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Assuming that the biological systems are fractal systems, a few aspects 

ofnatural dynamics in biological structures are studied. The “non-linear dynamics” 
analysis in an arbitrary space with constant fractal dimension, using an extended 
version of the Scale Relativity Theory, has been performed. Additionally, a 
dedicated mathematical model of biological non-linear system by association with 
stochastic Levi type processes was developed. 
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1. Introduction 

In the most general representation, the biological systems can be divided 
into three different categories such as the open, dissipative and non-linear 
systems. In our opinion, the “specialization” process of any biological structure 
(for instance differentiation process) is based on the legitimate alternation 
between chaos and order of mutual states. This behavior is defined by the living 
matter multivalent logic and its communication codes. 

Further to the presentation, we can say now that this visible 
interdisciplinary work aims to explain how mathematical knowledge can be used 
to describe, predict and control the phenomena observed in some biological 
systems [1]. From a functional point of view and not only, we understand here the 
biological systems in the particular sense of the discipline known under a variety 
of names [2] such as: “complexity theory”, “self-organization theory”, “chaos 
theory”, or “non-linear dynamics”. Our choice was not easy but in what follows 
we will use the latter name, non-linear dynamics respectively. Before complete 
presentation of the publication reason of this paper, we will define the notion most 
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often used here. In this context, we can say that a real system is linear if it can be 
adequately modeled by a linear transformation or a linear dynamical system. By 
consequence, if any linear model appears inadequate, according to binary logic, it 
results that this real system is non-linear.  

Many biological structures assimilated with complex systems [3, 4] 
(circulatory system, respiratory system, brain etc.) are, from a morphological 
point of view, fractals. Moreover, their own space (the one generated by these 
structures) is structurally a fractal space, in its most general sense given by 
Mandelbrot. In a fractal space, the only possible functionalities (which are 
compatible with the previously mentioned structures) are achieved by the motions 
of the structural units of the biological structures assimilated to complex systems 
on continuous but non-differentiable curves. Then, the dynamics of such 
structures can be analysed using Scale Relativity Theory (SRT) in an arbitrary 
constant fractal dimension [5-7] (on the standard SRT see [8, 9]). In our opinion, 
these biological structural units can take the form of cells, cell organelles (mainly 
those responsible with cell division), macromolecules (such as proteins) etc., 
depending on the scale resolution. 

The present paper is composed from Introduction, three extended chapters 
and the main conclusions of this work. The first chapter contains our view of 
differential dynamics in biological structures and the second details the oscillatory 
behaviour of biological systems, non-linearity attestation and the road to chaos. In 
the last chapter, we rebuilt the premises and have commented the results. 
 

2. Differential dynamics in biological structures 

Let us now admit the following functionalities of the scale covariance 
principle: the “laws” associated to biophysical processes are invariant with regard 
to scale resolutions. We can implement this principle by substituting the standard 
time derivative operator, d dt , specific to the classical (differentiable) biophysics 
with the complex operator, d̂ dt , specific to the non-standard (non-differentiable) 
biophysics. Then d̂ dt  becomes not only a motion operator in the “new” 
biophysics, but also a “covariant derivative” [12, 13]. Consequently, the 
“biological geodesics” of the arbitrary biological fractal fluid Q can thus be 
written in the form: 

2 3ˆ
ˆ 0l il ilk

l i l i l k

dQ Q Q Q QV D D
dt t X X X X X X

∂ ∂ ∂ ∂
= + + + =
∂ ∂ ∂ ∂ ∂ ∂ ∂  

(1)

where 
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The biological structures whose functionalities can be associated to a 
special class of stochastic Levi type processes [8, 9] allow for the following: 
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and ,λ μ  structural parameters. 
Then 

( )( )2/ 10, FDil il ild d dtλ δ−= =  (6)

 
( )( )3/ 1 , 0FDilk ilk ilkd dt dμ δ−= =  (7)

so that (1), after several calculations become: 
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Let us observe the one-dimensional form of equation (9) 

( )( )
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0FD
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μ −∂ ∂ ∂
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∂ ∂ ∂
∑  (11)

assuming that 1 const.DV Q≡ . Therefore, at differential scale, the dynamics of Q  is 
dictated by fractal differentialKorteweg-de Vries type equations. For details on 
standard differential Korteweg-de Vries equations see Ref. [10]. 

An explicit solution of the above mentioned differential equation, obtained 
by adequate normalization in dimensionless variables, 

1 1 1

0

, , , ,Qt kX kX M
Q

ω τ ξ θ τ φ= = = − ≡  (12a-d)

implies using the method from [13]. It results: 

( )2
0

( )2 1 2 ;
( )

E sa acn s
K s

φ φ α θ θ
⎡ ⎤

= + − + −⎡ ⎤⎢ ⎥ ⎣ ⎦
⎣ ⎦

 (13)

where  ω  is a pulsation specific to the biological structure, k  is the inverse of a 
characteristic biological structure length, M is the biological equivalent of the 
Mach number, φ is the average value of φ , 0Q  is the equilibrium value of the 
biological fractal fieldQ , a is the amplitude, ( )K s  and ( )E s  are the complete 
elliptical integrals of the first and second kind of modulus s  (a measure of the 
non-linearity degree)and cn is the Jacobi cnoidal elliptical function with modulus 
s and argument ( )0α θ θ− with 0 const.θ = [11]. Definitions for ,s λ etc. are 
presented in [5]. 
 

3. Oscillatory behaviour of biological systems. Non-linearity attestation 
and the road to chaos 

In good accordance with the foregoing, we can immediately transfer the 
mathematical results previously obtained to appropriate biological systems. This 
means that the biological structures “dynamics” are given through cnoidal space-
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time oscillation modes of Q  - see the three dimensional dependence (Fig.1), and 
the contour curves, respectively (Fig.2a-f). 

 
Fig.1. Three-dimensional representation of the cnoidal oscillation mode as a function of the 

biological field via normalized space-time coordinates and non-linear degree 

 
Fig.2. a-f Two-dimensional representation of the cnoidal oscillation modes as a function of 

the biological field for various non-linear degrees (contour curves) 

The cnoidal oscillation modes have the following characteristic 
parameters: 
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i) Wave number  

( )
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ii) Phase velocity  
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iii)  Quasi-period (see fig. 3a, b) 
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Fig.3. The quasi-period dynamics of the biological normalized field via amplitude and non-linear 

degree, with respect to the average value of the biological normalized field 
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In Fig. 3, the three dimensional representation of the quasi-period T with 
respect to the amplitude a and the non-linear degree s is provided. 

The structure of these oscillation modes is obtained by explicating their 
degeneration with respect to the s  parameter: 

i) For 0s → , (13) reduces to a harmonic packagetype sequence, while for 
0s ≡ (12) reduces to a harmonic type sequence; 

ii) For s→1, (13) reduces to a soliton package type sequence, while for 1s ≡
(13) reduces to a soliton type sequence. 
Eliminating the variable „a” in (14) and (15) the following results:  

( ) 2 26 16 ( ),U A s k πλ
λ

− Φ = =  (17a,b)

where 
( )2 2 2( ) 3 ( ) ( ) 1 ( )A s s K s E s s K s= − +  (18)

It can be observed – see Fig. 4 that the nonlinearity s  generates three 
distinct dynamics regimes in biological structures: non-quasi-autonomous regime 
(by harmonic type sequences, harmonic package type sequence or harmonic–
harmonic package type sequence), quasi-autonomous regime (by soliton type 
sequences, soliton package type sequences, soliton – soliton package type 
sequence), and transient regime (by mixtures), respectively.  

 
Fig. 4. Dynamic regimes in biological structures 

 
The real dynamics regimes of the biological structures are mixtures of the 

previous pure sequences (mixed modes): harmonic package – soliton, harmonic 
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package – solitonic package etc. [10]. Such situations can be accomplished only 
by the fractalization of the movement variables, which mathematically involves a 
Wick rotation ( 2ie π× ) in the variables space ( ), sθ . Then, all the θ  attributes are 
transferred to s  and vice versa. For details about fractalization (methodology, 
implications, examples, etc.) please see [9, 10]. Taking into account the above 
observations, the mixtures will be felt as chaoticity of the biological structures, 
according to different scenarios of chaos transition (intermittency, Ruelle-Takens, 
sub-harmonic bifurcations, etc.). Indeed, the routes to chaos through intermittency 
and quasi-periodicity (Ruelle-Takens scenario) can be assimilated to the sections 
π and δ , respectively of the cnoidal oscillation modes (Fig. 5), while the route to 
chaos through sub-harmonic bifurcations can be assimilated to the section σ of the 
same modes (Fig. 6). 

 
Fig. 5. Routes to chaos through intermittency and quasi-periodicity (Ruelle-Takens), as sections 

π  and δ  of the cnoidaloscillation modes, respectively 
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Fig. 6. Route to chaos by sub-harmonics bifurcations as section σ of the cnoidal oscillation modes  

 
Finally, it is worth to be mentioned that, although in most cases it is 

impossible to obtain accurate mathematical models of biological systems, their 
physical and chemical properties comply well with the general properties of 
dynamical systems in which self-oscillations are possible. 

 
4. Results and discussion 

In the real world, the biological systems are obviously dissipative vs. mass 
and energy, but profoundly non-linear. In this sense, to function properly their 
living structures need to consume “food” from outside firstly, and to get rid of the 
decay products, secondly.  

Assuming that, from a morphologic and/or functional point of view, any 
biological structure is a fractal in the most general sense provided by Mandelbrot 
[1], to describe the dynamics of such systems in the afore mentioned perspective, 
a mathematical model is obtained.This mathematical model is based on an 
extended version of the Scale Relativity Theoryin the sense of Nottale hypothesis 
[14, 15], namely the one in which the motions of the complex system’s structural 
units, assimilated to the biological structures particles, take place on continuous 
and non-differentiable curves in a fractal arbitrary constant dimension. For further 
details also see other excellent results on the same topic [16].According to the 
new horizons accessible today in nonlinear dynamics [17], the classical 
mathematical calculation for gauge field theories [18] and elliptic functions [19], 
follows the classical books, cited in the text. 
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By employing this mathematical model the motion operator is defined, 
which is a complex operator that, based on a scale covariance principle, gains the 
status of covariant scale derivative. In such a conjecture the “geodesics” 
associated to an arbitrary biological field are obtained, namely the “global” ones 
and the ones induced by the separation of motions on resolution scales 
(differential scale and fractal scale). 

The differentiable “dynamics” obtained by integrating the differential 
equation associated to the “biological geodesics” at differential scale resolution is 
induced, in the one-dimensional case, by space-time cnoidal oscillation modes of 
the biological field. Depending on the strength of interactions between the 
structural units of the complex system assimilated to a biological structure, these 
cnoidal oscillation modes degenerate, either in a harmonic sequence and a 
harmonic package type sequence in the case of a null, 0s = , or “weak” , 0s → , 
interstructural “coupling” , or in a solitonic sequence and a solitonic package type 
sequence in the case of a very “strong”, 1s = , or strong, 1s → , interstructural 
“coupling”. From this point on the various chaos transition scenarios 
(intermittency, Ruelle-Takens, sub-harmonic bifurcations etc.) can be “simulated” 
through the above mentioned sequences mixtures. In our opinion, the presence of 
chaos in biological structures “dynamics” can induce, taking into account both the 
resolution scale dependence (cell, tissue, organ etc) and the “external medium” 
feedback dependence, either disorder (for example an “uncontrolled” cell 
proliferation process that leads to cancer tumors), or order (for example a 
“controlled” cell proliferation process that leads to pattern generation such as 
tissues, organs etc.). Moreover, a primness of chaos transition scenarios exists, 
and it is unique, either in the case of disorder, or in the case of order. 

It is well known that a one-dimensional Toda type network of non-linear 
oscillators can be attributed to cnoidal oscillation modes. Furthermore, by 
mapping it, a neural network can be induced [7, 17]. Since the “identity” of any 
biological structure is dictated by the morphological-functional “compatibility”, in 
this status the “coherence” duplication of two neural networks is involved, namely 
the structural morphological specific neural network, and the spectral functional 
specific neural network. In such a framework the communication code between 
the structural units of the complex system assimilate to a biological structure is 
also generated, a code of algebraic nature, taking into account the Elliptic 
Functions Equivalency Theorem [19]. 

As an assumed objective, in the future, we plan to expand some 
mathematical results obtained on the material non-linear systems (engineering) 
[20] at biological non-linear structures [21, 22] together within formational non-
differentiable entropy [23, 24], and indubitably, to propose the same fractal 
analysis using the time series method [25]. 
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5. Conclusions 

The previous results specify the fact that in the differentiation and 
specialization process of any biological structure “software”, “multivalent laws”, 
“communication codes” etc. are self-generated through morphological-functional 
compatibility. Understanding these logical elements employed by the living 
matter and its biological structures, and the way in which they are interconnected, 
can prove to be extremely valuable with respect to future medical engineering 
projects, and in particularly, to the simulation of cell and tissue behavior at the 
time of injury or during healing. 

It was demonstrated that the cnoidal oscillation mode is a function of the 
biological field via normalized space-time coordinates and non-linear degree. 
Moreover, we have offered a two-dimensional representation of the cnoidal 
oscillation modes as a function of the biological field for various non-linear 
degrees. Also, were highlighted in a clear manner, the routes to chaos through 
intermittency and quasi-periodicity respectively, as sections of the cnoidal 
oscillation modes. 
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