + X'(t), (4)
where the helix's shape can be altered by the constant b, which has a value of 1;
X (t + 1) is the position of the next iteration; X*(t) is the position vector of the
optimal solution; | is a selection value between [-1, 1]; D’ can be calculated from
equation (5) to obtain.

D' =

X'(t) - X)), 5)

X () is the position vector.

Fig. 1. A humpback whale's bubble-net eating technique

3. WOGOA
3.1. Chaotic Map Initialization

In the area of algorithm optimization, chaotic mapping can frequently
substitute the pseudorandom generator for generating chaotic numbers from 0 to 1.
Reference [6] applied the Tent mapping to the grasshopper optimization algorithm
and achieved good results. The Logistic map utilized in this article is widely
adopted due to its straightforward expression, as shown in equation (6):

Xn+1=/1><Xn><(1—Xn). (6)
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In the formula, Xn+1 in [0, 1], Ain [0, 4] is a parameter of Logistic, which
has different chaotic effects in different values. Reference [7] indicates that when
3.5669<A<: 4. This mapping presents a completely chaotic state, so this article
chooses A = 4. A random number with an initial position between 0 and 1.

3.2. Nonlinear parameters

From equation (1), it follows that parameter c is crucial for achieving a
balance between exploration and exploitation during the GOA algorithm's process
of updating the grasshopper position. However, the linear variation of parameter c
hinders effective global and local search, leading to low convergence accuracy [8].
This paper suggests a novel nonlinear parameter to address this issue, as shown in
equation (7):

Ly, ™
max

Cmax, Cmin, and Tmax have been elaborated on in the previous text. The rapid
decrease of parameter c in the early phase prevents the algorithm from becoming
stagnated into local optimum, while its slower decrease in later phases allows for
more detailed exploitation. Therefore, this nonlinear parameter can better balance
the algorithm's exploration and exploitation.

3.3. Nonlinear Weights

From the preceding description, the grasshopper position is updated using
equation (1) throughout the whole iteration phase. However, in the later phase, this
equation can only promote the grasshopper to approach the target position, but
cannot converge to the global optimum faster [9]. Being inspired by the particle
swarm weights mentioned in reference, nonlinear weights were added to the GOA
[10]. The nonlinear weight w is shown in equation (8):

1
where the current iteration is t; Wmax IS 1, Wmin is 0.0004; the maximum iteration is
Tmax; Y can be calculated by equation (9):
y =exp(-logy,”) . )

From equation (8), it is evident that the algorithm's exploration ability is
enhanced during the early search phase due to a relatively large weight, ensuring
global search. As the algorithm progresses, the weight gradually decreases,
improving its exploitation performance and convergence speed. Therefore, the
position update of grasshoppers becomes equation (10):

N _ X
Xi=c( ) c“bz'bs(|x,-—xi|) X=Xy | wxT. (10)
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3.4. Levy flight was integrated into the spiral bubble-net attacking

The inclusion of the Levy flight mechanism improves the algorithm's ability
to conduct global exploration while looking for the best values, making it easier to
discover the global optimum. The Levy flight follows the Levy distribution, where
the formula is shown in equation (11):

X" =X"+a®Levy, (11)

where Xit*! represents the next position, X;' represents the current iteration
position, and step size « is usually a constant with a value of 0.01. However, the
method in this article can have a big step size for global search the algorithm in its
early phases, making it simple to jump out of local optima. So the value of an in
this article ranges between [0.01, 0.3]. @ representing point-to-point multiplication.
And the Levy is described by equation (12):

Levy = (S,S2,-+» Sn),8 = 4= ,i =12--,n, (12)
e
where v adheres to the normal distribution with a 0 mean and a 1 variance, u obey

mean of 0, variance of o, the Gaussian distribution, where o, the calculation method
Is shown in equation (13):

F(1+ l)xsin(ﬁx;]
A-1
F(l—;ljx/bd

A is a random number in (1, 3), in this article we assumed it as 1.5; T'(x) is the
gamma function.

After integrating Levy flight into the spiral bubble-net attacking behavior of
whales, the updated formula becomes:

Xt +1) = X,(t) + Levy - [X, = X(t)|-€” -cos(2al), (14)

where b is the constant coefficient of the spiral equation, usually b is 1; I is a
selection value between [-1, 1].

Integrating Levy flights into the spiral bubble-net attacking behavior facilitates
running out of local optima to search global optima during the optimization process.
Combining the position update of grasshoppers with the position update of whale
spiral bubble-net attacking behavior which was added to Levy flight, and alternate
between them for updating. Specifically, execute equation (10) when the number
of iterations is odd and equation (14) when it is even.

3.4. WOGOA Step

Step1 Make the population's initial state via logistic mapping, set
parameters Cmax, Cmin, population N, and the most iterations allowed Maxiter.

A

, (13)

Ou =
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Step2 Determine the starting population's fitness, and find the best Tq
position for the current population after updating the target position.

Step3 When the current iteration count is singular, execute the position
update equation (10); otherwise, execute the position update equation (14).

Step4 Edge the new position X'(t) obtained, calculate the fitness, and
compare it with position X(t) in the previous iteration. Find the ideal position,
update Tq, and save the position with the lowest fitness as the final position X(t+1).

Step5 Ascertain if the reached number of iterations has been reached.
When the maximum number of iterations has been achieved, publish the overall
best solution; if not, continue with steps 3 and 4.

In Fig. 2, the WOGOA flowchart is displayed.

Initialize
Maxiter.cn LLub,Ib
I Initialize population parameters by l

Logistic mapping

l Find the optimal position in the initial pop I

ulation as Td

Fig. 2. The flowchart of WOGOA

4. Results
4.1. Experimental environment

The experiments are tested on an Intel machine Core(TM) 15-8250U CPU
1.6GHz and 20 GB RAM. All algorithms are tested using the MATLAB 2022b
software.
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4.2. Comparison with different original algorithms

To prove the WOGOA algorithm's capacity for optimization, this paper
selected Ant lion optimization algorithm (ALO) [11], Harris hawks optimization
(HHO) [12], Whale optimization algorithm (WOA), and Grasshopper optimization
algorithm (GOA) to compare with WOGOA. The number of search agents is 30,
and other parameters were the same as those in the reference. This paper selected 9
test functions for comparison. In Table 1, which corresponds to rows F1 through F9
in the test data result table, the names, dimensions, and formulas of the chosen
functions are displayed. F1 through F6 are unimodal functions having a single best
solution. The proposed algorithm's rate of convergence will be examined. F7 to F9
are multimodal functions with numerous global solutions. The purpose is to verify
WOGOA's global optimization ability and whether it can find the global optimal
solution. Each test function was run 30 times independently to avoid the
occasionality of a single experiment, and the number of iterations was set to 1000.

Table 1
Partial benchmark functions
F‘#]r;%i:” Function Range dim | fmin
Sz?f)re f(x)= Z X [-100,100] 30 0
slcgvzﬁgl F(x) = Z(Zx) [-100,100] 30 0
gczhlvv(eFfz)l f (x) = max|x 1< <dim [-100,100] 30 0
Ros«(e'rgg)rock £ (%) =dt2:1[100(><.ﬂ —xf + (% ~1y°] [-30,30] 30 0
Qélléalé;ic f (x)gix;‘ +random[0,1) [-1.28,1.28] 30 0
Ra(s;r;;gin f(x)= ‘jz'j[xf —10cos(22x,) +10] [-5.12,5.12] 30 0
A(‘g‘;y (0 =-200(-02 - $5) -exp( - Scos(arm)) + 20+ [-32,32] 30 0
Gri((le:v;;mk F(x) =Kloozx —]djcos(%ﬂl [-600,600] 30 0

Table 2 displays the test results data. In Table 2, Best is the optimal value of
30 experiments, Worst is the worst value of 30 experiments, Ave is the average
value of 30 experiments, and Std is the variance of 30 experiments. Fig. 3 displays

the test's convergence curves.
Table 2
Partial benchmark function results of different algorithms
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Function Algorithms Best Worst Ave Std
ALO 1.81E-06 1.55E-05 6.33E-06 3.96E-06
HHO 4.21E-207 8.11E-180 2.70E-181 0
F1 WOA 5.30E-168 4.58E-150 1.58E-164 8.35E-151
GOA 0.5741 18.8231 7.3336 5.4888
WOGOA 0 0 0 0
ALO 0.0890 124.1006 37.6341 51.7361
HHO 1.10E-111 9.01E-97 7.02E-98 2.12E-97
F2 WOA 5.44E-113 2.90E-101 1.05E-102 5.30E-102
GOA 0.2035 71.2622 8.3375 13.7452
WOGOA 0 0 0 0
ALO 580.8901 3605.0574 1136.3067 601.6023
HHO 1.80E-184 6.27E-138 2.10E-139 1.14E-138
F3 WOA 2070.0063 31620.2934 18003.2910 9046.1781
GOA 790.9804 5217.8573 1983.0377 1214.4968
WOGOA 0 0 0 0
ALO 4.8288 20.1975 12.8514 4.0509
HHO 4.77E-105 1.27E-89 4.23E-91 2.31E-90
F4 WOA 0.0420 85.1367 43.9337 31.2751
GOA 5.3958 17.3842 9.6231 3.0170
WOGOA 0 1.69E-20 4.43E-21 6.29E-21
ALO 22.0201 1740.5569 272.5554 475.0298
HHO 3.47E-06 0.0219 0.0045 0.0057
F5 WOA 27.0561 28.7849 28.1150 0.4723
GOA 122.1291 5561.6334 1031.9546 1268.8228
WOGOA 28.7071 28.9795 28.8075 0.0697
ALO 0.0387 0.2246 0.1012 0.4217
HHO 8.89E-06 0.0003 7.04E-05 6.66E-05
F6 WOA 1.51E-05 0.0172 0.0029 0.0040
GOA 0.0038 0.0301 0.0175 0.0062
WOGOA 6.89E-06 0.0003 0.0001 0.0001
ALO 39.7983 190.0363 79.2317 28.8098
HHO 0 0 0 0
E7 WOA 0 0 0 0
GOA 43.8411 158.8225 93.5683 31.4093
WOGOA 0 0 0 0
GOA 2.5101 6.4516 4.0077 0.9158
SCGOA 1.6183 4.8464 2.6858 0.8751
F8 NGOA1 1.81E-08 2.04E-08 1.95E-08 7.41E-10
LGOA 2.4088 4.4249 3.5474 0.6659
WOGOA 8.88E-16 8.88E-16 8.88E-16 0
GOA 0.5371 0.9851 0.7473 0.1341
SCGOA 0.1797 0.3938 0.3011 0.0791
F9 NGOA1 9.88E-05 1.40E-14 1.26E-14 1.45E-15
LGOA 0.1076 0.3116 0.2022 0.0703
WOGOA 0 0 0 0
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Fig. 3. Comparison of convergence curves of different algorithms

As shown in Table 2, both WOA and HHO exhibit stronger overall
optimization ability than ALO and GOA from F1-F2. Furthermore, based on the
table's standard deviation, it can be observed that WOA and HHO exhibit superior
robustness compared to ALO and GOA. This suggests that their optimization
capabilities are not merely coincidental. However, WOGOA outperforms both
WOA and HHO. It has good optimization ability in terms of precision and
consistency, enabling it to achieve the theoretical optimal value.

From the perspective of F3-F4, WOA's overall optimization ability is
inferior to that of ALO and GOA. Neither method can achieve the theoretical
optimal value. And the stability of WOA is not as good as that of ALO and GOA.
The overall optimization ability of HHO is much better than WOA, ALO, and GOA,
and the standard deviation is low, suggesting that HHO is more stable. After
comparing WOGOA with the other four algorithms, it is found that WOGOA
exhibits significantly superior global optimization ability, convergence speed, and
stability, and is capable of achieving the theoretical optimal value.
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From the point of view of F5, WOA and WOGOA have similar optimization
abilities. But in terms of stability, WOWGOA is a bit more stable than WOA. But
none of these five algorithms can locate the ideal value in theory.

From F6, the optimal values found by WOGOA, HHO, and WOA are
superior to the other two algorithms. From the comparison of these three
algorithms, WOGOA and HHO are better than WOA in terms of accuracy and
stability. WOGOA's optimization ability is slightly stronger than HHO's, but neither
of them is able to determine the theoretical optimal value. From the perspective of
F7-F9, compared to the other two algorithms, WOA, HHO, and GWGOA can run
the local optimal solution and locate the theoretically ideal value at the global level,
and the stability is stronger than the other two algorithms. According to the above
information obtained from the test data table and convergence curve, GWGOA can
find the optimal value on most functions, which proves the effectiveness of
GWGOA and highlights the excellent optimization ability of this algorithm.

4.3. Comparison with the improved GOA

WOGOA was contrasted with original GOA, SCGOA [13], LGOA [14],
and NGOAL [15] in order to further illustrate the optimization capability of
WOGOA. The settings were set in accordance with the references, with the number
of grasshoppers set to 30, the dimension set to 30, the number of iterations set to
1000, and the number of grasshoppers set to 30. Table 3 displays the test data
results, and Figure 4 displays the fitness convergence curve.

It is evident from Table 3 and Fig. 4 that WOGOA in F1-F4 exhibits superior
optimization capabilities compared to the other four algorithms and can effectively
identify the optimal solution within the function theory.

Table 3
Partial benchmark function results of different improved GOA algorithms
Function Algorithms Best Worst Ave Std
GOA 0.5741 18.8231 7.3336 5.4888
SCGOA 0.2768 0.7125 0.4331 0.1424
F1 NGOA1 2.89E-17 2.64E-17 2.78E-17 8.32E-17
LGOA 0.0567 0.9522 0.2725 0.2646
WOGOA 0 0 0 0
GOA 0.2035 71.2622 8.3375 13.7452
SCGOA 1.7461 11.8204 4.3410 2.9065
F2 NGOA1 2.43E-09 2.33E-09 2.40E-09 5.50E-11
LGOA 0.3203 23.5404 5.2994 7.2088
WOGOA 0 0 0 0
GOA 790.9804 5217.8573 1983.0377 1214.4968
SCGOA 397.1571 1154.8540 652.6811 240.2682
F3 NGOA1 7.48E-15 1.71E-14 1.45E-14 2.85E-15
LGOA 85.4954 292.0814 158.1364 70.5805
WOGOA 0 0 0 0
GOA 5.3958 17.3842 9.6231 3.0170
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SCGOA 2.8756 20.9253 8.1670 5.2974
NGOA1 2.63E-05 2.73E-08 2.69E-08 3.58E-10
F4 LGOA 4.6534 27.7915 15.1358 6.6521
WOGOA 0 1.69E-20 4.43E-21 6.29E-21
GOA 122.1291 5561.6334 1031.9546 1268.8228
SCGOA 55.5941 274.8262 136.0421 63.7939
F5 NGOA1 28.9352 28.9830 28.9552 0.0144
LGOA 28.2851 793.2353 160.5964 228.3359
WOGOA 28.7071 28.9795 28.9960 0.0697
GOA 0.0038 0.0301 0.0175 0.0062
SCGOA 0.0783 0.3871 0.2404 0.0875
F6 NGOA1 1.10E-05 0.0002 7.82E-05 7.13E-05
LGOA 0.0074 0.0315 0.0198 0.0071
WOGOA 6.89E-06 0.0003 0.0001 0.0001
GOA 43.8411 158.8225 93.5683 31.4093
SCGOA 72.3972 175.5481 137.1621 33.53442
F7 NGOA1 0 0 0 0
LGOA 50.7467 190.0385 91.1780 36.8202
WOGOA 0 0 0 0
GOA 2.5101 6.4516 4.0077 0.9158
SCGOA 1.6183 4.8464 2.6858 0.8751
F8 NGOA1 1.81E-08 2.04E-08 1.95E-08 7.41E-10
LGOA 2.4088 4.4249 3.5474 0.6659
WOGOA 8.88E-16 8.88E-16 8.88E-16 0
GOA 0.5371 0.9851 0.7473 0.1341
SCGOA 0.1797 0.3938 0.3011 0.0791
F9 NGOA1 9.88E-05 1.40E-14 1.26E-14 1.45E-15
LGOA 0.1076 0.3116 0.2022 0.0703
WOGOA 0 0 0

) 300 40

0" 500
Heration
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Fig. 4. Comparison of convergence curves of different improved GOA algorithms

Secondly, in terms of standard deviation, WOGOA exhibits the smallest
value, indicating a more stable optimization ability and stronger robustness
compared to NGOAL. Finally, the rate of convergence of WOGOA is quicker than
that of the other four algorithms, indicating that the algorithm has a stronger
convergence ability. In general, the convergence speed, accuracy, and stability of
WOGOA are higher than those of the other four algorithms in these four functions,
which indicates that WOGOA has better optimization ability.

From the perspective of F5, WOGOA and NGOALl have the same
optimization ability on this function, which is better to other algorithms in terms of
optimization precision and stability. The theoretically ideal value of this function
cannot be found by any of the five algorithms mentioned above.

According to F6, GOA, SCGOA, and LGOA all have the same level of
optimization capability in terms of accuracy and stability, and all of them have good
accuracy and robustness. WOGOA still has a lot of room for improvement since
the theoretically ideal value is not found.

From the perspective of F7, GOA, SCGOA, and LGOA failed to fail to
locate the theoretical ideal value and have not jJumped out of the local optimal value.
However, as can be observed from the figure, NGOA1 and WOGOA convergence
speed is poor, indicating that their performance in the ability to conduct global
searches is subpar.

From the perspective of F8-F9, WOGOA's optimization ability is better than
the other four algorithms. However, convergence speed is slow on F8 and fast on
Fo.

In general, after comparing with several different improved GOA, it can still
prove the superiority of WOGOA optimization and further highlight the
optimization ability of WOGOA.

5. Conclusion

This research suggests a hybrid grasshopper optimization algorithm that
incorporates the whale optimization method to address the shortcomings of the
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sluggish convergence rate and low precision of GOA. Based on the GOA, this
algorithm introduces the Levy flight's whale spiral bubble net hunting behavior as
well as logistic chaotic mapping and nonlinear parameters and weights to improve
the algorithm's capacity to run out of the local optimum as well as its ability to do
local searches and accelerate convergence. According to the experimental data,
WOGOA can deliver outcomes that are highly competitive in terms of convergence
ability and accuracy.

WOGOA has achieved good results in testing functions, so applying
WOGOA to practical optimization problems, especially complex, dynamic, and
large-scale optimization problems, is another research direction of this article. We
can create binary and multi-objective WOGOA versions in subsequent work. And
it can also be applied to other fields, such as photovoltaic maximum power tracking,
power load prediction, and robot path shortest planning, and it is expected that this
algorithm will achieve good results.

The abbreviations involved in this article are shown in Table 4

Table 4
Abbreviate table
Full name Abbreviated Full name Abbreviated
name name
H'yb%'ld grasshopPer WOGOA Ant lion op.tlmlzatlon ALO
optimization algorithm algorithm
Improved whale IWOA Harris hawks optimization HHO

optimization algorithm

Cauchy mutation grasshopper
MWOA optimization with SCGOA
trigonometric substitution

Modified whale
optimization algorithm

Whale optimization Levy flight based grasshopper

. WOA L . LGOA
algorithm optimization algorithm
Grasshopper F)ptlmlzatlon COA The fI.I'S’E. type of new.locust NGOA1
algorithm optimization algorithm
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