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OPTIMIZING TRAJECTORIES IN 3D SPACE USING MIXED-
INTEGER LINEAR PROGRAMMING 

Mirela-Mădălina BIVOLARU1,2 

Trajectory planning represents a heavily investigated area across robotics, 
artificial intelligence, and aerospace domains. Predominantly challenging, pre-
mission trajectory planning involves navigating through multi-obstacle environments, 
posing a complex optimization problem. This paper aims to address this challenge by 
developing a path planner leveraging Mixed Integer Linear Programming, that solves 
quickly and produces a safe but not very rigid trajectory from the start point to the 
end point, in a constrained 3D environment. 
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1. Introduction 

In recent years, many research studies on the designing of unmanned aerial 
vehicles have been conducted. These systems have important applications in both 
military and civilian fields. For example, if a task is dangerous or monotonous, 
replacing human-operated vehicles with unmanned vehicles is desirable. 

When a UAV is on mission, it is very important to ensure that it detects 
obstacles such as mountains, buildings, and other aerial vehicles. No-fly zones 
should also be avoided. 

Many methods have been used to solve the obstacle avoidance trajectory 
optimization problem. Potential functions are used for space vehicles [1], air traffic 
management and trajectory planning for UAVs [2], [3]. This method involves 
replacing the obstacle avoidance constraints with approach penalties in the 
objective function, thus simpler optimization schemes such as pitch reduction can 
be used. These schemes offer the operation of problems in a shorter time, some 
proving to be safe, but not optimal. Random search methods [4] [5] [6] have been 
designed to rapidly find feasible trajectories among obstacles, again neglecting 
trajectory optimality. In the problems of UAVs, Voronoi diagrams [7], [8] were 
used to find the paths between obstacles, these paths being formed by straight 
segments. Other methods use splines [9] and low-dimensional representations [10] 
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of nonlinear systems to reduce the solution space before performing nonlinear 
optimization. 

Reference [11] adopts Mixed-Integer Linear Programming (MILP) for 
trajectory planning of UAVs and vehicles with turn and minimum velocity 
constraints. Path planning for air vehicles based on MILP optimization was first 
presented by Schoewenaars [12], and this method has been studied and extended 
by many others. MILP can also be viewed as a reaction in classical control problems 
[13]. [14] presents a method for tracking icebergs with multiple UAVs, utilizing a 
MILP approach for path planning. 

This study focuses on trajectory planning for fixed-wing UAVs, presenting 
a simplified model that demonstrates the potential of using MILP for efficient path 
optimization. The objective of this paper is to create a fast solver for path planning 
using Mixed Integer Linear Programming, that generates a robust trajectory, 
considering the obstacles and the acceleration limitation. The complexity of the 
problem is given by the solution type, the number of decision variables and the 
number of restrictions. 

2. Methodology 

This section describes the mixed-integer linear programming (MILP)  
design methodology and explains the formulation of the core MILP problem used 
in this paper. Some of the MILP components described in this chapter are the same 
as those used in other previous implementations [12] [13], but others, such as safety 
distance, were made by modifying existing techniques, thus being able to improve 
solver’s performance. 

2.1 General formulation of the MILP problem 

MILP standard formulation is : 
Minimize the cost function 

𝑓𝑓(𝑥𝑥) = 𝑠𝑠𝑇𝑇𝑥𝑥 (1) 

Given the restrictions  
𝐴𝐴𝑒𝑒𝑒𝑒𝑥𝑥 = 𝑎𝑎𝑒𝑒𝑒𝑒 

𝐴𝐴𝐴𝐴 ∈ [𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙;𝑎𝑎𝑢𝑢𝑢𝑢] 
𝑥𝑥 ∈ [𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙;𝑥𝑥𝑢𝑢𝑢𝑢] 

(2) 

where 𝐴𝐴𝑒𝑒𝑒𝑒 ,𝐴𝐴 ∈ ℝ𝑚𝑚×𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑠𝑠, 𝑥𝑥, 𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙, 𝑥𝑥𝑢𝑢𝑢𝑢,𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙,𝑎𝑎𝑢𝑢𝑢𝑢 ∈ ℝ𝑛𝑛,𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙,𝑎𝑎𝑢𝑢𝑢𝑢 ∈
ℝ𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣.  
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2.1.1 Discretization of time 

The initial phase in tackling the mixed-integer linear programming 
problem involves time discretization. If t0=0 denotes the starting time, N 
represents the total number of steps, and Ti is the time interval between two 
consecutive timesteps ti and ti-1, the total time tfin required to solve the MILP 
problem is: 

𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑡𝑡0 + 𝑡𝑡1 + 𝑡𝑡2 + ⋯+ 𝑡𝑡𝑁𝑁 = ∑ 𝑡𝑡𝑖𝑖 𝑁𝑁
𝑖𝑖=0    (3) 

In this paper the time is divided equally, i.e. 𝒕𝒕𝒊𝒊 = 𝑻𝑻 is constant, therefore 
eq. (3) is equivalent to: 

𝒕𝒕𝒇𝒇𝒇𝒇𝒇𝒇 = 𝑵𝑵 ∙ 𝑻𝑻 (4) 

2.1.2 Initial conditions 

The initial conditions will be defined next. Knowing the last information 
about the position and velocity, 𝒙𝒙𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌 and 𝒙̇𝒙𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌, the initial conditions can be 
predicted by linear interpolation with the timestep T: 

�
𝑥𝑥0
𝑥̇𝑥0� = �10� 𝑥𝑥𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + �𝑇𝑇1� 𝑥̇𝑥𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 

 
(5) 

2.2 Restrictions  

2.2.1 Restrictions on reaching the destination 

The way the UAV gets from the start point to the final point can be 
expressed through constraints. The conditions for the vehicle to successfully reach 
its destination point are: 

𝑥𝑥𝑡𝑡 − 𝑥𝑥𝐹𝐹 ≤ 𝐷𝐷(1 − 𝛽𝛽𝑖𝑖) 
𝑥𝑥𝑡𝑡 − 𝑥𝑥𝐹𝐹 ≥ −𝐷𝐷(1 − 𝛽𝛽𝑖𝑖) 
𝑦𝑦𝑡𝑡 − 𝑦𝑦𝐹𝐹 ≤ 𝐷𝐷(1 − 𝛽𝛽𝑖𝑖) 
𝑦𝑦𝑡𝑡 − 𝑦𝑦𝐹𝐹 ≥ −𝐷𝐷(1 − 𝛽𝛽𝑖𝑖) 
𝑧𝑧𝑡𝑡 − 𝑧𝑧𝐹𝐹 ≤ 𝐷𝐷(1 − 𝛽𝛽𝑖𝑖) 
𝑧𝑧𝑡𝑡 − 𝑧𝑧𝐹𝐹 ≥ −𝐷𝐷(1 − 𝛽𝛽𝑖𝑖) 

(6) 
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�𝛽𝛽𝑖𝑖

𝑁𝑁

𝑖𝑖=1

≤ 1 

where (xt, yt, zt) is the point where the vehicle is at time t, (xF, yF, zF) is the 
destination point, βi is a binary variable for each timestep, and D>0 is an arbitrarily 
chosen constant, large enough. When 𝛽𝛽𝑖𝑖 = 1, 𝑥𝑥𝑡𝑡 − 𝑥𝑥𝐹𝐹 = 0, 𝑦𝑦𝑡𝑡 − 𝑦𝑦𝐹𝐹 = 0, 𝑧𝑧𝑡𝑡 −
𝑧𝑧𝐹𝐹 = 0, therefore the UAV has reached its destination. 

2.2.2 Restrictions for avoiding collision with an obstacle 

2.2.2.1 Increasing obstacles 

Although obstacles that are in the operating area of the UAV are included 
in the MILP problem, the trajectory between time steps can cut the corner of an 
obstacle. This means that the trajectory between two feasible time steps intersects 
the obstacle, and this problem must be considered, so that the trajectory calculated 
by the MILP method does not intersect the obstacle. 

In general, the real obstacle, to which the safety margins have been added, 
should be large enough so that it is not feasible to make a trajectory directly through 
the obstacle. This determines the fulfillment of the conditions [15]: 

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 > 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇 
𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 > 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇 
𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 > 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇 

(7) 

To simplify the problem, it is assumed that all the obstacles are cubes. The 
distance from the obstacle limit to the safety margin is denoted by d, and this is the 
limit that will be implemented in MILP. 

 

Fig. 1 Obstacle’s safety margin 

The distance that the UAV can cover for each time step is described by the 
following inequality: 

𝑐𝑐 > 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇 (8) 

where 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum speed that the UAV can reach, and T is the time step. 
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Fig. 1 shows that the distance c can be described as a function of the margin 
of safety, d, the dependence described by the relation: 

𝑐𝑐 =
2𝑑𝑑

sin (𝛼𝛼)
 (9) 

where α is the angle between the obstacle limit and the line described by the 
waypoints. In Fig. 1, the angle α is 45 ͦ, because it ensures the shortest path, so it is 
the extreme case for which the safety margin is built. 
By substituting equation (9) in the inequality (8), the safety margin should be 
greater than: 

𝑑𝑑 >
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇

2
sin(45°) (10) 

For a 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 36𝑚𝑚/𝑠𝑠, and 𝑇𝑇 = 0.15𝑠𝑠, the safety margin should be greater 
than 1.91m. Therefore, it is chosen: 

𝑑𝑑 = 2𝑚𝑚 

2.2.2.2 Restrictions for avoiding collision with obstacles 

The positions of the obstacles will be defined using the upper and lower 
limits for each dimension: xmax, xmin, ymax, ymin, zmax, zmin. The constraints for each 
time step are: 

𝑥𝑥𝑡𝑡 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑑𝑑 ≥ −𝑀𝑀𝜑𝜑1𝑡𝑡  
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑑𝑑 − 𝑥𝑥𝑡𝑡 ≥ −𝑀𝑀𝜑𝜑2𝑡𝑡  
𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑑𝑑 ≥ −𝑀𝑀𝜑𝜑3𝑡𝑡  
𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑑𝑑 − 𝑦𝑦𝑡𝑡 ≥ −𝑀𝑀𝜑𝜑4𝑡𝑡  
𝑧𝑧𝑡𝑡 − 𝑑𝑑 − 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 ≥ −𝑀𝑀𝜑𝜑5𝑡𝑡  
𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑑𝑑 − 𝑧𝑧𝑡𝑡 ≥ −𝑀𝑀𝜑𝜑6𝑡𝑡  

 

�𝜑𝜑𝑖𝑖𝑡𝑡
6

𝑖𝑖=1

≤ 5 

(11) 

 
In the equations provided earlier, the variable denoted by M serves as a 

sufficiently large value that dictates the activation of the binary variable 𝜑𝜑𝑖𝑖𝑡𝑡 in cases 
where equality fails to hold. This strategic utilization of M, often referred to as the 
"big M" technique, holds widespread application across mixed-integer linear 
programming problems and is extensively discussed in [16]. By employing this 
technique, the system can effectively manage constraints and decision variables, 
ensuring robust optimization outcomes. Specifically, if the cumulative sum of 
binary variables remains at or below the threshold of 5, it guarantees that the 
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designated waypoint (xt, yt, zt) remains free from any interference posed by 
surrounding obstacles. 

2.2.3 Vehicle dynamics restrictions 

The dynamics equations for any air vehicle are usually non-linear, so the 
dynamics must be approximated as linear or piecewise linear, in order to be 
included in the MILP problem. This section describes the system of equations used 
to represent the vehicle dynamics, which includes limits on acceleration, velocity, 
takeoff/landing speed, takeoff/landing acceleration rate. 

The equations of state used in MILP are linearized and discretized versions 
of the vehicle model. The general form for a linear time-invariant (LTI) system for 
a continuous-time model is: 

𝑥̇𝑥 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 (12) 

For the scenario involving the double integrator [11], the dynamics of the 
UAV may be expressed as follows: 

 
𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑥𝑥𝑣𝑣� = �0 𝐼𝐼3

0 0 � �
𝑥𝑥
𝑣𝑣� + �0𝑢𝑢� 

(13) 

 
In the three-dimensional scenario, 𝑥𝑥 represents the position vector, defined as 
𝑥𝑥 = [ 𝑥𝑥  𝑦𝑦  𝑧𝑧 ]𝑇𝑇 in the three-dimensional case, 𝑣𝑣 stands for the velocity vector 
given by 𝑣𝑣 = [ 𝑣𝑣𝑥𝑥  𝑣𝑣𝑦𝑦   𝑣𝑣 𝑧𝑧]𝑇𝑇, and 𝑢𝑢 comprises commands for acceleration, 
denoted as 𝑢𝑢 = [ 𝑢𝑢𝑥𝑥   𝑢𝑢𝑦𝑦  𝑢𝑢 𝑧𝑧]𝑇𝑇.  

Although the initial approximation might appear rudimentary, the core 
characteristic of the double integrator's dynamics, which remains unaffected by 
the heading angle, facilitates the computational efficiency of vehicle simulation 
within MILP frameworks employing Cartesian coordinates. 

Using a zero-order approximation of state changes, one obtains [11]: 
 

⎣
⎢
⎢
⎢
⎢
⎡
𝑥𝑥
𝑦𝑦
𝑧𝑧
𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦
𝑣𝑣𝑧𝑧⎦
⎥
⎥
⎥
⎥
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�
𝑢𝑢𝑥𝑥
𝑢𝑢𝑦𝑦
𝑢𝑢𝑧𝑧
� (14) 
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2.3 Objective function 

The objective function of the trajectory planning model aims at minimizing the 
UAV’s acceleration. This choice is based on the need to achieve smooth and 
efficient trajectories for optimal UAV operation. Trajectories characterized by 
abrupt changes in acceleration often lead to inefficiencies, potentially hindering the 
vehicle's ability to adhere closely to the desired path. By prioritizing the 
minimization of acceleration within the objective function, we aim to ensure that 
the resulting trajectories exhibit smoother transitions, enhancing overall 
performance and maneuverability. This not only smoothens the trajectory but also 
implicitly reduces energy consumption by avoiding unnecessary accelerative 
forces. Therefore, the objective function is: 

𝑓𝑓𝑇𝑇𝑥𝑥 = �(𝑎𝑎𝑥𝑥,𝑛𝑛 +
𝑁𝑁

𝑛𝑛=1

𝑎𝑎𝑦𝑦,𝑛𝑛 + 𝑎𝑎𝑧𝑧,𝑛𝑛) (15) 

3. Numerical simulations 

This section presents the optimal trajectory calculated using Mixed Integer 
Linear Programming method when there are restrictions on the dynamics of the 
UAV and on the environment. Simulation results for trajectory planning with 
obstacle avoidance will be presented and discussed.  

In this paper, the MILP problem will be solved with the MATLAB function 
intlinprog.m, a mixed-integer linear problem solver. 

The initial position is given by the coordinates (0,0,5), the final position is 
(200,150,20), and the optimization is made by minimizing the acceleration. The 
coordinates of the obstacles are presented in Table 1. 

Table 1 
Obstacles’ coordinates for the three scenarios 
Obstacle (xmin, ymin, zmin) (xmax, ymax, zmax) 

1 (100, 80, -10) (135,140,20) 

2 (70, 20, -10) (90,50,10) 

3 (150, 80, -10) (170,120,35) 
 

 
Table 2 highlights three distinct cases for which the numerical simulations 

were made, where Vx0, Vy0, and Vz0 are the initial velocities on the three axes. The 
three scenarios reveal the impact of the initial velocity on the trajectory of the UAV. 
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Table 2 
Simulation parameters for the three scenarios 

Scenario Vx0 [m/s] Vy0 [m/s] Vz0 
[m/s] 

tf [s] ax,max 
[m/s2] 

ay,max 
[m/s2] 

az,max 
[m/s2] 

1 17 2 2 20 2 2 2 
2 6 15 2 20 2 2 2 
3 6 2 14 20 2 2 2 

 

In the first case, Fig. 2 shows that the trajectory was generated by going 
around the obstacles, through the right side. This is due to the force generated by 
the X component of the initial velocity. Additionally, it is noteworthy that the 
trajectory is smooth and does not show sudden changes in the heading angle. 

  
Fig. 2 Trajectory generated in the first scenario 

 

  
Fig. 3 Velocity of the UAV for the first 

scenario 
Fig. 4 Acceleration of the UAV for the first 

scenario 
 
Fig. 5 illustrates the trajectory of the UAV for the second case. It is visible 

that the path is different from the one in the first case, the trajectory being slightly 
oriented to the left. Furthermore, as anticipated in Section 2, some waypoints of the 
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trajectory were generated very close to an obstacle, this posed no issue due to the 
precautionary measure of enlarging the obstacles with a safety margin. 

 
 

Fig. 5 Trajectory generated for the second scenario 
 

  
Fig. 6 Velocity of the UAV for the second 

scenario 
Fig. 7 Acceleration of the UAV for the 

second scenario 
 
The results for the third scenario are presented in Figure 8-10. As can be 

seen, the trajectory has a larger amplitude in the yOz plane compared to the other 
cases. This is due to the high initial velocity, Vz0. The speed is unnecessarily high, 
as illustrated in Fig. 10, prompting the UAV to initiate the trajectory with a 
significant deceleration along the Z component. 

  
Fig. 8 Trajectory generated for the third scenario 
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Fig. 9 Velocity of the UAV for the third 

scenario 
Fig. 10 Acceleration of the UAV for the third 

scenario 

4. Conclusions 

This paper presents a trajectory planning methodology employing mixed 
integer linear programming in a dynamic three-dimensional setting, accounting for 
obstacles. It undertakes simulation across three distinct scenarios, each 
characterized by the consistent presence of three obstacles of varying sizes. 
Notably, these scenarios maintain identical starting and ending points, with the 
primary variation lying in the velocity of the UAV. To address potential collision 
risks arising from closely spaced waypoint generation, the sizes of obstacles are 
intentionally augmented. 

The mathematical formulation was established as a linear problem, 
featuring a minimizable cost function and a set of constraints. The cost function, 
represented by UAV acceleration, aimed for minimization, while the constraints 
encompassed two categories: inequality restrictions to ensure obstacle avoidance 
during UAV navigation from start to end points, and equality restrictions pertaining 
to vehicle dynamics. 

The MILP-based trajectory planner effectively met the specified 
requirements, generating collision-free trajectories across all scenarios from start to 
end points. Moreover, analysis of acceleration graphs indicated that acceleration 
remained within predefined limits. Therefore, it can be concluded that the Mixed-
Integer Linear Programming method offers high efficiency in trajectory planning 
amidst obstacle-laden environments.  

These simulations serve as an initial step, demonstrating the feasibility of 
implementing the MILP-based trajectory planning on a real UAV in a real-world 
environment. However, for future work, the complexity of the model must be 
increased by taking into account detailed UAV parameters to ensure more accurate 
and practical applications. 
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