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NEW CRITERIA FOR H-MATRICES AND SPECTRAL
DISTRIBUTION

Guichun Han', Xueshuai Yuan?, Huishuang Gao?

In this paper, based on the numerical relationship between row and
column sums, an equivalent representation for double a-matrices is given
by partition of the row and column index sets. As its application, we ob-
tain a subclass of H-matrices and the corresponding (Cassini-type) spectral
distribution theorem. And then, we provide a numerical example to illus-
trates the effectiveness of the new results. Finally, two extended criteria for
H-matrices are given.
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1. Introductions

In the literature on iterative methods of solving linear systems, (non-
singular) H-matrices are widely used because they display many applications
when discretizing certain nonlinear parabolic equations in solving the linear
complementary problem. However, it is rather difficult in practice to determine
whether a matrix is an H-matrix or not.

The eigenvalue localization problem is very closely related to H-matrix
theory. It’s well known that the Gersgorin theorem for eigenvalue inclusion
domain is equivalent to the theorem of non-singularity of strictly diagonally
dominant matrices. Strictly doubly diagonally dominant matrices are gener-
alizations of strictly diagonally dominant matrices. The Brauer theorem on
strictly doubly diagonally dominant matrices, which gives rise to the Cassini
ovals, resembles the Gersgorin theorem on strictly diagonally dominant matri-
ces. Both the Gersgorin discs and the Cassini ovals are classical but effective
tools for locating the eigenvalues (spectrum) of a square matrix. Similarly, the

1 School of Mathematics, Inner Mongolia University for the Nationalities, Tongliao
City, Inner Mongolia Autonomous Region, 028000 China, e-mail: hanguicun@163.com;
3809733790qq . com

2 School of Mathematics, Inner Mongolia University for the Nationalities, Tongliao City,
Inner Mongolia Autonomous Region, 028000 China, e-mail: yxs918@163.com

3 School of Mathematics, Inner Mongolia University for the Nationalities, Tongliao City,
Inner Mongolia Autonomous Region, 028000 China, e-mail: gaohuishuang@163.com

119



120 Guichun Han, Xueshuai Yuan, Huishuang Gao

statements about non-singularity of some subclasses of H-matrices produce
new theorems for eigenvalue inclusion domain. In this paper, we propose a
subclass of H-matrices and the corresponding (Cassini-type) spectral distribu-
tion theorem.

Throughout the paper, we denote C"*" the set of all n x n complex
matrices. Let N = {1,2, . ,n} and M = {(i,j) £ g, ) € N}. Meanwhile,
for A = [a;;] € C™*", for the sake of simplicity, we denote

ri = ri(A) = Z |agl; ¢ = ¢i(A) = Z |ajil, (i, 5 € N). (1)
J# J#

According to [1] and [2], suppose A = [a;;] € C"*", satisfies | a;; |[> 7
(¢ € N), then A is called a strictly (row) diagonally dominant matrix and
denoted by A € D. According to [3], suppose A = [a;;] € C™", satisfies
| asag; |> rir; ((i,5) € M), then A is said to be a strictly doubly (row)
diagonally dominant matrix and denoted by A € D. If there exists a positive
diagonal matrix X = diag (xy, 2, ..., z,) such that AX is a strictly diagonally
dominant matrix, then A is called a generalized strictly diagonally dominant

matrix and denoted by A € D*.

Next, the comparison matrix of A, which is denoted by pu(A) = [my;], is
defined by

_ | lagli =g
g = { —lai;l, i # j.
If A = p(A), and the eigenvalues of A have positive real parts, we call A
a (nonsingular) M-matrix. We say that A is an H-matrix if p(A) is an M-
matrix. In other terms, an H-matrix can be described as matrix with A € D*
(See [4] and [5]). Thus, all diagonal entries of A are non-zero. So, we always
need the assumption that a;; # 0 for all i € N.

2. Review of known results

For a matrix A = [a;;] € C"*", the set of all eigenvalues is called spectrum
of the matrix A and denoted by o(A). We denote

Ii(A)={z€C:]z—ay|<r,ieN};

[i(A) = {2 € C:| z — ay |< min{r;, ¢;},i € N};
%:{i:ri>ci,i€3\f}, L:{i:ri<ci,i63\f},

fU(A) = {Z S C 2‘ Z—Qy; | (Cj—Tj)+ | Z—0jj | (T’i—Ci> < CjT’i—CiT’j,i c j{,] S L},

fK”(A) = {Z eC I’ Z — Qi H 2 — Qjj K il (Z,]) € M},
fJNCzlj(A) ={ze€C:|z—ayllz—aj |[<arr;j+ (1 —a)ce, (i,7) € M};
and
K2(A) = {2 € C1f 2 —au || 2 — ajy |< ()" (cic)' ™", (i ) € M},
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The following classical result in matrix theory is well known.

Theorem 2.1. Let A = [a;;] € CY", n > 2, and A € D; then it is an
H-matrix.

The alternative formulation of the above result is as follows (see [6]):

Theorem 2.2. (The Gersgorin Theorem) For A = [a;;] € C*™*", n > 2, and if
A is an eigenvalue of A; then there is a positive integer k£ € N, such that

| A = apx |[< 7,y (2)

or, equivalently, A € I'y(A).
For each A € 0(A), 0(A) CI'(A) = |J I:(A4).
iEN

The following well-known result was found by Ostrowski and rediscovered
by Brauer (see [7]).

Theorem 2.3. (The Brauer Theorem) Let A = [a;;] € C™", n > 2, and
A € D; then it is an H-matrix.

Obviously, the Brauer Theorem can be reformulated in the following
equivalent way (see [8]).

Theorem 2.4. (The Cassini Ovals Theorem) For A = [a;;] € C™", n > 2,
and if \ is an eigenvalue of A; then there is a pair of positive integers (i, 7) € M,
such that

|)\—a,-,-||)\—ajj |<’f’ﬂ”j, (3)
or, equivalently, A € K;;(A).
For each A € 0(A), 0(A) CK(A) = U Ki;(A).

(4,7)EM

Concerning nonsingularity of matrices, there are two well known results
that combine the information about a matrix and its transpose, where A7 is
the transpose of A (see [9] and [10]).

Theorem 2.5. Let A = [a;;] € C™™, n > 2, be such that
| aiajs |> (riry)*(cic;)' =, (3, 7) € M) (4)

holding for some « € [0, 1]; then it is a nonsingular matrix, moreover it is an
H-matrix.

Theorem 2.6. Let A = [a;;] € C™™, n > 2, be such that
’ QiG55 ‘> ar;r; + (1 — Oé)CiCj, ((Z,j) € M) (5)

holding for some « € [0, 1]; then it is a nonsingular matrix, moreover it is an
H-matrix.
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The matrices that fulfill the condition (4) are known as (strictly) double
ag-matrices, while (strictly) double a;-matrices are the matrices that fulfill the
condition (5). The two classes of matrices are two subclasses of H-matrices
which generalize the Brauer Theorem property. As before, the corresponding
theorems in the field of eigenvalue localization are as follows.

Theorem 2.7. ([9]) For A = [a;;] € C™", n > 2, and if A is an eigenvalue of
A; then for each a € [0, 1] there is a pair of positive integers (i,7) € M, such
that

| A —ai [| A —aj; |< (riry)* (cicy)' 0, (6)

or, equivalently, \ € JNCzZJ(A)

For each A € 0(A), 0(A) C Ky (A) = U IGi(A).

0<a<l (ij)eM

By the generalized arithmetic-geometric mean inequality (see [11]) which

is as follows:
at + (1 —a)o > %', (7)

where 0,7 > 0, o € [0, 1], with equality holding for 7 = ¢ or a = 0, else or
a = 1, we easily get the following theorem.

Theorem 2.8. For A = [a;;] € C™", n > 2, and if A is an eigenvalue of A4;
then for each o € [0, 1] there is a pair of positive integers (i, j) € M, such that

| A = aii || A = ajj [< argy + (1 = a)ce, (8)

or, equivalently, \ € JNQJ (A).
For cach A € 0(A), o(4) C Ky (A) = U KL(A).

0<a<l (i,j)eM

Recently, in [12], L. Cvetkovié, etc gave the following eigenvalue inclusion
region by the necessary and sufficient condition of a;-matrices (see [13]).

Theorem 2.9. ([12]) Let A = [a;;] € C™™, n > 2; then
o(4) € A(A) =T(A)JT(4), (9)

where T(A) = J Ty(A) and T(A) = |J Ty(4) .

ieN i€H jeb
Example 3.9 of [10] shows that Ky (A) C A (A).

Remark 2.1. Obviously, for Theorems 2.7 and 2.8, there exists a problem:
the methods for the field of eigenvalue localization need to take an arbitrary
parameter « € [0, 1] into account, and it seems hard and complicated to decide
the optimum value of a.. In this work, to overcome this drawback, we propose
a new improved version, which is always convergent for a double a;-matrix.
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3. Criterion for identifying H-matrices and spectral distribution

Remark 3.1. We begin this section by making a remark that for a double
ap-matrix, if & = 0, then AT € D; and if a = 1, then A € D. Consequently,
in either case, A is an H-matrix (see [14]). So, we consider the case o € (0, 1)
only when we discuss double aj-matrices in the following discussion.

Throughout the next paper, we will use the following notations.

Ml = {(Z,]) e M: Ty <‘ QiiQjj ‘< Cl'Cj};

{

My = {(i,5) € M : ciej <| agay; |< rirj};
M;s = {(
My = {(
Ms = {(

i,
i,J) € M| azaj; |> cicj > vy}
5 J
J

L,

{

= { i, ) eM I| QiiQyjj ‘> iy = CiCj};

) eM Z’ Qi Qjj ‘2 rir; > CiCj};

Mo = {(4,5) € M :| anaj; |< cicy, | ayaj; |[< s}
Obviously, M= Ml U Mg U Mg UM4 UM5 U Mo.

We also state and prove some lemmas before we present our main results
of this section.

Lemma 3.1. Consider the function f(t) = at + b(1 — t), for any ¢ € (0, 1).
Then
(1) if a > b > 0, we get that f(¢) is a monotonically increasing function;
(2) if b > a > 0, we get that f(t) is a monotonically decreasing function.

Proof. Since f'(t) = a — b, this conclusion is obvious. O

Lemma 3.2. For any € > 0 (¢ = o(x),z — 0), we define
E={zeC:z—allz-b|<c+e} (10)
and
F={z€C:z—-allz-b|<}. (11)
Then € = F.

Proof. “F C &7 is obvious. We need only to check “F D €”. Suppose
ze& z¢Fthen|z—allz—0b|>c Choose gy =3(| z—all z—b]| —c);
then | z—a || z—b |= c+2¢¢ > c+¢p, however, z € €, a contradiction. Hence,
z € J. Therefore we have € = J. O

Now, we will give an equivalent representation for double a;-matrices.

Theorem 3.1. Let A = [a;;] € C™™, n > 2, My = (); then A is a double
ar-matrix if and only if the following condition holds

| Qg5 | —TsTt + | Q43 Qj 5 ‘ —CiCj

> 1, ((s,t) € My, (i, ) € My). (12)

CgCt — T'gTt rir; — GiCj
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Proof. First, let us assume that A is a double a;-matrix; then My = 0.
Therefore, for any (s,t) € My, there exists some a € (0,1), such that

| assay |> arsry + (1 — a)csey = csep — acsep — rsry),

. CsCt— | QssQit .
ie., a> #, that is

CsCt — T'sTt
l— o< | assa | mauy
CsCt — T'sTt
Similarly, for any (i, j) € M,, we obtain that
| aiaj; |> ariry + (1 — a)cicj = cicj + arir; — cicj),

Qi Q55 | —CiCj . . . . .
ie., a< %, which combined with (13), implies

rirj — C,L'Cj

| A g5t | —TsT + | Q35 | —CiCy

> 1, ((s,t) € My, (i,7) € Ma).

CsCt — T'gTt rir; — GiCy

Conversely, assume the condition (12) holds. For any (s,t) € My, it
| Qg5 | —TsTt

directly implies 0 < < 1, that is
CsCt — T'sT¢
O < 1 - | Qg | —TsTt < 1
CsCt — T'sT¢ '
Similarly, for any (i, 7) € My, we obtain
0 < Lt =ae

Tﬂ’j — CiCj

The strict inequality of (12) ensures that there exists a parameter «, for
any (s,t) € My, (i,5) € M, such that

Cser | assan | _ ) assau | —rore | 4wy | —ciy

0< 1

CsCt — TsTt CsCt — TsTt TiTj — CiCj

<1. (14)

Ci— ‘ AgsQyt ‘

Starting from the inequality G < « of (14), for any (s,t) €

CsCp — T'gT
My, we get
| assay |> argry + (1 — a)ege.

| aiajj | —cicy

In the same way, from the inequality o < of (14), for any

TiTj — CiCj
(i,7) € Mo, we get
’ Qi Qg |> ar;r; + (1 — (X)CiCj.
Moreover, for any (I,m) € Ms|JM4UMs, and any o € (0,1), it is
obvious to see that

| aumm |> arirp + (1 — a)ey,.
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Recalling that My = 0, for any (7,7) € My UM UMs UMy UM5 =M
there exists a parameter «, such that

| QiG55 |> ar;T; + (]_ — Oé)CZ‘Cj.

Since a € (0, 1), this concludes the proof. O
As its application, a new practical criterion for H-matrices is obtained.

Theorem 3.2. Let A = [a;;] € C™", n > 2, My = 0, which for any (s,t) €
My, (i,7) € My satisfies

| agsay | —7sre N | agaj; | —cic;

> 1. (15)

CsCt — TsTt TiTj — CiCj
Then A is an H-matrix.
Proof. By Theorem 3.1, it is clear that A is a double a;-matrix, and
further using Theorem 2.6, we conclude that A is an H-matrix. U

Having the result of Theorem 3.2, we are ready to give the corresponding
(Cassini-type) spectral distribution.

Theorem 3.3. For A = [a;;] € C™™, n > 2, if A is a double ay-matrix; then

a(A) C G(A) = U s« U si |, (16)

(S,t)GMl UMg (’L',]')EMQ UM4UM5

where

Gt =12€C:lz—as || z—ay |< | min | axnan | —cci rer+
(kDEM:  TET] — CrCy

(i, 2=t )y 26, e,

kDEM2  TET] — CiCy

and

91] = S (C :l 2 — Qg H z — a]J ’g max Cqu— | appaqq | /r'l.fr'j_i_
(P@)EM1  CpCq — Tply

( min ’ @ppaq | _Tprq) CiCj}, ((Z,]) € MQUM4UM5)

(p,q)EM1 CpCq — TpTy

Proof. First, let us assume that A is a double a;-matrix; then My = 0.
From the proof of Theorem 3.1, for any parameter o with

CsCt— | AssQyt o QssQtt | —TsTg Qi Qg5 | —CiCj
oot | _,_ Lasan | =rre _ | aia, |

CsCy — Tl CsCp — Tl TiTj — CiCj

0< < 1,

CsCi— | Qssyt | . | aiiaj; | —cic;

) C (0,1),

ie., for any « € [ = ( max ,
(s, )EM1  CgCp — TsTy (,5)EM2 1475 — CiCj

we obtain

| Qi; Q55 |> ar;r; + (]. — OZ)C,‘CJ‘, ((Z,j) < Ml UMQ UMg UM4 UM5 = M)
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By Theorem 2.8, for any eigenvalue A of A, there is a pair of positive
integers (7, 7) € M, such that
| A —ai || A —aj; < arrj+ (1 — a)cie, (o € I).

We consider the following five cases.
Case 1. If (s,t) € My, then cs¢; > rgry > 0. So, the function f(t) =
rsrit + cs¢ (1 — t) is monotonically decreasing by Lemma 3.1. Thus, let &1 =

———— >0, where € > 0 (¢ = o(z),z — 0); we get
CsCt — TsTt

| A\ — s || A\ — g |< ( | Arra | —Cr(y 51) TST‘H—
€M2 LT — CrCy

1_ \ Array | —CrCy >
— € CsCt

kl EMz LT — CrCy

| apray | —cre
= —E1 | Tyt
(k,l TETL — CxCy

TETI— | AkkQyp
1— 1 — max | | + 1| cscy
(k,h)eMs  TET — CrCy

| Qi | —Crey

(k,DEM:  TET] — CpCy

- TsTe+
(kl €M2 TET — CLC
TET1— | Agray |

CsCy + £,

EMz TET] — CrCy

ie.,
. | Ak Q] \ —CrCy
ANeERzeCiz—agl|| z—an |< min rerit
(k,l)eMa  TET] — CrCy
TET1— | Ak A |
max CsCt + € ¢

Now, by applying Lemma 3.2, we obtain that A € Gy, (s,t) € M;.
Case 2. If (i,7) € My, then r;r; > ¢;c; > 0. So, the function f(t) =
rirjt + ¢;c;(1 — t) is monotonically increasing by Lemma 3.1. Thus, let e5 =

———— >0, where £ > 0 (¢ = o(z),z — 0); we get
Ty — CiCj

CpCq—

A= ai || A—ay < (max Lot o)
(p q EMI Cpcq - rprq

CpCa— | pplyq |
max 2 pplqq +€2) cic;
p QOEM1  CpCq — TpTg

CpC AppQ
(max P9 ’PPQQ‘+€)TiTj+
()M CpCq — TpTyg
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_ AppCag | —TT
1—(1— min [ @ppaq | pq)—@]cicj

P.)EM1  CpCq — TpTq

CpCq— | AppQ
— ( max P—q ‘ PP~—"q99 |) rirj+
(P.@)EM1  CpCq — TpTy

. lagpag | —rpr
( min P14 P q> cic; + €,
(P)EM1  CpCq — TpTy

ie.,

ANezeC:lz—ay || z—ay |< max o | Gpplag | i+
(P.@)EM1  CpCq — TpTy

. lagpag | —rpr
( min Pr4q P q) cicj—i—a}.
(p,q) EM1 CpCq — TpTyq

Lemma 3.2 obviously implies that A € G;;, (4,7) € Ma.

Case 3. If (s,t) € Mz, similarly to the proof of Case 1, we can show
A€ Gy, (s,t) € Ms.

Case 4. 1f (i,j) € My, similarly to the proof of Case 2, we get A € G;;,
(4,5) € My.

Case 5. If (i, j) € M5, then rir; = cic; <| ajaj; |; thus it is obvious that

| Qa4 |> Qarir; + (]_ — O./)CZ‘C]‘, (O& c ])

CpCo— | appa
Especially, let « = max —*4 | 4 laq |; then by Theorem 2.8, we get
(P.9)EM1  CpCq — TpTy

| \— a; H \— ai; |< ( max CpCq— | AppQaq |) Tﬂ"j‘f‘
P.9)EM1  CpCq — TpTy

. [N —Tr,T
min pp-"qq ’ p Q) Cicj .
(p,q)EM1 CpCq — TpTyq

Therefore, A € G;;, (4,7) € Ms.
Note that A is a double aj-matrix, and that M = My [ My [ Mz | My [ M,

from which we conclude

A€ G(A) = U s« U Sij

(s,t)eM1 UMs (2,5)€M2 UMa M5

The proof is completed. 0
Finally, we provide a numerical example which illustrates the effective-
ness and advantage of the new criteria.
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Example 3.1. Let

3.3 05 1.5
A= 2 25 1
1.6 1 251

Then we have

| a1 ‘: 33,| 929 ’: 25,‘ ass |: 25,
T = 2,7"2 = 3,7‘3 = 26,
C1 = 367 Co = ]_5, C3 = 2.5.

But, we notice | ass |= 2.5 = ¢3 < r3 = 2.6. The condition satisfies
neither Theorem 1 in [15] nor Theorem 4 or 5 in [12], so we obtain that A is
not an aj-matrix or an as-matrix (see [13]). Hence, we can’t get that A is an
H-matrix.

According to the notations of this paper, we have

M= {(1,3)}, M = {(2,3)}, Ma = {(1,2)}, Mz = M5 = Mo = 0.
By calculation, we obtain

| a11a33 | —nrrs i | (220433 | —C2C3
C1C3 — 1173 273 — C2C3

~ 0.8026 4+ 0.6173 = 1.4199 > 1.

Therefore, A satisfies the condition of Theorem 3.2; then A is an H-
matrix.

Calculated by MATLAB 7.0, eigenvalues of the matrix A are A\, =
4.6226 + 0.30131, Ao = 1.7627 + 0.0452i and A3 = —0.5852 + 2.2438i.

The eigenvalue inclusion regions of Theorem 2.9 in yellow and Theorem
3.3 in blue are given, respectively, by Figs.3.1 and 3.2. By comparing of the
regions in Fig.3.3, it is easy to see that the region of Theorem 3.3 is smaller
than that of Theorem 2.9.

Fig.3.1 Fig.3.2
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Fig.3.3

4. Criterion for identifying H-matrices via irreducibility

In this section, we will extend the previous result by letting all the con-
sidered inequalities not to be strict and My # 0. Now, we will use the following
notations: W(A) denotes the set of simple circuits in the directed graph of the
matrix A, and if v = 4109 ... 0gik11, tke1 = 71 1S a simple circuit of length £,
then the support of v, i.e., the set {il,iQ, e ,ik} is denoted by 7. We will
deal with irreducible matrices (see [4]). Within this class we will prove a new
criterion for a matrix to be an H-matrix, which based on the following fact.

Theorem 4.1. ([16]) Let A = [a;;] € C™™,n > 2, be irreducible. Suppose
| aiiag; [= (rir;)*(cic) ™, (i, ) € M)

holds for some « € [0, 1], with strict inequality for at least one circuit 9 € W(A)
and g, jo € 7, such that

’ Qigio Ajogo ’> (Tiorjo)a(ciocJ'o)lia;
then A is an H-matrix.

Theorem 4.2. Let A = [a;;] € C™",n > 2, be irreducible. For any (p,q) €
My # 0, there is | appaqq |= 17 = ¢p¢q, and for any (s,t) € My, (i,7) € M,
it satisfies

| Qg5 | —TsTt + | Q43 Qj 5 | —CiCj

> 1. (17)

CsCt — T'sTt 7Ty — CiC;
If there exists at least one circuit vy € W(A) and 7o, jo € 7, such that

| assay | —7ory N | @igio @jojo | —CinCio

CsCy — T'gTyg TioTjo — CinCig

> 1; (18)

then A is an H-matrix.

Proof. Similarly to the proof of Theorem 3.1, the inequality (17) implies
that

| assay |= argry + (1 — a)ese, > (rory)*(csc) ™2, ((s,t) € Ml);

’ Qi Qg |> ar;ry + (1 - Oé)CiCj > (T’Z‘T’j>a(CiCj>1_a, ((Z,]) c Mg)
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Moreover, for any (I,m) € Mz{JM4JM;s, and any o € (0,1), it is

obvious that
| aymm |> argrm + (1 — @)ciem > (rrm)*(cem )™

On the other hand, for any (p,q) € Mo # 0, there is | appaqq |= 177 =

CpCyq, 1.€.,
| Gpptiq |= aryry + (1 = a)epcy = (rprg)*(cpeq) ™ (04 < (0, 1))

In a word, for any (i,7) € My Mo Mz My UMs UMy = M, there

exists some a € (0,1), such that
| asiagy |= (rirg)*(cic;)' =

By the inequality (18), we know that there exists at least one circuit

v € V(A) and ig, jo € 7y, such that
| Wigio Ajojo ’> (Tiorjo)a(ciOCJb)

Since A is irreducible, by Theorem 4.1, A is an H-matrix. O

11—«

5. Criterion for identifying H-matrices via nonzero elements
chain

In this section, we will prove a new criterion for a matrix to be an H-
matrix, which based on the following fact: a double as-matrix will remain to
be an H-matrix if we change the irreducibility with the existence of nonzero
elements chain (see [17]), more precisely with the following condition.

Theorem 5.1. ([18]) Let A = [a;;] € C™™, n > 2, and let
| aiiagg [ (rir)*(cicy)' =", (i) € M)
holds for some « € (0,1). For every (i,7) € M with | aza;; |[= (rirj)*(cicj)' ™2,
if there exists a nonzero elements chain a;y;,, @4, - - - , @i, j,, such that i =7 or
ip = j, and jy € J(A), where
J(4) = {i € N asay [> (i) (eie;)' = 0, ) € M £ 0
then A is an H-matrix.

Theorem 5.2. Let A = [a;;] € C"*",n > 2, for any (s,t) € My, (i,7) € My,

such that
’ Qg5 ’ —TsTt + | Q43 Q 5 | —CiCj

> 1.

CsCt — T'gTt rir; — GGy
For any (p,q) € My # 0, there is | appaqq |= 7pry = cpcq, and if there exists a
nonzero elements chain ap,p,, Gpipss - - - 5 Ap,q0, Such that po = p or py = ¢, and

qo € G(A), where
G(4) = {i e N (i,5) € M [ s M Vs | 20

then A is an H-matrix.
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Proof. Similarly to the proof of Theorem 4.2, we can obtain that for
any (7,7) € My JMs M3 |J My JMs, there exists some a € (0,1), such that
| azag; |= arry + (1 — a)eie; > (rirg)*(ese) ™.

By the assumption, for any (p,q) € My # 0, there is | appaqq |= g =
CpCyq, 1.€.,

| pptyq |= arpry + (1 — @)y, = (Tprq)a(cpcq)l_a’ (O‘ € (0, 1))

and there exists a nonzero elements chain app,, ap ps - - - 5 Gp,q0, SUch that py =
por py=gq, and gy € J(A), where

T(4) = {i € Nif asa; > (riry)*(cie) =", (5,7) € M} 0.
On the base of Theorem 5.1, A is an H-matrix. O

6. Conclusions

An equivalent representation for double aj-matrices is given based on
the numerical relationship between row and column sums. As its application,
a subclass of H-matrices and the corresponding (Cassini-type) spectral distri-
bution theorem are obtained. In the end, the new criterion for H-matrices is
extended via irreducibility and nonzero elements chain.
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