
U.P.B. Sci. Bull., Series C, Vol. 86, Iss. 1, 2024 ISSN 2286-3540

A DYNAMIC SYMMETRIC SEARCHABLE ENCRYPTION

ALGORITHM WITH AN EXTENDED DUAL-INDEX

STRUCTURE LEVERAGING IPFS

Yi CAI1,*, Mingsheng FENG2

Traditional encryption methods typically encrypt the entire dataset and

searching and querying can only be performed after decryption. Searchable

Encryption enables searching, matching, and querying operations to be performed on

encrypted data, providing search results without revealing plaintext information.

Dynamic Symmetric Searchable Encryption allows dynamic insertion, updating, and

deletion operations to be performed on encrypted data while maintaining the data's

searchability and security. This paper improves the dynamic symmetric searchable

encryption algorithm based on a dual-index structure. It extends the index structure

and utilizes the IPFS self-verification mechanism to achieve rapid verification,

thereby reducing the number of queries and time required. Additionally, it reduces

the data storage costs on the blockchain. Finally, the proposed approach is tested on

the Ethereum blockchain using the publicly available dataset Eron email, and the

results effectively demonstrate the superiority of this solution in terms of time

overhead.

Keywords: Blockchain, IPFS, Dynamic searchable encryption, Index

1. Introduction

Currently, many distributed storage and application systems have

increasingly high-security requirements for data interaction. For example, smart

grids [1] [2] have introduced a blockchain-based distributed architecture to protect

the security of data interactions. During the process of data transactions in those

Secure Data Exchange Systems (SDES) [3-5], caching mechanisms and

cryptographic hash functions are often employed to improve data retrieval

efficiency and reduce the number of data uploads to the system. The caching data

is stored in the blockchain and it needs to keep privacy and security during the

search process. So, the cache transaction data will be encrypted before upload. And

searchable encryption techniques are used to achieve the search functionality while

ensuring privacy and security.

1 Prof., School of Computer Engineering, Guangzhou City University of Technology, Guangzhou,

China, Corresponding author’s e-mail: caiyi@gcu.edu.cn
2 Eng., School of Software Engineering, South China University of Technology, Guangzhou, China,

e-mail: fengmingsheng@bytedance.com

192 Yi Cai, Mingsheng Feng

Most searchable encryption schemes [6][7] are designed for cloud storage,

but there are few searchable encryption schemes based on blockchain [8][9]. In this

paper, we first analyze other searchable encryption schemes based on blockchain.

Then, addressing their limitations, we propose a dynamic searchable encryption

scheme based on blockchain. We provide algorithm definitions and security proofs

for the proposed scheme and finally validate the feasibility and advantages of the

scheme through experimental analysis.

1.1 Related Work

Many scholars are dedicated to addressing various issues in data trading.

Some researchers [10-12] are dedicated to addressing the contentiousness of data,

including concerns such as data sources' accuracy, data integrity, and data

authenticity. Another area of research [13] focuses on the security of the transaction

process, ensuring that both parties cannot repudiate the transaction and that privacy

is not compromised. Furthermore, there is research being conducted on secure and

efficient data retrieval [6-9]. Lastly, researchers are exploring access control issues

for data commodities, such as granting and revoking access control permissions

[14-16] or using Ciphertext-Policy Attribute-Based Searchable Encryption [17-18]

and also focus on search mode hidden [19-20], especially in the context of health

data management.

Traditional applications of searchable encryption are mostly found in cloud

storage, where encrypted data is stored along with the corresponding indices on

cloud servers. Current searchable encryption schemes include public-key

encryption search, symmetric encryption search, fuzzy search, Boolean search, and

others. However, most of these schemes are based on a central server, and the

correctness of the search results returned by an untrusted central server cannot be

guaranteed.

With the development of blockchain technology, there have also been

searchable encryption schemes related to blockchain. For example, in Scheme [8],

a Bitcoin framework is used to achieve fast retrieval of data stored on the

blockchain. However, this scheme does not consider dynamic updates. Scheme [6]

combines dynamic searchable encryption with Ethereum, storing the index and

encrypted data on the Ethereum blockchain. It designs a fair data retrieval scheme

using smart contracts. However, storing both the index and encrypted data on the

blockchain incurs significant storage costs.

Scheme [9] utilizes a dual-index structure to achieve fast update operations.

This scheme also considers the verification of search result sets, with the

verification data stored on the blockchain. However, the index data is stored in a

one-to-one format using keyword files (w, f), and the number of index items

increases with the growth of files. Similarly, the verification data increases linearly

with the growth of the file set and the verification process adds to the query time.

A dynamic symmetric searchable encryption algorithm with an extended dual-index (…) 193

1.2 Our Contribution

This paper proposes a blockchain-based dynamic searchable encryption

scheme based on the foundation of Scheme [9] and integrating blockchain

technology. Firstly, the scheme employs a dual-index structure to enable efficient

dynamic updates. Secondly, by storing encrypted files on IPFS and referencing their

IPFS hash values on the blockchain, the scheme ensures secure and efficient data

access while reducing the storage load of the blockchain. Thirdly, it stores the

document set associated with a keyword using IPFS, reducing the number of queries

and query time. Finally, it provides a forward security guarantee by linking new

index items to the head of the existing index chain. By incorporating these features,

the proposed scheme aims to address the limitations of previous approaches and

provide an advanced solution for dynamic searchable encryption based on

blockchain.

2. Scheme Construction

The main components of this scheme include index construction, keyword

search, file addition, and file deletion. The main steps are as follows:

2.1 Index construction algorithm

The index construction algorithm is executed by the data owner and

generates two outputs: the index table I and the state table S. The index table I is

stored on the blockchain network, while the state table S is stored locally on the

user’s device. The index table I contains the mappings between keywords and files,

allowing for efficient retrieval of files based on the index. The state table S

maintains various status information, such as the search frequency of keywords, file

additions, and deletions.

The index in this scheme consists of a dual-index structure, which includes

a keyword index and a file index. The keyword index enables fast file retrieval. The

index is composed of the index table address entry idw , the keyword index entry

Iw ,the encrypted data IPFS storage address ipfsadd, and the file deletion table B.

During a query operation, the search trapdoor allows for quick location of the

address in the index table, leading to the corresponding data retrieval. The file index

contains the file id and the set of corresponding index table address entries  idw .

When adding or deleting files, this index facilitates quick location of the index

entries for updates. The index construction process is as follows:

1) For each keyword  1w ,i ,mi  , update the status a ,r,d ,search count s, and file

count n. a records the file addition operation corresponding to the keyword, r

records the search operation corresponding to the keyword, and d records the file

deletion operation corresponding to the keyword. a, r, d ensure forward security of

194 Yi Cai, Mingsheng Feng

the search. s is initialized to 0, and n represents the number of files corresponding

to the keyword.

2) For each keyword iw , an index address entry
f

idwi
is generated using the private

key K, a pseudorandom function Gw , a hash function H1 , and flags a and r. The

encryption key kenc is used for file encryption. The search trapdoor kw is related to

the private key K and the search state r, while the encryption key is only related to

the search state r.

3) For each keyword, the keyword index Iw is generated using the hash function H1

and the index address entry
f

idwi
 . In the index construction phase, the Iw does not

embed the next index address entry because there is only one address entry at this

point. The entire file collection is encrypted using a pseudorandom function F and

the encryption key kenc , and then uploaded to IPFS to obtain the IPFS address,

which is a hash of the data content and can be used for data verification. Finally,

the encrypted index entry consists of [
f

idwi
: Iwi

,ipfsadd, B, d].

4) For each file f , its position in each keyword file collection is recorded and stored

in the state table. The final state table S consists of [fj : (
f

idwi
 , j)...(

f
idwn

 , m)][wi :

(
f

dwi
i , j), a, r, n, s].

Algorithm 1: Setup

Data:Given a private key K, the pseudorandom function {F, Gw}, the multiset hash function {H1,

H},keyword set {wi }, i ∈ {1, m}, file set { fj }, j ∈ {1, n}

Result: The index table I and the state table S.

Initialize a empty hash table as a state table.

for wi from w1 to wm do:

 Update state a,r,d,set search count s = 0, and file count n = 0.

f

idwi
=H1(wi , H({fj}))

 kw = Gw(K , wi||r)

 kenc = Gf (K , wi) //Key for encrypt files.

 fenc = F (Kenc , {fj}), j ∈ {1, n}

 ipfsadd = F(kenc,ipfs.put(fenc))

I w

i
= H1(kw , idw

i

f
)⊕⊥

 Initializing file deletion table B.

 for fj ∈ DB(wi) do

 if s[fj] is not exist then

 Add (fj , (
f

idwi
,j)) to state table S;

 else

A dynamic symmetric searchable encryption algorithm with an extended dual-index (…) 195

 S[fj].insert((fj , (
f

idwi
,j)));

 end

 end

 Add [
f

idwi
: Iwi

, ipfsadd, B, d] to index table I.

 Add [wi:
f

idwi
, a, r, n, s] to state table S.

 i++

end

Uploading encrypted index table I to the blockchain network.

2.2 Query algorithm

The query process primarily involves searching keyword indexes with three

main steps.

1) Generating search trapdoor. The user searches for the state table S locally

based on keywords, obtaining the corresponding index item address and other state

values. User use a pseudorandom function Gw , private key K,and the retrieved state

r to generate the search tag kw and encryption key kenc . After each search, the search

count s is updated. Then, the search trapdoor (kw , kenc , idw) is sent to the blockchain

network.

2) Executing the query. Once the blockchain network receives the query trapdoor,

the querying process begins as follows: Firstly, the index table is queried based on

the initial index item address
f

idw . It provides the corresponding encrypted data

ipfsadd, deletion table B, and deletion status d. Next, by applying the hash function

H1 (kw ,
f

idw) and XOR operation with Iw , the next address item is obtained. This

is because newly added data is temporarily stored in new index items and linked

with the old index items. Once the entire search is completed, the result set

containing ipfsadd is returned to the user.

3) Downloading the data and updating the index. After decrypting the IPFS

address using the decryption private key kenc, the user downloads the file collection

based on the IPFS address. For each file collection, the user checks the deletion flag

d and examines if there are any files marked for deletion. If there are files to be

deleted, the user updates each file collection based on the deletion table B. Once all

the updates are completed, the user checks if new file collections were added before

this query, indicated by the flag a. If new files were added user combines multiple

file collections and reuploads them to IPFS to obtain a new address value. This is

done to improve the efficiency of regular queries (i.e., without file updates). Then,

the corresponding ipfsadd for the blockchain index table, keyword index item
I wi ,

and local status table S are updated.

196 Yi Cai, Mingsheng Feng

Algorithm 2: Search

Data:Given a private key K, the pseudorandom function {F, Gw}, the multiset hash function {H1,

H},keyword w

Result: Matched result file collection.

//Generating query token for the user.

f
idwi

, a, r, n, s =S[w]

kenc=Gw(K,w)

kw=Gw(K,w||r)

s++

Sending (kw ,
f

idwi
) to the blockchain network.

//Executing the query on the blockchain.

Iw , ipfsadd, B, d = I[
f

idwi
]

I’w =Iw ,
f'

idw =
f

idw

// Initializing the result set Res.

Res.insert(ipfsadd, B, d)

while H1 (kw ,
f'

idw) ⊕ I′w is not equal ⊥ do

 idw=H1(kw,
f'

idw ⊕ I′w

f'

idw =idw

 I′w , newipfsadd, newB, newd=I[
f'

idw]

 Res.insert((newipfsadd,newB,newd))

end

Return the result set Res.

//The user downloads data and updates the index.

//The user decrypts using the private key kenc and obtains the plaintext IPFS address.

for ipfsi ∈ Res do

 datai=ipfs.get(ipfsi)

 id’=H1(w,H(datai))

 for f ∈ datai do

 Update S[f], (id’,nf)
f

(idw→ ,nf)

 if 0d  then

 Update datai with delete table B.

 d=0

 end

 end

 if 0a  then

 Integrate all file sets corresponding to w and upload the [datai , ..., dataj] to IPFS

 and get the corresponding IPFS address value newipfsadd.

A dynamic symmetric searchable encryption algorithm with an extended dual-index (…) 197

 A=0

 Iwi
= H1(kw,

f
idw)⊕⊥

 Send [
f

idwi
 , Iwi

 , newipfsadd, d] to blockchain to update the index table I.

 Update state of S[w].

 end

 Decrypt datai using the private key kenc to obtain the plaintext data Datai .

end

2.3 File insert algorithm

The insertion algorithm focuses on the insertion of existing keywords

because inserting new keywords follows the same index construction algorithm.

The file insertion process is as follows:

1) Obtain the state values a, r, n, s, index address entries
f

idwi
from the state table S

based on the keyword w.

2) Update the insertion flag a and the file count n.

3) Generate a new index entry
'f

idwi
based on the new file f and the hash function.

4) According to the search count s, update the search flag r. Then reset the value of

s.

5) Generate an encryption key kenc using a pseudorandom function and the private

key K. Encrypt the file and upload it to IPFS to obtain the corresponding address

value.

6) Using the hash function H1 and the new index entry address
'f

idwi
, generate a

keyword index Iwi
 and embed the previous index address entry, linking the old

data together. Then update the state table S and the index table I.

Algorithm 3: AddFile

Data:Given a private key K, the pseudorandom function {F, Gw}, the multiset hash function {H1,

H},new file f,state table S.

Result: The updated index table Iupt and the state table Supt.

for wi ∈ DB(f) do

f

idwi
, a, r, n, s =S[wi]

 a++

 n++

198 Yi Cai, Mingsheng Feng

i

f'
idw =H1(wi, H(f))

 if 0s  then

 r++,s=0

 end

kenc=Gw(K,wi) //Key for encrypt file.

fenc= F (kenc,{f})

ipfsadd = F(kenc, ipfs.put(fenc))

kw=Gw(K,wi||r)

Iwi
= H1(kw,

i

f'
idw)⊕

i

f
idw

S[wi] = (
i

f'
idw , a, r, n, s)

Add [
i

f'
idw : Iwi

, ipfsadd, B, d] to index table I′.

Add [f, (
i

f'
idw , n)] to state table S.

End

Send new index I′ to blockchain to update.

2.4 File delete algorithm

The scheme adopts a dual indexing structure, where the index address

entries corresponding to the files are recorded in the state table. When deleting a

file, it is only necessary to locate the corresponding index address entries in the

state table S based on the file f. These index address entries are then sent to the

blockchain, where the blockchain updates the deletion flag and the pending deletion

file table based on the index address entries. The actual file deletion is postponed

until the next query, reducing the time consumption associated with file deletion.

Algorithm 4: DeleteFile

Data: Given the file f for delete, and the state table S.

Result: The updated index table Iupt.

//User generate the trapdoor.

[(
f

idwi
, i), ..., (j

f
idw , j)] = S[f]

Send [(
f

idwi
, i), ..., (j

f
idw , j)] to blockchain.

//The blockchain network delete the file.

for (
f

idwi
,i), i ∈ (i, j) do

B, d = I[
f

idwi
]

d + +

A dynamic symmetric searchable encryption algorithm with an extended dual-index (…) 199

B.insert(i)

I[
f

idwi
] = B, d

end

3. Security Analysis

All data in this proposed solution is stored in encrypted form, adhering to

the security definition of searchable symmetric encryption.Nodes on the blockchain

only know the size of the index and cannot know any other potential information.

By using IPFS to store data, IPFS addresses data using content hashes, and the IPFS

address itself serves as data verification. Therefore, as long as the data can be

retrieved through a search, it indicates that the data is correct and accurate. When

dynamically updating and adding new files, new indexes are generated based on

new private keys and new state values. This prevents old search traps from linking

to new data, ensuring forward security. Additionally, newly inserted index entries

will be linked to existing data, ensuring the integrity of the entire dataset. Therefore,

the searchable encryption algorithm presented in this article is secure and reliable.

According to the security concepts of dynamic Searchable Symmetric

Encryption (DSSE), this article provides a formal security definition and proves the

forward security of the blockchain-based dynamic searchable encryption algorithm.

From the perspective of an attacker, we define three leakage function as follows:

Leakage function Lset for index construction: This function describes the

information that an attacker can obtain from the execution of the algorithm during

the index construction process. It includes the extent of leakage of input data used

to generate the index. Lset=(< |Iw|, |ipfsadd|, |B|, |d| >), where m identifies the count

of entries in the index table, and < |Iw|, |ipfsadd| > refers to the size or length of a

single encrypted index item.

Leakage function Lsearch for search: This function describes the information

that an attacker can obtain from the execution of the algorithm during the search

process. It includes the extent of leakage of search queries, search results, search

patterns, etc. Lsearch=(Kw, < |Iw|, |ipfsadd|, |B|, |d| >), where Kw represents the query

key corresponding to the keyword. During the querying process, it may lead to

index updates. <|Iw|, |ipfsadd|, |B|, |d| > is the size of new index.

Leakage function Lupdate for update: This function describes the information

that an attacker can obtain from the execution of the algorithm during the update

process. It includes the extent of leakage of updated files, types of update

operations, timestamps, etc. Lupdate=(op, < |Iw|, |ipfsadd|, |B|, |d| >u), where op

represents the two types of update operations, which are adding(add) or deleting

(del) files. u represents the number of newly added or deleted indexes.

200 Yi Cai, Mingsheng Feng

Definition 1. According to the definition of dynamic SSE algorithm, the

encryption search algorithm designed in this paper can be represented as (KeyGen,

Setup, Search, Update), where the leakage functions are represented as Lset, Lsearch,

Lupdate. Additionally, two probabilistic models, Real A (k) and Ideal ，SAs s (k), are

defined to measure the security of the algorithm. These models involve a

probabilistic polynomial time (PPT) attacker A and a simulator S .

Real A (k): First, the data owner generates a private key K using the KeyGen

algorithm, which serves as the initial key parameter for subsequent algorithms.

Attacker A provides a dataset DB(w). The data owner constructs the index using

the index construction algorithm Setup or updates the encrypted index using the

index update algorithm Update. Then, A adaptively constructs a series of

probabilistic polynomial time(PPT) search queries by executing the search

algorithm Search. Finally, A returns the observed results as output.

Ideal ，SAs s (k): Attacker A is given a dataset DB(w), and simulator S

utilizes the leakage functions Lset and Lupdate to simulate the encrypted index and the

update process for attacker A . Then, A adaptively constructs a series of

probabilistic polynomial-time (PPT) search queries. S utilizes the leakage function

Lsearch obtained from each simulated query to simulate search tokens and encrypted

data items. Finally, A returns the obtained results as output. Assuming that for all

PPT attackers A with leakage functions Lset, Lsearch, Lupdate, the dynamic searchable

encryption algorithm satisfies adaptive security, there exists a simulator S that

satisfies the following condition: Pr[Real A (k) = 1] - P r[Ideal ，SAs s (k) = 1] ≤

negl(k), where the function negl(k) is negligibly small.

Theorem 1. If G and F are secure pseudorandom functions, then the

algorithm with leakage functions (Lset, Lsearch, Lupdate) is adaptively secure in the

random oracle model.

Proof: The simulator S can utilize the leakage functions Lset and simulate

an indistinguishable encrypted index (Iw, ipfsadd, B, d) that contains m random

items, where each index item is a random string of length |Iw|+|ipfsadd|+|B|+|d|.

Through the leakage function Lsearch, S can simulate the first search trapdoor, and

the simulated result is indistinguishable from the real result. For queries, S

generates a random string representation of the query trapdoor Kw, performs a

random search, and can simulate a random string ipfsadd representing a query after

adding a file. The required ipfsadd to update can also be simulated by S , and the

simulated results are indistinguishable from the real results. It is important to note

that the leakage function Lupdate satisfies the definition of forward security. Based

on Lupdate, S follows the simulation process of constructing the index to generate

simulated additions. It is infeasible to determine the correlation between different

search trapdoors by encoding new strings into newly added index items.

Furthermore, the random oracle model exhibits pseudorandomness, and symmetric

encryption is semantically secure. As a result, the attacker A cannot distinguish

A dynamic symmetric searchable encryption algorithm with an extended dual-index (…) 201

between the outputs of the real probability model Real A (k) and the ideal

probability model Ideal ，SAs s (k). This proves the security of the designed encrypted

search algorithm within the defined leakage functions.

4. Experimental Analysis

4.1 Experimental Setup

The experiment implemented the searchable encryption scheme using

Python and Solidity. Python was used to implement various encryption methods,

while Solidity was used to simulate the Ethereum blockchain using the Ganache

Ethereum private chain tool. The encryption library in Python was used to

implement symmetric encryption with AES-128 and pseudo-random functions with

HMAC-256.The experiment utilized the publicly available dataset ”Eron Email”

and preprocessed it into a (keyword, file set) format. After preprocessing, files of

different sizes were associated with different keyword-file pairs. In this experiment,

the comparative scheme used was the dual index scheme [9]. We reproduced the

same scheme in the same experimental environment.

4.2 Experimental Metric

The main experimental metric is the runtime, which measures the time taken

by various algorithms in the searchable encryption scheme. Specifically, we tested

the time overhead of four algorithms: index construction, keyword searching, file

addition, and file deletion.

4.3 Analysis of Experimental Results

The result of index construction is shown in Fig. 1. It can be observed that

the proposed solution in this paper exhibits reasonable time overhead as the data

volume of index items increases from 10K to 160K, with the time ranging from 1.7

seconds to 13.0 seconds. Similarly, the dual-index scheme [9] was reproduced in

the experiment, and the time for index creation ranged from 2.4 seconds to 17.3

seconds. It can be observed that the proposed solution has a more favorable time

overhead. The main time overhead of the proposed solution lies in storing the index

table on the blockchain. Since each index entry is (w : IPFSaddress[f1, f2, ...fn]), that

is a keyword corresponds to a document set and the document set is stored as an

IPFS hash value, each index item has a fixed size of 256*2+ 8. The total number of

stored indexes is equal to the number of keywords. Therefore, the time overhead

for index construction mainly depends on the number of keywords. On the other

hand, the dual-index scheme stores a verification table on the blockchain, which

grows linearly with the number of files and has a size of 256*n where n is the

number of files. Additionally, the dual-index scheme adopts an index format where

each keyword corresponds to a file. The number of indexes and keywords is related

202 Yi Cai, Mingsheng Feng

to the number of files. Therefore, the dual-index scheme incurs more time overhead

in index construction and storage.

Fig. 1. Comparison Chart of Index Construction Time Overhead

Keyword queries were tested, as shown in Fig.2. The proposed approach

was tested under two different conditions: one without adding any files, where a

search keyword corresponds to only one index item, and another condition with

added data. From Fig. 2, it can be observed that for queries without adding any files

or updating the index, the time overhead remains consistent at around 0.07 seconds.

This is because the indexing storage format in the proposed approach is (w :

IPFSaddress[f1, f2, ...fn]), so querying the index table once provides all the results.

However, when files are added, the query time increases as multiple index items

need to be searched and the corresponding document set’s IPFS hash value needs

to be updated, merging multiple index items into one. Therefore, the query time

increases based on the number and size of files added. The query data in the graph,

ranging from 2k to 32k, corresponds to cases where files were added 1 to 5 times,

and the query time increases from 0.12 seconds to 0.45 seconds.

A dynamic symmetric searchable encryption algorithm with an extended dual-index (…) 203

Fig. 2. Comparison Chart of Keyword Query Time Overhead

In contrast, the dual-index scheme requires multiple queries during the

search since it stores data in the format (w : f), retrieving all files corresponding to

the keyword. Thus, the query time increases with the size of the file set.

Additionally, the dual-index scheme requires data verification, and the size of the

verification table is also related to the file set size. In our proposed approach,

verification is not needed as the IPFS hash value itself provides verification

functionality.

Fig. 3. Comparison Chart of Insert File Time Overhead

In the experiment, the dynamic update algorithm was tested for adding and

deleting files. As shown in Fig. 3, our proposed solution has a time cost ranging

from 0.82 seconds to 4.9 seconds when adding files from 2K to 32K. In comparison,

the dual-index scheme has a time cost ranging from 0.9 seconds to 13.2 seconds. It

can be observed that our solution outperforms the dual-index scheme in terms of

204 Yi Cai, Mingsheng Feng

performance. This is because in our proposed solution, when adding new files, they

are added in the form of (w : IPFSaddress[f1, f2, ...fn]), while the dual-index

scheme adds files in the form of (w : f). Consequently, our solution has a larger

number of additional index entries, resulting in relatively higher time costs. This

difference in time costs becomes more apparent, especially when adding larger

files.

Fig. 4. Comparison Chart of File Remove Time Overhead

As shown in Fig. 4, the experiment also evaluated the performance of file

deletion. The size of the deleted files ranged from 2K to 32K, and the time overhead

increased from 0.82 seconds to 6.98 seconds. When deleting files, the main

operation is to modify the index table on the blockchain. The deletion operation

requires modifying each index entry associated with the file. Similarly, the dual-

index scheme was tested, and its time overhead was similar to the proposed scheme,

increasing from 0.79 seconds to 7.2 seconds. The dual-index scheme also modifies

each associated index entry for the file and requires additional calculations when

searching for the next index entry, resulting in slightly more time. Since both

schemes only mark the files for deletion without actually deleting them, the overall

time overhead is relatively small.

Through experimental comparative analysis, it can be seen that our

proposed scheme has more advantages, especially in the query phase and file

addition phase, where it demonstrates higher efficiency.

5. Conclusion

This paper analyzes blockchain-based searchable encryption schemes and

addresses the issue of low efficiency in blockchain queries. To tackle this problem,

we propose a dynamic searchable encryption scheme based on blockchain.

A dynamic symmetric searchable encryption algorithm with an extended dual-index (…) 205

This scheme improves upon the existing algorithm based on a dual-index

structure, improving the storage and retrieval efficiency of index key-value pairs.

Leveraging the self-verification feature of IPFS in the algorithm enhances the

verification efficiency of data stored on the blockchain. Improving the mapping

relationship between keywords and files in index pairs enhances the multi-file hit

rate in searches. Furthermore, by linking the initially added index items to the head

of the index chain, forward security is ensured.

We provide a security analysis and proof for the proposed scheme, verifying

its security guarantees. Finally, through a comparative experimental study, we

compare our scheme with the dual-index scheme, validating the feasibility and

advantages of our approach. Overall, this paper presents a viable and advantageous

solution for blockchain-based searchable encryption. Our scheme enhances query

efficiency and provides secure data storage and efficient secure queries. It

demonstrates practical potential in protecting sensitive information on the

blockchain.

Acknowledgment

This work is funded by the Science and Technology Program of Guangzhou,

China (202102080644).

R E F E R E N C E S

[1] D. Sikeridis, A. Bidram, M. Devetsikiotis, and M. J. Reno, “A blockchain-based mechanism for

secure data exchange in smart grid protection systems,” in 2020 IEEE 17th Annual Consumer

Communications & Networking Conference (CCNC). IEEE, 2020, pp. 1–6.

[2] V. Dehalwar, M. L. Kolhe, S. Deoli, and M. K. Jhariya, “Blockchainbased trust management

and authentication of devices in smart grid,” Cleaner Engineering and Technology, vol. 8, p.

100481, 2022.

[3] A. Mosteiro-Sanchez, M. Barcelo, J. Astorga, and A. Urbieta, “End to end secure data exchange

in value chains with dynamic policy updates,” arXiv preprint arXiv:2201.06335, 2022.

[4] Z. A. Hussien, H. A. Abdulmalik, M. A. Hussain, V. O. Nyangaresi, J. Ma, Z. A. Abduljabbar,

and I. Q. Abduljaleel, “Lightweight integrity preserving scheme for secure data exchange in

cloud-based iot systems,” Applied Sciences, vol. 13, no. 2, p. 691, 2023.

[5] Y. S. Kıyak, A. Poor, Işıl İrem Budakoğlu, Özlem Coşkun, “Holochain: A novel technology

without scalability bottlenecks of blockchain for secure data exchange in health professions

education,” Discover Education, vol. 1, no. 1, p. 13, 2022.

[6] S. Hu, C. Cai, Q. Wang, C. Wang, X. Luo, and K. Ren, “Searching an encrypted cloud meets

blockchain: A decentralized, reliable and fair realization,” in IEEE INFOCOM 2018 - IEEE

Conference on Computer Communications, 2018, pp. 792–800.

[7] C. Ge, W. Susilo, J. Baek, Z. Liu, J. Xia, and L. Fang, “Revocable attribute-based encryption

with data integrity in clouds,” IEEE Transactions on Dependable and Secure Computing, vol.

19, no. 5, pp. 2864–2872, 2022.

[8] H. Li, F. Zhang, J. He, and H. Tian, “A searchable symmetric encryption scheme using

blockchain,” CoRR, 2017. [Online]. Available: http://arxiv.org/abs/1711.01030

206 Yi Cai, Mingsheng Feng

[9] H. Li, H. Zhou, H. Huang, and X. Jia, “Verifiable encrypted search with forward secure updates

for blockchain-based system,” in Wireless Algorithms, Systems, and Applications, D. Yu, F.

Dressler, and J. Yu, Eds. Cham: Springer International Publishing, 2020, pp. 206–217.

[10] Y. Zhao, Y. Yu, Y. Li, G. Han, and X. Du, “Machine learning based privacy-preserving fair

data trading in big data market,” Information Sciences, vol. 478, pp. 449–460, 2019.

[11] W. Q. Qiao R, Cao Y, “Traceability mechanism of dynamic data in internet of things based on

consortium blockchain,” Journal of Software, vol. 30, no. 6, p. 16141631, 2019.

[12] Z. Wang, Y. Tian, and J. Zhu, “Data sharing and tracing scheme based on blockchain,” in 2018

8th international conference on logistics, Informatics and Service Sciences (LISS). IEEE,

2018, pp. 1–6.

[13] S. Delgado-Segura, C. Pérez-Solà, G. Navarro-Arribas, and J. Herrera-Joancomartí, “A fair

protocol for data trading based on bitcoin transactions,” Future Generation Computer

Systems, vol. 107, pp. 832–840, 2020.

[14] Y. Chen, J. Guo, C. Li, and W. Ren, “Fade: a blockchain-based fair data exchange scheme for

big data sharing,” Future Internet, vol. 11, no. 11, p. 225, 2019.

[15] C.-H. Liao, X.-Q. Guan, J.-H. Cheng, and S.-M. Yuan, “Blockchainbased identity management

and access control framework for open banking ecosystem,” Future Generation Computer

Systems, vol. 135, pp. 450–466, 2022.

[16] S. Alshehri, O. Bamasaq, D. Alghazzawi, and A. Jamjoom, “Dynamic secure access control

and data sharing through trusted delegation and revocation in a blockchain-enabled cloud-iot

environment,” IEEE Internet of Things Journal, vol. 10, no. 5, pp. 4239–4256, 2022.

[17] H. Yin, J. Zhang, Y. Xiong, L. Ou, F. Li, S. Liao, and K. Li, “Cp-abse: A ciphertext-policy

attribute-based searchable encryption scheme,” IEEE Access, vol. 7, pp. 5682–5694, 2019.

[18] M. B. Hinojosa-Cabello, M. Morales-Sandoval, and H. M. Marin-Castro, “Novel constructions

for ciphertext-policy attribute-based searchable encryption,” in 2022 IEEE Mexican

International Conference on Computer Science (ENC). IEEE, 2022, pp. 1–8.

[19] Y. Wang, S.-F. Sun, J. Wang, J. K. Liu, and X. Chen, “Achieving searchable encryption scheme

with search pattern hidden,” IEEE Transactions on Services Computing, vol. 15, no. 2, pp.

1012–1025, 2020.

[20] J. Su, L. Zhang, and Y. Mu, “Ba-rmkabse: blockchain-aided ranked multi-keyword attribute-

based searchable encryption with hiding policy for smart health system,” Future Generation

Computer Systems, vol. 132, pp. 299–309, 2022.

