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OPTIMIZING TRAJECTORIES IN 3D SPACE USING MIXED-
INTEGER LINEAR PROGRAMMING

Mirela-Madalina BIVOLARU '+

Trajectory planning represents a heavily investigated area across robotics,
artificial intelligence, and aerospace domains. Predominantly challenging, pre-
mission trajectory planning involves navigating through multi-obstacle environments,
posing a complex optimization problem. This paper aims to address this challenge by
developing a path planner leveraging Mixed Integer Linear Programming, that solves
quickly and produces a safe but not very rigid trajectory from the start point to the
end point, in a constrained 3D environment.
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1. Introduction

In recent years, many research studies on the designing of unmanned aerial
vehicles have been conducted. These systems have important applications in both
military and civilian fields. For example, if a task is dangerous or monotonous,
replacing human-operated vehicles with unmanned vehicles is desirable.

When a UAV is on mission, it is very important to ensure that it detects
obstacles such as mountains, buildings, and other aerial vehicles. No-fly zones
should also be avoided.

Many methods have been used to solve the obstacle avoidance trajectory
optimization problem. Potential functions are used for space vehicles [1], air traffic
management and trajectory planning for UAVs [2], [3]. This method involves
replacing the obstacle avoidance constraints with approach penalties in the
objective function, thus simpler optimization schemes such as pitch reduction can
be used. These schemes offer the operation of problems in a shorter time, some
proving to be safe, but not optimal. Random search methods [4] [5] [6] have been
designed to rapidly find feasible trajectories among obstacles, again neglecting
trajectory optimality. In the problems of UAVs, Voronoi diagrams [7], [8] were
used to find the paths between obstacles, these paths being formed by straight
segments. Other methods use splines [9] and low-dimensional representations [10]
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of nonlinear systems to reduce the solution space before performing nonlinear
optimization.

Reference [11] adopts Mixed-Integer Linear Programming (MILP) for
trajectory planning of UAVs and vehicles with turn and minimum velocity
constraints. Path planning for air vehicles based on MILP optimization was first
presented by Schoewenaars [12], and this method has been studied and extended
by many others. MILP can also be viewed as a reaction in classical control problems
[13]. [14] presents a method for tracking icebergs with multiple UAVs, utilizing a
MILP approach for path planning.

This study focuses on trajectory planning for fixed-wing UAVs, presenting
a simplified model that demonstrates the potential of using MILP for efficient path
optimization. The objective of this paper is to create a fast solver for path planning
using Mixed Integer Linear Programming, that generates a robust trajectory,
considering the obstacles and the acceleration limitation. The complexity of the
problem is given by the solution type, the number of decision variables and the
number of restrictions.

2. Methodology

This section describes the mixed-integer linear programming (MILP)
design methodology and explains the formulation of the core MILP problem used
in this paper. Some of the MILP components described in this chapter are the same
as those used in other previous implementations [12] [13], but others, such as safety
distance, were made by modifying existing techniques, thus being able to improve
solver’s performance.

2.1 General formulation of the MILP problem

MILP standard formulation is :
Minimize the cost function

f(x)=s"x (D
Given the restrictions
AegX = Qeq
Ax € [aiow; Ayp] (2)

x € [xlow;xup]

where A.q, A € R™™ are matrices, s, X, Xjow, Xup, Qiows Qup € R™, Ajow, yp €
R™ are vectors.
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2.1.1 Discretization of time

The initial phase in tackling the mixed-integer linear programming
problem involves time discretization. If #)=0 denotes the starting time, N
represents the total number of steps, and 7; is the time interval between two
consecutive timesteps # and ¢.;, the total time #;, required to solve the MILP
problem is:

trim =to+ b+t + -+ ty =2ot; 3)

In this paper the time is divided equally, i.e. t; = T is constant, therefore
eq. (3) is equivalent to:

trmn=N-T (4)

2.1.2 Initial conditions

The initial conditions will be defined next. Knowing the last information
about the position and velocity, Xgnown aNd Xgnown, the initial conditions can be
predicted by linear interpolation with the timestep 7

[ﬁz] = [(1)] Xknown T [’i] Xknown (5)

2.2 Restrictions
2.2.1 Restrictions on reaching the destination

The way the UAV gets from the start point to the final point can be
expressed through constraints. The conditions for the vehicle to successfully reach
its destination point are:

xe —xp <D(1—f;)
X —xp = —D(1— )
Ye—Yr<D(A—-B)
Ye—yr = —D(1—B) (6)
z—zp < D(1—p;)
zs—zp =2 —D(1 - )
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N
Zﬁi =1
i=1

where (x; y;, z;) i1s the point where the vehicle is at time t, (xr, yr, zr) is the
destination point, f; is a binary variable for each timestep, and D>0 is an arbitrarily
chosen constant, large enough. When S, =1, x; —xr =0, y —yp =0, z; —
zr = 0, therefore the UAV has reached its destination.

2.2.2 Restrictions for avoiding collision with an obstacle
2.2.2.1 Increasing obstacles

Although obstacles that are in the operating area of the UAV are included
in the MILP problem, the trajectory between time steps can cut the corner of an
obstacle. This means that the trajectory between two feasible time steps intersects
the obstacle, and this problem must be considered, so that the trajectory calculated
by the MILP method does not intersect the obstacle.

In general, the real obstacle, to which the safety margins have been added,
should be large enough so that it is not feasible to make a trajectory directly through
the obstacle. This determines the fulfillment of the conditions [15]:

Xmax — Xmin > VmaxT
Ymax — Ymin = VmaxT (7)
Zmax — Zmin > VinaxT

To simplify the problem, it is assumed that all the obstacles are cubes. The
distance from the obstacle limit to the safety margin is denoted by d, and this is the
limit that will be implemented in MILP.

Fig. 1 Obstacle’s safety margin

The distance that the UAV can cover for each time step is described by the
following inequality:
c > VopaxT (8)

where V4, 18 the maximum speed that the UAV can reach, and T is the time step.
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Fig. 1 shows that the distance ¢ can be described as a function of the margin
of safety, d, the dependence described by the relation:
sin (a)
where a is the angle between the obstacle limit and the line described by the
waypoints. In Fig. 1, the angle a is 459 because it ensures the shortest path, so it is
the extreme case for which the safety margin is built.
By substituting equation (9) in the inequality (8), the safety margin should be

greater than:

(10)

VoaxT
d > m;x sin(45°)

For a V4, = 36m/s, and T = 0.15s, the safety margin should be greater

than 1.91m. Therefore, it is chosen:
d=2m

2.2.2.2 Restrictions for avoiding collision with obstacles

The positions of the obstacles will be defined using the upper and lower
limits for each dimension: Xmax, Xmin, Ymax, Ymin, Zmax, Zmin. The constraints for each
time step are:

Xt — Xmax — d= _M(pg
Xmin — d — X = _M(pg
YVt — Ymax — d= _M(pg
Vmin — d Ve 2 —MQDZE
Zt_d_zmaxZ_Mgog (11)
Zmin — d —Zr = _M(pg

In the equations provided earlier, the variable denoted by M serves as a
sufficiently large value that dictates the activation of the binary variable ¢! in cases
where equality fails to hold. This strategic utilization of M, often referred to as the
"big M" technique, holds widespread application across mixed-integer linear
programming problems and is extensively discussed in [16]. By employing this
technique, the system can effectively manage constraints and decision variables,
ensuring robust optimization outcomes. Specifically, if the cumulative sum of
binary variables remains at or below the threshold of 5, it guarantees that the
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designated waypoint (x;, ), z;) remains free from any interference posed by
surrounding obstacles.

2.2.3 Vehicle dynamics restrictions

The dynamics equations for any air vehicle are usually non-linear, so the
dynamics must be approximated as linear or piecewise linear, in order to be
included in the MILP problem. This section describes the system of equations used
to represent the vehicle dynamics, which includes limits on acceleration, velocity,
takeoff/landing speed, takeoff/landing acceleration rate.

The equations of state used in MILP are linearized and discretized versions
of the vehicle model. The general form for a linear time-invariant (LTI) system for
a continuous-time model is:

x = Ax + Bu (12)

For the scenario involving the double integrator [11], the dynamics of the
UAYV may be expressed as follows:

SLI=0 5+ 13

In the three-dimensional scenario, x represents the position vector, defined as
x =[x y z]" in the three-dimensional case, v stands for the velocity vector

given by v=[v, v, v,]", and u comprises commands for acceleration,

denoted as u = [uy u, u,]".

Although the initial approximation might appear rudimentary, the core
characteristic of the double integrator's dynamics, which remains unaffected by
the heading angle, facilitates the computational efficiency of vehicle simulation
within MILP frameworks employing Cartesian coordinates.

Using a zero-order approximation of state changes, one obtains [11]:

- _
— 0 o0
2 100 T 0 opxy |2 -
y 01007 oyl fo — 0,
z 0010 07|z
vl Tlooo o 1 o0 of|w| T, o T_Z[Z:] (19
vy 000 0 1 0]ln 2
vy oo oo o vl [T 0 0
0 T 0
Lo o0 T.
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2.3 Objective function

The objective function of the trajectory planning model aims at minimizing the
UAV’s acceleration. This choice is based on the need to achieve smooth and
efficient trajectories for optimal UAV operation. Trajectories characterized by
abrupt changes in acceleration often lead to inefficiencies, potentially hindering the
vehicle's ability to adhere closely to the desired path. By prioritizing the
minimization of acceleration within the objective function, we aim to ensure that
the resulting trajectories exhibit smoother transitions, enhancing overall
performance and maneuverability. This not only smoothens the trajectory but also
implicitly reduces energy consumption by avoiding unnecessary accelerative
forces. Therefore, the objective function is:

N
fo = Z(ax,n +ay, + az,n) (15)
n=1

3. Numerical simulations

This section presents the optimal trajectory calculated using Mixed Integer
Linear Programming method when there are restrictions on the dynamics of the
UAV and on the environment. Simulation results for trajectory planning with
obstacle avoidance will be presented and discussed.

In this paper, the MILP problem will be solved with the MATLAB function
intlinprog.m, a mixed-integer linear problem solver.

The initial position is given by the coordinates (0,0,5), the final position is
(200,150,20), and the optimization is made by minimizing the acceleration. The

coordinates of the obstacles are presented in Table 1.

Table 1
Obstacles’ coordinates for the three scenarios
Obstacle (Xmin, Ymin, Zmin) (Xmax, Ymax, Zmax)

1 (100, 80, -10) (135,140,20)
2 (70, 20, -10) (90,50,10)
3 (150, 80, -10) (170,120,35)

Table 2 highlights three distinct cases for which the numerical simulations
were made, where Vyo, Vyo, and V2o are the initial velocities on the three axes. The
three scenarios reveal the impact of the initial velocity on the trajectory of the UAV.
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Table 2
Simulation parameters for the three scenarios

Scenario | Vyo[m/s] | Vyo [m/s] Vo te[s] Ax max Ay, max Az, max
[m/s] [m/s?] [m/s?] [m/s?]

17 2 2 20 2 2 2

6 15 2 20 2 2 2

6 2 14 20 2 2 2

In the first case, Fig. 2 shows that the trajectory was generated by going
around the obstacles, through the right side. This is due to the force generated by
the X component of the initial velocity. Additionally, it is noteworthy that the
trajectory is smooth and does not show sudden changes in the heading angle.
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Fig. 3 Velocity of the UAV for the first
scenario

Fig. 4 Acceleration of the UAV for the first
scenario

Fig. 5 illustrates the trajectory of the UAV for the second case. It is visible
that the path is different from the one in the first case, the trajectory being slightly
oriented to the left. Furthermore, as anticipated in Section 2, some waypoints of the
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trajectory were generated very close to an obstacle, this posed no issue due to the
precautionary measure of enlarging the obstacles with a safety margin.
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Fig. 5 Trajectory generated for the second scenario
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scenario second scenario

The results for the third scenario are presented in Figure 8-10. As can be
seen, the trajectory has a larger amplitude in the yOz plane compared to the other
cases. This is due to the high initial velocity, V-9. The speed is unnecessarily high,
as illustrated in Fig. 10, prompting the UAV to initiate the trajectory with a
significant deceleration along the Z component.
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Fig. 8 Trajectory generated for the third scenario
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Fig. 9 Velocity of the UAV for the third Fig. 10 Acceleration of the UAV for the third
scenario scenario

4. Conclusions

This paper presents a trajectory planning methodology employing mixed
integer linear programming in a dynamic three-dimensional setting, accounting for
obstacles. It undertakes simulation across three distinct scenarios, each
characterized by the consistent presence of three obstacles of varying sizes.
Notably, these scenarios maintain identical starting and ending points, with the
primary variation lying in the velocity of the UAV. To address potential collision
risks arising from closely spaced waypoint generation, the sizes of obstacles are
intentionally augmented.

The mathematical formulation was established as a linear problem,
featuring a minimizable cost function and a set of constraints. The cost function,
represented by UAV acceleration, aimed for minimization, while the constraints
encompassed two categories: inequality restrictions to ensure obstacle avoidance
during UAV navigation from start to end points, and equality restrictions pertaining
to vehicle dynamics.

The MILP-based trajectory planner effectively met the specified
requirements, generating collision-free trajectories across all scenarios from start to
end points. Moreover, analysis of acceleration graphs indicated that acceleration
remained within predefined limits. Therefore, it can be concluded that the Mixed-
Integer Linear Programming method offers high efficiency in trajectory planning
amidst obstacle-laden environments.

These simulations serve as an initial step, demonstrating the feasibility of
implementing the MILP-based trajectory planning on a real UAV in a real-world
environment. However, for future work, the complexity of the model must be
increased by taking into account detailed UAV parameters to ensure more accurate
and practical applications.
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