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NEW CRITERIA FOR H-MATRICES AND SPECTRAL
DISTRIBUTION

Guichun Han1, Xueshuai Yuan2, Huishuang Gao3

In this paper, based on the numerical relationship between row and
column sums, an equivalent representation for double α1-matrices is given
by partition of the row and column index sets. As its application, we ob-
tain a subclass of H-matrices and the corresponding (Cassini-type) spectral
distribution theorem. And then, we provide a numerical example to illus-
trates the effectiveness of the new results. Finally, two extended criteria for
H-matrices are given.
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1. Introductions

In the literature on iterative methods of solving linear systems, (non-
singular) H-matrices are widely used because they display many applications
when discretizing certain nonlinear parabolic equations in solving the linear
complementary problem. However, it is rather difficult in practice to determine
whether a matrix is an H-matrix or not.

The eigenvalue localization problem is very closely related to H-matrix
theory. It’s well known that the Geršgorin theorem for eigenvalue inclusion
domain is equivalent to the theorem of non-singularity of strictly diagonally
dominant matrices. Strictly doubly diagonally dominant matrices are gener-
alizations of strictly diagonally dominant matrices. The Brauer theorem on
strictly doubly diagonally dominant matrices, which gives rise to the Cassini
ovals, resembles the Geršgorin theorem on strictly diagonally dominant matri-
ces. Both the Geršgorin discs and the Cassini ovals are classical but effective
tools for locating the eigenvalues (spectrum) of a square matrix. Similarly, the
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statements about non-singularity of some subclasses of H-matrices produce
new theorems for eigenvalue inclusion domain. In this paper, we propose a
subclass of H-matrices and the corresponding (Cassini-type) spectral distribu-
tion theorem.

Throughout the paper, we denote Cn×n the set of all n× n complex
matrices. Let N =

{
1, 2, . . . , n

}
and M =

{
(i, j) : i ̸= j; i, j ∈ N

}
. Meanwhile,

for A = [aij] ∈ Cn×n, for the sake of simplicity, we denote

ri , ri(A) =
n∑

j ̸=i

|aij|; ci , ci(A) =
n∑

j ̸=i

|aji|, (i, j ∈ N). (1)

According to [1] and [2], suppose A = [aij] ∈ Cn×n, satisfies | aii |> ri
(i ∈ N), then A is called a strictly (row) diagonally dominant matrix and
denoted by A ∈ D. According to [3], suppose A = [aij] ∈ Cn×n, satisfies
| aiiajj |> rirj

(
(i, j) ∈ M

)
, then A is said to be a strictly doubly (row)

diagonally dominant matrix and denoted by A ∈ D̃. If there exists a positive
diagonal matrix X = diag (x1, x2, . . . , xn) such that AX is a strictly diagonally
dominant matrix, then A is called a generalized strictly diagonally dominant
matrix and denoted by A ∈ D∗.

Next, the comparison matrix of A, which is denoted by µ(A) = [mij], is
defined by

mij =

{
|aij|, i = j;
−|aij|, i ̸= j.

If A = µ(A), and the eigenvalues of A have positive real parts, we call A
a (nonsingular) M -matrix. We say that A is an H-matrix if µ(A) is an M -
matrix. In other terms, an H-matrix can be described as matrix with A ∈ D∗

(See [4] and [5]). Thus, all diagonal entries of A are non-zero. So, we always
need the assumption that aii ̸= 0 for all i ∈ N.

2. Review of known results

For a matrix A = [aij] ∈ Cn×n, the set of all eigenvalues is called spectrum
of the matrix A and denoted by σ(A). We denote

Γi(A) =
{
z ∈ C :| z − aii |6 ri, i ∈ N

}
;

Γi(A) =
{
z ∈ C :| z − aii |6 min{ri, ci}, i ∈ N

}
;

H =
{
i : ri > ci, i ∈ N

}
, L =

{
i : ri < ci, i ∈ N

}
,

Γ̃ij(A) =
{
z ∈ C :| z−aii | (cj−rj)+ | z−ajj | (ri−ci) 6 cjri−cirj, i ∈ H, j ∈ L

}
;

Kij(A) =
{
z ∈ C :| z − aii || z − ajj |6 rirj, (i, j) ∈ M

}
;

K̃1
ij(A) =

{
z ∈ C :| z − aii || z − ajj |6 αrirj + (1− α)cicj, (i, j) ∈ M

}
;

and

K̃2
ij(A) =

{
z ∈ C :| z − aii || z − ajj |6 (rirj)

α(cicj)
1−α, (i, j) ∈ M

}
.
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The following classical result in matrix theory is well known.

Theorem 2.1. Let A = [aij] ∈ Cn×n, n > 2, and A ∈ D; then it is an
H-matrix.

The alternative formulation of the above result is as follows (see [6]):

Theorem 2.2. (The Geršgorin Theorem) For A = [aij] ∈ Cn×n, n > 2, and if
λ is an eigenvalue of A; then there is a positive integer k ∈ N, such that

| λ− akk |6 rk, (2)

or, equivalently, λ ∈ Γk(A).
For each λ ∈ σ(A), σ(A) ⊆ Γ(A) =

∪
i∈N

Γi(A).

The following well-known result was found by Ostrowski and rediscovered
by Brauer (see [7]).

Theorem 2.3. (The Brauer Theorem) Let A = [aij] ∈ Cn×n, n > 2, and

A ∈ D̃; then it is an H-matrix.

Obviously, the Brauer Theorem can be reformulated in the following
equivalent way (see [8]).

Theorem 2.4. (The Cassini Ovals Theorem) For A = [aij] ∈ Cn×n, n > 2,
and if λ is an eigenvalue of A; then there is a pair of positive integers (i, j) ∈ M,
such that

| λ− aii || λ− ajj |6 rirj, (3)

or, equivalently, λ ∈ Kij(A).
For each λ ∈ σ(A), σ(A) ⊆ K(A) =

∪
(i,j)∈M

Kij(A).

Concerning nonsingularity of matrices, there are two well known results
that combine the information about a matrix and its transpose, where AT is
the transpose of A (see [9] and [10]).

Theorem 2.5. Let A = [aij] ∈ Cn×n, n > 2, be such that

| aiiajj |> (rirj)
α(cicj)

1−α,
(
(i, j) ∈ M

)
(4)

holding for some α ∈ [0, 1]; then it is a nonsingular matrix, moreover it is an
H-matrix.

Theorem 2.6. Let A = [aij] ∈ Cn×n, n > 2, be such that

| aiiajj |> αrirj + (1− α)cicj,
(
(i, j) ∈ M

)
(5)

holding for some α ∈ [0, 1]; then it is a nonsingular matrix, moreover it is an
H-matrix.
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The matrices that fulfill the condition (4) are known as (strictly) double
α2-matrices, while (strictly) double α1-matrices are the matrices that fulfill the
condition (5). The two classes of matrices are two subclasses of H-matrices
which generalize the Brauer Theorem property. As before, the corresponding
theorems in the field of eigenvalue localization are as follows.

Theorem 2.7. ([9]) For A = [aij] ∈ Cn×n, n > 2, and if λ is an eigenvalue of
A; then for each α ∈ [0, 1] there is a pair of positive integers (i, j) ∈ M, such
that

| λ− aii || λ− ajj |6 (rirj)
α(cicj)

1−α, (6)

or, equivalently, λ ∈ K̃2
ij(A).

For each λ ∈ σ(A), σ(A) ⊆ K2(A) =
∩

06α61

∪
(i,j)∈M

K̃2
ij(A).

By the generalized arithmetic-geometric mean inequality (see [11]) which
is as follows:

ατ + (1− α)σ > τασ1−α, (7)

where σ, τ > 0, α ∈ [0, 1], with equality holding for τ = σ or α = 0, else or
α = 1, we easily get the following theorem.

Theorem 2.8. For A = [aij] ∈ Cn×n, n > 2, and if λ is an eigenvalue of A;
then for each α ∈ [0, 1] there is a pair of positive integers (i, j) ∈ M, such that

| λ− aii || λ− ajj |6 αrirj + (1− α)cicj, (8)

or, equivalently, λ ∈ K̃1
ij(A).

For each λ ∈ σ(A), σ(A) ⊆ K1(A) =
∩

06α61

∪
(i,j)∈M

K̃1
ij(A).

Recently, in [12], L. Cvetković, etc gave the following eigenvalue inclusion
region by the necessary and sufficient condition of α1-matrices (see [13]).

Theorem 2.9. ([12]) Let A = [aij] ∈ Cn×n, n > 2; then

σ(A) ⊆ A1(A) = Γ(A)
∪

Γ̃(A), (9)

where Γ(A) =
∪
i∈N

Γi(A) and Γ̃(A) =
∪

i∈H,j∈L
Γ̃ij(A) .

Example 3.9 of [10] shows that K1(A) ⊆ A1(A).

Remark 2.1. Obviously, for Theorems 2.7 and 2.8, there exists a problem:
the methods for the field of eigenvalue localization need to take an arbitrary
parameter α ∈ [0, 1] into account, and it seems hard and complicated to decide
the optimum value of α. In this work, to overcome this drawback, we propose
a new improved version, which is always convergent for a double α1-matrix.
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3. Criterion for identifying H-matrices and spectral distribution

Remark 3.1. We begin this section by making a remark that for a double
α1-matrix, if α = 0, then AT ∈ D̃; and if α = 1, then A ∈ D̃. Consequently,
in either case, A is an H-matrix (see [14]). So, we consider the case α ∈ (0, 1)
only when we discuss double α1-matrices in the following discussion.

Throughout the next paper, we will use the following notations.

M1 =
{
(i, j) ∈ M : rirj <| aiiajj |< cicj

}
;

M2 =
{
(i, j) ∈ M : cicj <| aiiajj |< rirj

}
;

M3 =
{
(i, j) ∈ M :| aiiajj |> cicj > rirj

}
;

M4 =
{
(i, j) ∈ M :| aiiajj |> rirj > cicj

}
;

M5 =
{
(i, j) ∈ M :| aiiajj |> rirj = cicj

}
;

M0 =
{
(i, j) ∈ M :| aiiajj |6 cicj, | aiiajj |6 rirj

}
.

Obviously, M = M1

∪
M2

∪
M3

∪
M4

∪
M5

∪
M0.

We also state and prove some lemmas before we present our main results
of this section.

Lemma 3.1. Consider the function f(t) = at + b(1 − t), for any t ∈ (0, 1).
Then

(1) if a > b > 0, we get that f(t) is a monotonically increasing function;
(2) if b > a > 0, we get that f(t) is a monotonically decreasing function.

Proof . Since f ′(t) = a− b, this conclusion is obvious. �

Lemma 3.2. For any ε > 0 (ε = o(x), x → 0), we define

E =
{
z ∈ C :| z − a || z − b |6 c+ ε

}
(10)

and

F =
{
z ∈ C :| z − a || z − b |6 c

}
. (11)

Then E = F.

Proof . “F ⊂ E” is obvious. We need only to check “F ⊃ E”. Suppose
z ∈ E, z /∈ F; then | z − a || z − b |> c. Choose ε0 = 1

2
(| z − a || z − b | −c);

then | z−a || z−b |= c+2ε0 > c+ε0, however, z ∈ E, a contradiction. Hence,
z ∈ F. Therefore we have E = F. �

Now, we will give an equivalent representation for double α1-matrices.

Theorem 3.1. Let A = [aij] ∈ Cn×n, n > 2, M0 = ∅; then A is a double
α1-matrix if and only if the following condition holds

| assatt | −rsrt
csct − rsrt

+
| aiiajj | −cicj
rirj − cicj

> 1,
(
(s, t) ∈ M1, (i, j) ∈ M2

)
. (12)
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Proof . First, let us assume that A is a double α1-matrix; then M0 = ∅.
Therefore, for any (s, t) ∈ M1, there exists some α ∈ (0, 1), such that

| assatt |> αrsrt + (1− α)csct = csct − α(csct − rsrt),

i.e., α >
csct− | assatt |
csct − rsrt

, that is

1− α <
| assatt | −rsrt
csct − rsrt

. (13)

Similarly, for any (i, j) ∈ M2, we obtain that

| aiiajj |> αrirj + (1− α)cicj = cicj + α(rirj − cicj),

i.e., α <
| aiiajj | −cicj
rirj − cicj

, which combined with (13), implies

| assatt | −rsrt
csct − rsrt

+
| aiiajj | −cicj
rirj − cicj

> 1,
(
(s, t) ∈ M1, (i, j) ∈ M2

)
.

Conversely, assume the condition (12) holds. For any (s, t) ∈ M1, it

directly implies 0 <
| assatt | −rsrt
csct − rsrt

< 1, that is

0 < 1− | assatt | −rsrt
csct − rsrt

< 1.

Similarly, for any (i, j) ∈ M2, we obtain

0 <
| aiiajj | −cicj
rirj − cicj

< 1.

The strict inequality of (12) ensures that there exists a parameter α, for
any (s, t) ∈ M1, (i, j) ∈ M2, such that

0 <
csct− | assatt |
csct − rsrt

= 1− | assatt | −rsrt
csct − rsrt

< α <
| aiiajj | −cicj
rirj − cicj

< 1. (14)

Starting from the inequality
csct− | assatt |
csct − rsrt

< α of (14), for any (s, t) ∈
M1, we get

| assatt |> αrsrt + (1− α)csct.

In the same way, from the inequality α <
| aiiajj | −cicj
rirj − cicj

of (14), for any

(i, j) ∈ M2, we get

| aiiajj |> αrirj + (1− α)cicj.

Moreover, for any (l,m) ∈ M3

∪
M4

∪
M5, and any α ∈ (0, 1), it is

obvious to see that

| allamm |> αrlrm + (1− α)clcm.
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Recalling that M0 = ∅, for any (i, j) ∈ M1

∪
M2

∪
M3

∪
M4

∪
M5 = M

there exists a parameter α, such that

| aiiajj |> αrirj + (1− α)cicj.

Since α ∈ (0, 1), this concludes the proof. �
As its application, a new practical criterion for H-matrices is obtained.

Theorem 3.2. Let A = [aij] ∈ Cn×n, n > 2, M0 = ∅, which for any (s, t) ∈
M1, (i, j) ∈ M2 satisfies

| assatt | −rsrt
csct − rsrt

+
| aiiajj | −cicj
rirj − cicj

> 1. (15)

Then A is an H-matrix.

Proof . By Theorem 3.1, it is clear that A is a double α1-matrix, and
further using Theorem 2.6, we conclude that A is an H-matrix. �

Having the result of Theorem 3.2, we are ready to give the corresponding
(Cassini-type) spectral distribution.

Theorem 3.3. For A = [aij] ∈ Cn×n, n > 2, if A is a double α1-matrix; then

σ(A) ⊆ G(A) =

 ∪
(s,t)∈M1

∪
M3

Gst

∪ ∪
(i,j)∈M2

∪
M4

∪
M5

Gij

 , (16)

where

Gst =

{
z ∈ C :| z − ass || z − att |6

(
min

(k,l)∈M2

| akkall | −ckcl
rkrl − ckcl

)
rsrt+(

max
(k,l)∈M2

rkrl− | akkall |
rkrl − ckcl

)
csct

}
,
(
(s, t) ∈ M1

∪
M3

)
,

and

Gij =

{
z ∈ C :| z − aii || z − ajj |6

(
max

(p,q)∈M1

cpcq− | appaqq |
cpcq − rprq

)
rirj+(

min
(p,q)∈M1

| appaqq | −rprq
cpcq − rprq

)
cicj

}
,
(
(i, j) ∈ M2

∪
M4

∪
M5

)
.

P roof . First, let us assume that A is a double α1-matrix; then M0 = ∅.
From the proof of Theorem 3.1, for any parameter α with

0 <
csct− | assatt |
csct − rsrt

= 1− | assatt | −rsrt
csct − rsrt

< α <
| aiiajj | −cicj
rirj − cicj

< 1,

i.e., for any α ∈ I =

(
max

(s,t)∈M1

csct− | assatt |
csct − rsrt

, min
(i,j)∈M2

| aiiajj | −cicj
rirj − cicj

)
⊂ (0, 1),

we obtain

| aiiajj |> αrirj + (1− α)cicj,
(
(i, j) ∈ M1

∪
M2

∪
M3

∪
M4

∪
M5 = M

)
.
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By Theorem 2.8, for any eigenvalue λ of A, there is a pair of positive
integers (i, j) ∈ M, such that

| λ− aii || λ− ajj |6 αrirj + (1− α)cicj, (α ∈ I).

We consider the following five cases.
Case 1. If (s, t) ∈ M1, then csct > rsrt > 0. So, the function f(t) =

rsrtt + csct(1 − t) is monotonically decreasing by Lemma 3.1. Thus, let ε1 =
ε

csct − rsrt
> 0, where ε > 0

(
ε = o(x), x → 0

)
; we get

| λ− ass || λ− att |6
(

min
(k,l)∈M2

| akkall | −ckcl
rkrl − ckcl

− ε1

)
rsrt+[

1−
(

min
(k,l)∈M2

| akkall | −ckcl
rkrl − ckcl

− ε1

)]
csct

=

(
min

(k,l)∈M2

| akkall | −ckcl
rkrl − ckcl

− ε1

)
rsrt+[

1−
(
1− max

(k,l)∈M2

rkrl− | akkall |
rkrl − ckcl

)
+ ε1

]
csct

=

(
min

(k,l)∈M2

| akkall | −ckcl
rkrl − ckcl

)
rsrt+(

max
(k,l)∈M2

rkrl− | akkall |
rkrl − ckcl

)
csct + ε,

i.e.,

λ ∈
{
z ∈ C :| z − ass || z − att |6

(
min

(k,l)∈M2

| akkall | −ckcl
rkrl − ckcl

)
rsrt+(

max
(k,l)∈M2

rkrl− | akkall |
rkrl − ckcl

)
csct + ε

}
.

Now, by applying Lemma 3.2, we obtain that λ ∈ Gst, (s, t) ∈ M1.
Case 2. If (i, j) ∈ M2, then rirj > cicj > 0. So, the function f(t) =

rirjt + cicj(1 − t) is monotonically increasing by Lemma 3.1. Thus, let ε2 =
ε

rirj − cicj
> 0, where ε > 0

(
ε = o(x), x → 0

)
; we get

| λ− aii || λ− ajj |6
(

max
(p,q)∈M1

cpcq− | appaqq |
cpcq − rprq

+ ε2

)
rirj+[

1−
(

max
(p,q)∈M1

cpcq− | appaqq |
cpcq − rprq

+ ε2

)]
cicj

=

(
max

(p,q)∈M1

cpcq− | appaqq |
cpcq − rprq

+ ε2

)
rirj+
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1−

(
1− min

(p,q)∈M1

| appaqq | −rprq
cpcq − rprq

)
− ε2

]
cicj

=

(
max

(p,q)∈M1

cpcq− | appaqq |
cpcq − rprq

)
rirj+

(
min

(p,q)∈M1

| appaqq | −rprq
cpcq − rprq

)
cicj + ε,

i.e.,

λ ∈
{
z ∈ C :| z − aii || z − ajj |6

(
max

(p,q)∈M1

cpcq− | appaqq |
cpcq − rprq

)
rirj+(

min
(p,q)∈M1

| appaqq | −rprq
cpcq − rprq

)
cicj + ε

}
.

Lemma 3.2 obviously implies that λ ∈ Gij, (i, j) ∈ M2.
Case 3. If (s, t) ∈ M3, similarly to the proof of Case 1, we can show

λ ∈ Gst, (s, t) ∈ M3.
Case 4. If (i, j) ∈ M4, similarly to the proof of Case 2, we get λ ∈ Gij,

(i, j) ∈ M4.
Case 5. If (i, j) ∈ M5, then rirj = cicj <| aiiajj |; thus it is obvious that

| aiiajj |> αrirj + (1− α)cicj, (α ∈ I).

Especially, let α = max
(p,q)∈M1

cpcq− | appaqq |
cpcq − rprq

; then by Theorem 2.8, we get

| λ− aii || λ− ajj |6
(

max
(p,q)∈M1

cpcq− | appaqq |
cpcq − rprq

)
rirj+(

min
(p,q)∈M1

| appaqq | −rprq
cpcq − rprq

)
cicj.

Therefore, λ ∈ Gij, (i, j) ∈ M5.
Note thatA is a double α1-matrix, and thatM = M1

∪
M2

∪
M3

∪
M4

∪
M5,

from which we conclude

λ ∈ G(A) =

 ∪
(s,t)∈M1

∪
M3

Gst

∪ ∪
(i,j)∈M2

∪
M4

∪
M5

Gij

 .

The proof is completed. �
Finally, we provide a numerical example which illustrates the effective-

ness and advantage of the new criteria.
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Example 3.1. Let

A =

 3.3 0.5 1.5
2 2.5 1
1.6 1 2.5i

 .

Then we have

| a11 |= 3.3, | a22 |= 2.5, | a33 |= 2.5;
r1 = 2, r2 = 3, r3 = 2.6;

c1 = 3.6, c2 = 1.5, c3 = 2.5.

But, we notice | a33 |= 2.5 = c3 < r3 = 2.6. The condition satisfies
neither Theorem 1 in [15] nor Theorem 4 or 5 in [12], so we obtain that A is
not an α1-matrix or an α2-matrix (see [13]). Hence, we can’t get that A is an
H-matrix.

According to the notations of this paper, we have

M1 =
{
(1, 3)

}
,M2 =

{
(2, 3)

}
,M4 =

{
(1, 2)

}
,M3 = M5 = M0 = ∅.

By calculation, we obtain

| a11a33 | −r1r3
c1c3 − r1r3

+
| a22a33 | −c2c3
r2r3 − c2c3

≈ 0.8026 + 0.6173 = 1.4199 > 1.

Therefore, A satisfies the condition of Theorem 3.2; then A is an H-
matrix.

Calculated by MATLAB 7.0, eigenvalues of the matrix A are λ1 =
4.6226 + 0.3013i, λ2 = 1.7627 + 0.0452i and λ3 = −0.5852 + 2.2438i.

The eigenvalue inclusion regions of Theorem 2.9 in yellow and Theorem
3.3 in blue are given, respectively, by Figs.3.1 and 3.2. By comparing of the
regions in Fig.3.3, it is easy to see that the region of Theorem 3.3 is smaller
than that of Theorem 2.9.
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4. Criterion for identifying H-matrices via irreducibility

In this section, we will extend the previous result by letting all the con-
sidered inequalities not to be strict and M0 ̸= ∅. Now, we will use the following
notations: Ψ(A) denotes the set of simple circuits in the directed graph of the
matrix A, and if γ = i1i2 . . . ikik+1, ik+1 = i1 is a simple circuit of length k,
then the support of γ, i.e., the set

{
i1, i2, . . . , ik

}
is denoted by γ. We will

deal with irreducible matrices (see [4]). Within this class we will prove a new
criterion for a matrix to be an H-matrix, which based on the following fact.

Theorem 4.1. ([16]) Let A = [aij] ∈ Cn×n, n > 2, be irreducible. Suppose

| aiiajj |> (rirj)
α(cicj)

1−α,
(
(i, j) ∈ M

)
holds for some α ∈ [0, 1], with strict inequality for at least one circuit γ0 ∈ Ψ(A)
and i0, j0 ∈ γ0, such that

| ai0i0aj0j0 |> (ri0rj0)
α(ci0cj0)

1−α;

then A is an H-matrix.

Theorem 4.2. Let A = [aij] ∈ Cn×n, n > 2, be irreducible. For any (p, q) ∈
M0 ̸= ∅, there is | appaqq |= rprq = cpcq, and for any (s, t) ∈ M1, (i, j) ∈ M2,
it satisfies

| assatt | −rsrt
csct − rsrt

+
| aiiajj | −cicj
rirj − cicj

> 1. (17)

If there exists at least one circuit γ0 ∈ Ψ(A) and i0, j0 ∈ γ0, such that

| assatt | −rsrt
csct − rsrt

+
| ai0i0aj0j0 | −ci0cj0

ri0rj0 − ci0cj0
> 1; (18)

then A is an H-matrix.

Proof . Similarly to the proof of Theorem 3.1, the inequality (17) implies
that

| assatt |> αrsrt + (1− α)csct > (rsrt)
α(csct)

1−α,
(
(s, t) ∈ M1

)
;

| aiiajj |> αrirj + (1− α)cicj > (rirj)
α(cicj)

1−α,
(
(i, j) ∈ M2

)
.
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Moreover, for any (l,m) ∈ M3

∪
M4

∪
M5, and any α ∈ (0, 1), it is

obvious that

| allamm |> αrlrm + (1− α)clcm > (rlrm)
α(clcm)

1−α.

On the other hand, for any (p, q) ∈ M0 ̸= ∅, there is | appaqq |= rprq =
cpcq, i.e.,

| appaqq |= αrprq + (1− α)cpcq = (rprq)
α(cpcq)

1−α,
(
α ∈ (0, 1)

)
.

In a word, for any (i, j) ∈ M1

∪
M2

∪
M3

∪
M4

∪
M5

∪
M0 = M, there

exists some α ∈ (0, 1), such that

| aiiajj |> (rirj)
α(cicj)

1−α.

By the inequality (18), we know that there exists at least one circuit
γ0 ∈ Ψ(A) and i0, j0 ∈ γ0, such that

| ai0i0aj0j0 |> (ri0rj0)
α(ci0cj0)

1−α.

Since A is irreducible, by Theorem 4.1, A is an H-matrix. �

5. Criterion for identifying H-matrices via nonzero elements
chain

In this section, we will prove a new criterion for a matrix to be an H-
matrix, which based on the following fact: a double α2-matrix will remain to
be an H-matrix if we change the irreducibility with the existence of nonzero
elements chain (see [17]), more precisely with the following condition.

Theorem 5.1. ([18]) Let A = [aij] ∈ Cn×n, n > 2, and let

| aiiajj |> (rirj)
α(cicj)

1−α,
(
(i, j) ∈ M

)
holds for some α ∈ (0, 1). For every (i, j) ∈ M with | aiiajj |= (rirj)

α(cicj)
1−α,

if there exists a nonzero elements chain ai0i1 , ai1i2 , . . . , airj0 , such that i0 = i or
i0 = j, and j0 ∈ J(A), where

J(A) =
{
i ∈ N :| aiiajj |> (rirj)

α(cicj)
1−α, (i, j) ∈ M

}̸
= ∅;

then A is an H-matrix.

Theorem 5.2. Let A = [aij] ∈ Cn×n, n > 2, for any (s, t) ∈ M1, (i, j) ∈ M2,
such that

| assatt | −rsrt
csct − rsrt

+
| aiiajj | −cicj
rirj − cicj

> 1.

For any (p, q) ∈ M0 ̸= ∅, there is | appaqq |= rprq = cpcq, and if there exists a
nonzero elements chain ap0p1 , ap1p2 , . . . , aphq0 , such that p0 = p or p0 = q, and
q0 ∈ G(A), where

G(A) =
{
i ∈ N : (i, j) ∈ M1

∪
M2

∪
M3

∪
M4

∪
M5

}
̸= ∅;

then A is an H-matrix.
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Proof . Similarly to the proof of Theorem 4.2, we can obtain that for
any (i, j) ∈ M1

∪
M2

∪
M3

∪
M4

∪
M5, there exists some α ∈ (0, 1), such that

| aiiajj |> αrirj + (1− α)cicj > (rirj)
α(csct)

1−α.

By the assumption, for any (p, q) ∈ M0 ̸= ∅, there is | appaqq |= rprq =
cpcq, i.e.,

| appaqq |= αrprq + (1− α)cpcq = (rprq)
α(cpcq)

1−α,
(
α ∈ (0, 1)

)
and there exists a nonzero elements chain ap0p1 , ap1p2 , . . . , aphq0 , such that p0 =
p or p0 = q, and q0 ∈ J(A), where

J(A) =
{
i ∈ N :| aiiajj |> (rirj)

α(cicj)
1−α, (i, j) ∈ M

}̸
= ∅.

On the base of Theorem 5.1, A is an H-matrix. �

6. Conclusions

An equivalent representation for double α1-matrices is given based on
the numerical relationship between row and column sums. As its application,
a subclass of H-matrices and the corresponding (Cassini-type) spectral distri-
bution theorem are obtained. In the end, the new criterion for H-matrices is
extended via irreducibility and nonzero elements chain.
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