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ON THE NON-LINEAR DYNAMICS IN BIOLOGICAL
STRUCTURES. COMPLEMENTARY MATHEMATICAL
ASPECTS
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Assuming that the biological systems are fractal systems, a few aspects
ofnatural dynamics in biological structures are studied. The “non-linear dynamics”
analysis in an arbitrary space with constant fractal dimension, using an extended
version of the Scale Relativity Theory, has been performed. Additionally, a
dedicated mathematical model of biological non-linear system by association with
stochastic Levi type processes was developed.
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1. Introduction

In the most general representation, the biological systems can be divided
into three different categories such as the open, dissipative and non-linear
systems. In our opinion, the “specialization” process of any biological structure
(for instance differentiation process) is based on the legitimate alternation
between chaos and order of mutual states. This behavior is defined by the living
matter multivalent logic and its communication codes.

Further to the presentation, we can say now that this visible
interdisciplinary work aims to explain how mathematical knowledge can be used
to describe, predict and control the phenomena observed in some biological
systems [1]. From a functional point of view and not only, we understand here the
biological systems in the particular sense of the discipline known under a variety
of names [2] such as: “complexity theory”, “self-organization theory”, “chaos
theory”, or “non-linear dynamics”. Our choice was not easy but in what follows
we will use the latter name, non-linear dynamics respectively. Before complete
presentation of the publication reason of this paper, we will define the notion most
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often used here. In this context, we can say that a real system is linear if it can be
adequately modeled by a linear transformation or a linear dynamical system. By
consequence, if any linear model appears inadequate, according to binary logic, it
results that this real system is non-linear.

Many biological structures assimilated with complex systems [3, 4]
(circulatory system, respiratory system, brain etc.) are, from a morphological
point of view, fractals. Moreover, their own space (the one generated by these
structures) is structurally a fractal space, in its most general sense given by
Mandelbrot. In a fractal space, the only possible functionalities (which are
compatible with the previously mentioned structures) are achieved by the motions
of the structural units of the biological structures assimilated to complex systems
on continuous but non-differentiable curves. Then, the dynamics of such
structures can be analysed using Scale Relativity Theory (SRT) in an arbitrary
constant fractal dimension [5-7] (on the standard SRT see [8, 9]). In our opinion,
these biological structural units can take the form of cells, cell organelles (mainly
those responsible with cell division), macromolecules (such as proteins) etc.,
depending on the scale resolution.

The present paper is composed from Introduction, three extended chapters
and the main conclusions of this work. The first chapter contains our view of
differential dynamics in biological structures and the second details the oscillatory
behaviour of biological systems, non-linearity attestation and the road to chaos. In
the last chapter, we rebuilt the premises and have commented the results.

2. Differential dynamics in biological structures

Let us now admit the following functionalities of the scale covariance
principle: the “laws” associated to biophysical processes are invariant with regard
to scale resolutions. We can implement this principle by substituting the standard
time derivative operator, d/dt , specific to the classical (differentiable) biophysics

with the complex operator, d / dt , specific to the non-standard (non-differentiable)

biophysics. Thené’/dt becomes not only a motion operator in the “new”

biophysics, but also a ‘“covariant derivative” [12, 13]. Consequently, the
“biological geodesics” of the arbitrary biological fractal fluid Qcan thus be

written in the form:

. , .
Qza_Q_,_[}l aQ/_,_Dil a_Q/_'_Di/k .aQI :
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where
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D =i(dt) (Al A =22+ 2] )
Dt :é(dt)(y[),) [(/1+/1+/1f A2 /1/{) (,1+,1+ﬂ,f +A2 ﬂk)] (3)

The biological structures whose functionalities can be associated to a
special class of stochastic Levi type processes [8, 9] allow for the following:

Aab=2'2" =2268" 4)
A == 222 =6us™ (5)

with

S — li=l=k
0iz#l#k
and A, u structural parameters.
Then

dil — 0, Jil — ﬂ/(dt) (2/Dg )~ 51[ (6)

dilk =y(dt) (3/Dp )~ évlk dllk 0 (7)

so that (1), after several calculations become:

dQ 5Q P 00 (2/D; 0’0 (3/Dy )1 0’0 _
a o o A Zz:(a)(’)2 Hald) Z(aX"f e

00 100 o 00 _
EREr w(ar) Z(éXz—)fo )



310 Viorel-Puiu Paun, Cipriana Stefanescu, Vlad Ghizdovat, Diana Sabau-Popa, Maricel Agop

o0 (2/Dy)-1 0’0
vy a(d =0
r o7 HAd) Zz:(ax’)z (10)

Let us observe the one-dimensional form of equation (9)

90,30 om0
= Vot ald) Z(ax'f =0 (11)

assuming that V) = const.Q . Therefore, at differential scale, the dynamics of Q is

dictated by fractal differentialKorteweg-de Vries type equations. For details on
standard differential Korteweg-de Vries equations see Ref. [10].

An explicit solution of the above mentioned differential equation, obtained
by adequate normalization in dimensionless variables,

ot = 7 kX' = £ = kX! _MT,QQE¢, (12a-d)

0

implies using the method from [13]. It results:

— E 2
¢:¢+2a|:%— }+2acn [a(0-6,);s] (13)

where  is a pulsation specific to the biological structure, k£ is the inverse of a
characteristic biological structure length, M is the biological equivalent of the

Mach number, <¢> is the average value of ¢, Q, is the equilibrium value of the

biological fractal fieldQ, ais the amplitude, K(s) and E(s) are the complete

elliptical integrals of the first and second kind of modulus s (a measure of the
non-linearity degree)and cn is the Jacobi cnoidal elliptical function with modulus

sand argument « (49 -6, )with 6, =const.[11]. Definitions for s,4etc. are
presented in [5].

3. Oscillatory behaviour of biological systems. Non-linearity attestation
and the road to chaos

In good accordance with the foregoing, we can immediately transfer the
mathematical results previously obtained to appropriate biological systems. This
means that the biological structures “dynamics” are given through cnoidal space-
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time oscillation modes of Q - see the three dimensional dependence (Fig.1), and
the contour curves, respectively (Fig.2a-f).

10 g4
Fig.1. Three-dimensional representation of the cnoidal oscillation mode as a function of the
biological field via normalized space-time coordinates and non-linear degree

Fig.2. a-f Two-dimensional representation of the cnoidal oscillation modes as a function of
the biological field for various non-linear degrees (contour curves)

The cnoidal oscillation modes have the following characteristic
parameters:
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1) Wave number

k=——
sK(s) (14)
i) Phase velocity
_ [3E(s) 149
U=6D+4a| —=>—
+4a K(S) S2 (15)

(16)

Fig.3. The quasi-period dynamics of the biological normalized field via amplitude and non-linear
degree, with respect to the average value of the biological normalized field
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In Fig. 3, the three dimensional representation of the quasi-period 7 with
respect to the amplitude @ and the non-linear degree s is provided.
The structure of these oscillation modes is obtained by explicating their
degeneration with respect to the s parameter:
i) For s >0, (13) reduces to a harmonic packagetype sequence, while for
s =0(12) reduces to a harmonic type sequence;
ii) For s—1, (13) reduces to a soliton package type sequence, while for s =1
(13) reduces to a soliton type sequence.
Eliminating the variable ,,a” in (14) and (15) the following results:

(U-6®) 2% =164(s), k =27” (17a,b)

where
A(s) =35 K ($)E(s)—(1+5" ) K*(s) (18)

It can be observed — see Fig. 4 that the nonlinearity s generates three
distinct dynamics regimes in biological structures: non-quasi-autonomous regime
(by harmonic type sequences, harmonic package type sequence or harmonic—
harmonic package type sequence), quasi-autonomous regime (by soliton type
sequences, soliton package type sequences, soliton — soliton package type
sequence), and transient regime (by mixtures), respectively.

Non-quasi-
autonomous regime

' I I)'I |
F'-.
-, ‘;'
8 s -
Quasi-autonomous
regime

Fig. 4. Dynamic regimes in biological structures

The real dynamics regimes of the biological structures are mixtures of the
previous pure sequences (mixed modes): harmonic package — soliton, harmonic
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package — solitonic package etc. [10]. Such situations can be accomplished only
by the fractalization of the movement variables, which mathematically involves a

in/2

Wick rotation (xe™'“) in the variables space (9,s). Then, all the & attributes are

transferred to s and vice versa. For details about fractalization (methodology,
implications, examples, etc.) please see [9, 10]. Taking into account the above
observations, the mixtures will be felt as chaoticity of the biological structures,
according to different scenarios of chaos transition (intermittency, Ruelle-Takens,
sub-harmonic bifurcations, etc.). Indeed, the routes to chaos through intermittency
and quasi-periodicity (Ruelle-Takens scenario) can be assimilated to the sections
mand &, respectively of the cnoidal oscillation modes (Fig. 5), while the route to
chaos through sub-harmonic bifurcations can be assimilated to the section ¢ of the
same modes (Fig. 6).

Intermittency

.' :
\ ‘ lﬂ:f
AT ! |

| I

Ruelle-Takens
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Fig. 5. Routes to chaos through intermittency and quasi-periodicity (Ruelle-Takens), as sections
7 and O of the cnoidaloscillation modes, respectively
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Fig. 6. Route to chaos by sub-harmonics bifurcations as section o of the cnoidal oscillation modes

Finally, it is worth to be mentioned that, although in most cases it is
impossible to obtain accurate mathematical models of biological systems, their
physical and chemical properties comply well with the general properties of
dynamical systems in which self-oscillations are possible.

4, Results and discussion

In the real world, the biological systems are obviously dissipative vs. mass
and energy, but profoundly non-linear. In this sense, to function properly their
living structures need to consume “food” from outside firstly, and to get rid of the
decay products, secondly.

Assuming that, from a morphologic and/or functional point of view, any
biological structure is a fractal in the most general sense provided by Mandelbrot
[1], to describe the dynamics of such systems in the afore mentioned perspective,
a mathematical model is obtained.This mathematical model is based on an
extended version of the Scale Relativity Theoryin the sense of Nottale hypothesis
[14, 15], namely the one in which the motions of the complex system’s structural
units, assimilated to the biological structures particles, take place on continuous
and non-differentiable curves in a fractal arbitrary constant dimension. For further
details also see other excellent results on the same topic [16].According to the
new horizons accessible today in nonlinear dynamics [17], the classical
mathematical calculation for gauge field theories [18] and elliptic functions [19],
follows the classical books, cited in the text.
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By employing this mathematical model the motion operator is defined,
which is a complex operator that, based on a scale covariance principle, gains the
status of covariant scale derivative. In such a conjecture the “geodesics”
associated to an arbitrary biological field are obtained, namely the “global” ones
and the ones induced by the separation of motions on resolution scales
(differential scale and fractal scale).

The differentiable “dynamics” obtained by integrating the differential
equation associated to the “biological geodesics” at differential scale resolution is
induced, in the one-dimensional case, by space-time cnoidal oscillation modes of
the biological field. Depending on the strength of interactions between the
structural units of the complex system assimilated to a biological structure, these
cnoidal oscillation modes degenerate, either in a harmonic sequence and a
harmonic package type sequence in the case of a null,s =0, or “weak” ,s > 0,
interstructural “coupling” , or in a solitonic sequence and a solitonic package type
sequence in the case of a very “strong”, s=1, or strong,s — 1, interstructural
“coupling”. From this point on the wvarious chaos transition scenarios
(intermittency, Ruelle-Takens, sub-harmonic bifurcations etc.) can be “simulated”
through the above mentioned sequences mixtures. In our opinion, the presence of
chaos in biological structures “dynamics” can induce, taking into account both the
resolution scale dependence (cell, tissue, organ etc) and the “external medium”
feedback dependence, either disorder (for example an “uncontrolled” cell
proliferation process that leads to cancer tumors), or order (for example a
“controlled” cell proliferation process that leads to pattern generation such as
tissues, organs etc.). Moreover, a primness of chaos transition scenarios exists,
and it is unique, either in the case of disorder, or in the case of order.

It is well known that a one-dimensional Toda type network of non-linear
oscillators can be attributed to cnoidal oscillation modes. Furthermore, by
mapping it, a neural network can be induced [7, 17]. Since the “identity” of any
biological structure is dictated by the morphological-functional “compatibility”, in
this status the “coherence” duplication of two neural networks is involved, namely
the structural morphological specific neural network, and the spectral functional
specific neural network. In such a framework the communication code between
the structural units of the complex system assimilate to a biological structure is
also generated, a code of algebraic nature, taking into account the Elliptic
Functions Equivalency Theorem [19].

As an assumed objective, in the future, we plan to expand some
mathematical results obtained on the material non-linear systems (engineering)
[20] at biological non-linear structures [21, 22] together within formational non-
differentiable entropy [23, 24], and indubitably, to propose the same fractal
analysis using the time series method [25].
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5. Conclusions

The previous results specify the fact that in the differentiation and
specialization process of any biological structure “software”, “multivalent laws”,
“communication codes” etc. are self-generated through morphological-functional
compatibility. Understanding these logical elements employed by the living
matter and its biological structures, and the way in which they are interconnected,
can prove to be extremely valuable with respect to future medical engineering
projects, and in particularly, to the simulation of cell and tissue behavior at the
time of injury or during healing.

It was demonstrated that the cnoidal oscillation mode is a function of the
biological field via normalized space-time coordinates and non-linear degree.
Moreover, we have offered a two-dimensional representation of the cnoidal
oscillation modes as a function of the biological field for various non-linear
degrees. Also, were highlighted in a clear manner, the routes to chaos through
intermittency and quasi-periodicity respectively, as sections of the cnoidal
oscillation modes.
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