U.P.B. Sci. Bull., Series C, Vol. 86, Iss. 1, 2024 ISSN 2286-3540

A DYNAMIC SYMMETRIC SEARCHABLE ENCRYPTION
ALGORITHM WITH AN EXTENDED DUAL-INDEX
STRUCTURE LEVERAGING IPFS

Yi CAI**, Mingsheng FENG?

Traditional encryption methods typically encrypt the entire dataset and
searching and querying can only be performed after decryption. Searchable
Encryption enables searching, matching, and querying operations to be performed on
encrypted data, providing search results without revealing plaintext information.
Dynamic Symmetric Searchable Encryption allows dynamic insertion, updating, and
deletion operations to be performed on encrypted data while maintaining the data's
searchability and security. This paper improves the dynamic symmetric searchable
encryption algorithm based on a dual-index structure. It extends the index structure
and utilizes the IPFS self-verification mechanism to achieve rapid verification,
thereby reducing the number of queries and time required. Additionally, it reduces
the data storage costs on the blockchain. Finally, the proposed approach is tested on
the Ethereum blockchain using the publicly available dataset Eron email, and the
results effectively demonstrate the superiority of this solution in terms of time
overhead.

Keywords: Blockchain, IPFS, Dynamic searchable encryption, Index
1. Introduction

Currently, many distributed storage and application systems have
increasingly high-security requirements for data interaction. For example, smart
grids [1] [2] have introduced a blockchain-based distributed architecture to protect
the security of data interactions. During the process of data transactions in those
Secure Data Exchange Systems (SDES) [3-5], caching mechanisms and
cryptographic hash functions are often employed to improve data retrieval
efficiency and reduce the number of data uploads to the system. The caching data
is stored in the blockchain and it needs to keep privacy and security during the
search process. So, the cache transaction data will be encrypted before upload. And
searchable encryption techniques are used to achieve the search functionality while
ensuring privacy and security.

1 Prof., School of Computer Engineering, Guangzhou City University of Technology, Guangzhou,
China, Corresponding author’s e-mail: caiyi@gcu.edu.cn

2 Eng., School of Software Engineering, South China University of Technology, Guangzhou, China,
e-mail: fengmingsheng@bytedance.com

192 Yi Cai, Mingsheng Feng

Most searchable encryption schemes [6][7] are designed for cloud storage,
but there are few searchable encryption schemes based on blockchain [8][9]. In this
paper, we first analyze other searchable encryption schemes based on blockchain.
Then, addressing their limitations, we propose a dynamic searchable encryption
scheme based on blockchain. We provide algorithm definitions and security proofs
for the proposed scheme and finally validate the feasibility and advantages of the
scheme through experimental analysis.

1.1 Related Work

Many scholars are dedicated to addressing various issues in data trading.
Some researchers [10-12] are dedicated to addressing the contentiousness of data,
including concerns such as data sources' accuracy, data integrity, and data
authenticity. Another area of research [13] focuses on the security of the transaction
process, ensuring that both parties cannot repudiate the transaction and that privacy
is not compromised. Furthermore, there is research being conducted on secure and
efficient data retrieval [6-9]. Lastly, researchers are exploring access control issues
for data commodities, such as granting and revoking access control permissions
[14-16] or using Ciphertext-Policy Attribute-Based Searchable Encryption [17-18]
and also focus on search mode hidden [19-20], especially in the context of health
data management.

Traditional applications of searchable encryption are mostly found in cloud
storage, where encrypted data is stored along with the corresponding indices on
cloud servers. Current searchable encryption schemes include public-key
encryption search, symmetric encryption search, fuzzy search, Boolean search, and
others. However, most of these schemes are based on a central server, and the
correctness of the search results returned by an untrusted central server cannot be
guaranteed.

With the development of blockchain technology, there have also been
searchable encryption schemes related to blockchain. For example, in Scheme [8],
a Bitcoin framework is used to achieve fast retrieval of data stored on the
blockchain. However, this scheme does not consider dynamic updates. Scheme [6]
combines dynamic searchable encryption with Ethereum, storing the index and
encrypted data on the Ethereum blockchain. It designs a fair data retrieval scheme
using smart contracts. However, storing both the index and encrypted data on the
blockchain incurs significant storage costs.

Scheme [9] utilizes a dual-index structure to achieve fast update operations.
This scheme also considers the verification of search result sets, with the
verification data stored on the blockchain. However, the index data is stored in a
one-to-one format using keyword files (w, f), and the number of index items
increases with the growth of files. Similarly, the verification data increases linearly
with the growth of the file set and the verification process adds to the query time.

A dynamic symmetric searchable encryption algorithm with an extended dual-index (...) 193

1.2 Our Contribution

This paper proposes a blockchain-based dynamic searchable encryption
scheme based on the foundation of Scheme [9] and integrating blockchain
technology. Firstly, the scheme employs a dual-index structure to enable efficient
dynamic updates. Secondly, by storing encrypted files on IPFS and referencing their
IPFS hash values on the blockchain, the scheme ensures secure and efficient data
access while reducing the storage load of the blockchain. Thirdly, it stores the
document set associated with a keyword using IPFS, reducing the number of queries
and query time. Finally, it provides a forward security guarantee by linking new
index items to the head of the existing index chain. By incorporating these features,
the proposed scheme aims to address the limitations of previous approaches and
provide an advanced solution for dynamic searchable encryption based on
blockchain.

2. Scheme Construction

The main components of this scheme include index construction, keyword
search, file addition, and file deletion. The main steps are as follows:

2.1 Index construction algorithm

The index construction algorithm is executed by the data owner and
generates two outputs: the index table | and the state table S. The index table 1 is
stored on the blockchain network, while the state table S is stored locally on the
user’s device. The index table | contains the mappings between keywords and files,
allowing for efficient retrieval of files based on the index. The state table S
maintains various status information, such as the search frequency of keywords, file
additions, and deletions.

The index in this scheme consists of a dual-index structure, which includes
a keyword index and a file index. The keyword index enables fast file retrieval. The

index is composed of the index table address entry idw , the keyword index entry
I ;the encrypted data IPFS storage address ipfsadd, and the file deletion table B.

During a query operation, the search trapdoor allows for quick location of the
address in the index table, leading to the corresponding data retrieval. The file index

contains the file id and the set of corresponding index table address entries ['dW B] .
When adding or deleting files, this index facilitates quick location of the index
entries for updates. The index construction process is as follows:

1) For each keyword w; i {1,m}, update the status a ,r,d ,search count s, and file

count n. a records the file addition operation corresponding to the keyword, r
records the search operation corresponding to the keyword, and d records the file
deletion operation corresponding to the keyword. a, r, d ensure forward security of

194 Yi Cai, Mingsheng Feng

the search. s is initialized to 0, and n represents the number of files corresponding
to the keyword.

2) For each keyword w; , an index address entry iol\,fvi is generated using the private

key K, a pseudorandom function G , a hash function Hi , and flags a and r. The
encryption key Kenc is used for file encryption. The search trapdoor k is related to
the private key K and the search state r, while the encryption key is only related to
the search state r.

3) For each keyword, the keyword index lw is generated using the hash function H

and the index address entry id\,fvi . In the index construction phase, the Iw does not

embed the next index address entry because there is only one address entry at this
point. The entire file collection is encrypted using a pseudorandom function F and
the encryption key kenc , and then uploaded to IPFS to obtain the IPFS address,
which is a hash of the data content and can be used for data verification. Finally,

the encrypted index entry consists of [id"r’i g Jipfsadd, B, d].
4) For each file f, its position in each keyword file collection is recorded and stored

in the state table. The final state table S consists of [fj : (id\,]\c,i , j)...(id\,f,n , M][wi :

(id\,r,i j),a, rn,s].

Algorithm 1: Setup

Data:Given a private key K, the pseudorandom function {F, Gy}, the multiset hash function {H,
H},keyword set {w; }, i € {1, m}, fileset { f;},j €{1, n}

Result: The index table | and the state table S.

Initialize a empty hash table as a state table.
for w; from w; to wy, do:
Update state a,r,d,set search count s = 0, and file count n = 0.

o f
idy, =Hi(wi, H{T;}))

kW = Gw(K , W|||r)

kenc = Gt (K, w;) //Key for encrypt files.
fenc=F (Kenc, {fJ})vJ E{l, n}

ipfsadd = F(Kenc,ipfs.put(fenc))

1= Hi(Ky,id},)P
Initializing file deletion table B.
for f; € DB(w;) do

if s[f;] is not exist then

Add (f, (id\,]\c,i J)) to state table S;

else

A dynamic symmetric searchable encryption algorithm with an extended dual-index (...) 195

S[fjl.insert((f;, (idvai D))

end
end

Add [id\,]:,i : IWi , ipfsadd, B, d] to index table I.

Add [wi: idv]:,i , d, I, n, s] to state table S.
i++
end
Uploading encrypted index table | to the blockchain network.

2.2 Query algorithm

The query process primarily involves searching keyword indexes with three
main steps.
1) Generating search trapdoor. The user searches for the state table S locally
based on keywords, obtaining the corresponding index item address and other state
values. User use a pseudorandom function Gw , private key K,and the retrieved state
I to generate the search tag kw and encryption key kenc . After each search, the search
count s is updated. Then, the search trapdoor (kw , Kenc , idw) is sent to the blockchain
network.
2) Executing the query. Once the blockchain network receives the query trapdoor,
the querying process begins as follows: Firstly, the index table is queried based on

the initial index item address idv':, . It provides the corresponding encrypted data
ipfsadd, deletion table B, and deletion status d. Next, by applying the hash function
Hi (kw, idv':,) and XOR operation with lw , the next address item is obtained. This

is because newly added data is temporarily stored in new index items and linked
with the old index items. Once the entire search is completed, the result set
containing ipfsadd is returned to the user.

3) Downloading the data and updating the index. After decrypting the IPFS
address using the decryption private key Kenc, the user downloads the file collection
based on the IPFS address. For each file collection, the user checks the deletion flag
d and examines if there are any files marked for deletion. If there are files to be
deleted, the user updates each file collection based on the deletion table B. Once all
the updates are completed, the user checks if new file collections were added before
this query, indicated by the flag a. If new files were added user combines multiple
file collections and reuploads them to IPFS to obtain a new address value. This is

done to improve the efficiency of regular queries (i.e., without file updates). Then,

the corresponding ipfsadd for the blockchain index table, keyword index item |

and local status table S are updated.

196 Yi Cai, Mingsheng Feng

Algorithm 2: Search

Data:Given a private key K, the pseudorandom function {F, Gy}, the multiset hash function {H,
H},keyword w

Result: Matched result file collection.

/IGenerating query token for the user.
id\,]\c,i ,a,r,n,s=S[w]

Kenc=Gw(K,w)
kw=Gw(K,w]|r)
S++

Sending (Kw , id\,]:,i) to the blockchain network.

/[Executing the query on the blockchain.
l , ipfsadd, B, d = |[io|\,fvi]

Pw =ly, id) =id,
/I Initializing the result set Res.
Res.insert(ipfsadd, B, d)

while Hy (Kw , idvr,) @ I'wis notequal L do
idw=Ha(kw, ic\ @ I'y

idvr, Zidw
I'w, newipfsadd, newB, newd:I[idVT,]
Res.insert((newipfsadd,newB,newd))
end
Return the result set Res.
/IThe user downloads data and updates the index.
/IThe user decrypts using the private key kenc and obtains the plaintext IPFS address.
for ipfsi € Res do
datai=ipfs.get(ipfs;)
id’=H1(w,H(data;))
for f € data; do

Update S[f], (id’,ns) — (idvl:,)

if d = 0then
Update data; with delete table B.
d=0
end
end
if a=0then
Integrate all file sets corresponding to w and upload the [datai , ..., data;] to IPFS
and get the corresponding IPFS address value newipfsadd.

A dynamic symmetric searchable encryption algorithm with an extended dual-index (...) 197

A=0
= Hilka, id,)L

Send [id\,]:,i , |Wi , newipfsadd, d] to blockchain to update the index table I.

Update state of S[w].
end
Decrypt data; using the private key Kenc to obtain the plaintext data Data; .
end

2.3 File insert algorithm

The insertion algorithm focuses on the insertion of existing keywords
because inserting new keywords follows the same index construction algorithm.
The file insertion process is as follows:

1) Obtain the state values g, r, n, s, index address entries id\,':,i from the state table S

based on the keyword w.
2) Update the insertion flag a and the file count n.

3) Generate a new index entry idvf,i' based on the new file f and the hash function.

4) According to the search count s, update the search flag r. Then reset the value of
S.

5) Generate an encryption key kgnc Using a pseudorandom function and the private

key K. Encrypt the file and upload it to IPFS to obtain the corresponding address
value.

6) Using the hash function Hi and the new index entry address id\,‘\(,i' , generate a
keyword index |Wi and embed the previous index address entry, linking the old

data together. Then update the state table S and the index table I.

Algorithm 3: AddFile

Data:Given a private key K, the pseudorandom function {F, Gy}, the multiset hash function {H,
H},new file f,state table S.

Result: The updated index table Iy and the state table Syp.

for wi € DB(f) do

id\,]:,i , @, 1, n,s=S[wi]

a++
n++

198 Yi Cai, Mingsheng Feng

icl\,fv'i =Ha(wi, H(P))

if s=0 then

r++,s=0
end
Kenc=Gw(K,wi) //Key for encrypt file.
fenc= F (kenc,{f})
ipfsadd = F(Kenc, ipfs.put(fenc))
kw=Gw(K,wil|r)

g = ks id,f)@ id
| |
S[wi] = (idv]:,. ,a,1,n,s)
|
Add [id,] Ay pfsadd, B, d] to index table I”
|

Add [f, (idvl\‘,. , N)] to state table S.
|

End
Send new index 1’ to blockchain to update.

2.4 File delete algorithm

The scheme adopts a dual indexing structure, where the index address
entries corresponding to the files are recorded in the state table. When deleting a
file, it is only necessary to locate the corresponding index address entries in the
state table S based on the file f. These index address entries are then sent to the
blockchain, where the blockchain updates the deletion flag and the pending deletion
file table based on the index address entries. The actual file deletion is postponed
until the next query, reducing the time consumption associated with file deletion.

Algorithm 4: DeleteFile

Data: Given the file f for delete, and the state table S.

Result: The updated index table ly:.

//User generate the trapdoor.

L f f
Send [(id\,]:,i) B (id\,]:,j , 1)] to blockchain.
/[The blockchain network delete the file.
for(id\,r,i A),1 € (i,j)do

B.d= |[io|\,fvi 1

d++

A dynamic symmetric searchable encryption algorithm with an extended dual-index (...) 199

B.insert(i)
I[id\,]:,i 1=8B.,d

end

3. Security Analysis

All data in this proposed solution is stored in encrypted form, adhering to
the security definition of searchable symmetric encryption.Nodes on the blockchain
only know the size of the index and cannot know any other potential information.
By using IPFS to store data, IPFS addresses data using content hashes, and the IPFS
address itself serves as data verification. Therefore, as long as the data can be
retrieved through a search, it indicates that the data is correct and accurate. When
dynamically updating and adding new files, new indexes are generated based on
new private keys and new state values. This prevents old search traps from linking
to new data, ensuring forward security. Additionally, newly inserted index entries
will be linked to existing data, ensuring the integrity of the entire dataset. Therefore,
the searchable encryption algorithm presented in this article is secure and reliable.

According to the security concepts of dynamic Searchable Symmetric
Encryption (DSSE), this article provides a formal security definition and proves the
forward security of the blockchain-based dynamic searchable encryption algorithm.
From the perspective of an attacker, we define three leakage function as follows:

Leakage function Lse for index construction: This function describes the
information that an attacker can obtain from the execution of the algorithm during
the index construction process. It includes the extent of leakage of input data used
to generate the index. Lset=(< |lw|, |ipfsadd|, |B|, |d| >), where m identifies the count
of entries in the index table, and < |l|, |ipfsadd| > refers to the size or length of a
single encrypted index item.

Leakage function Lsearch fOr search: This function describes the information
that an attacker can obtain from the execution of the algorithm during the search
process. It includes the extent of leakage of search queries, search results, search
patterns, etc. Lsearch=(Kw, < [lw|, [ipfsadd|, |B|, |d| >), where Ky represents the query
key corresponding to the keyword. During the querying process, it may lead to
index updates. <|lw|, [ipfsadd|, |B|, |d| > is the size of new index.

Leakage function Lupdate fOr update: This function describes the information
that an attacker can obtain from the execution of the algorithm during the update
process. It includes the extent of leakage of updated files, types of update
operations, timestamps, etc. Lupdate=(0p, < |lw|, |ipfsadd|, |B|, |d| >u), where op
represents the two types of update operations, which are adding(add) or deleting
(del) files. u represents the number of newly added or deleted indexes.

200 Yi Cai, Mingsheng Feng

Definition 1. According to the definition of dynamic SSE algorithm, the
encryption search algorithm designed in this paper can be represented as (KeyGen,
Setup, Search, Update), where the leakage functions are represented as Lset, Lsearch,
Lupdate. Additionally, two probabilistic models, Real A (k) and Ideal As s: (k), are
defined to measure the security of the algorithm. These models involve a
probabilistic polynomial time (PPT) attacker A and a simulator s .

Real A (k): First, the data owner generates a private key K using the KeyGen
algorithm, which serves as the initial key parameter for subsequent algorithms.
Attacker A provides a dataset DB(w). The data owner constructs the index using
the index construction algorithm Setup or updates the encrypted index using the
index update algorithm Update. Then, A adaptively constructs a series of
probabilistic polynomial time(PPT) search queries by executing the search
algorithm Search. Finally, A returns the observed results as output.

Ideal As s (k): Attacker A is given a dataset DB(w), and simulator s
utilizes the leakage functions Lset and Lupdate to simulate the encrypted index and the
update process for attacker A . Then, A adaptively constructs a series of
probabilistic polynomial-time (PPT) search queries. s utilizes the leakage function
Lsearch Obtained from each simulated query to simulate search tokens and encrypted
data items. Finally, A returns the obtained results as output. Assuming that for all
PPT attackers A with leakage functions Lset, Lsearch, Lupdate, the dynamic searchable
encryption algorithm satisfies adaptive security, there exists a simulator s that
satisfies the following condition: Pr[Real A (k) = 1] - P r[ldeal As s (k) = 1] <
negl(k), where the function negl(k) is negligibly small.

Theorem 1. If G and F are secure pseudorandom functions, then the
algorithm with leakage functions (Lset, Lsearch, Lupdate) IS adaptively secure in the
random oracle model.

Proof: The simulator s can utilize the leakage functions Lset and simulate
an indistinguishable encrypted index (lw, ipfsadd, B, d) that contains m random
items, where each index item is a random string of length |lw|+|ipfsadd|+|B|+|d|.
Through the leakage function Lsearch, S can simulate the first search trapdoor, and
the simulated result is indistinguishable from the real result. For queries, s
generates a random string representation of the query trapdoor Kw, performs a
random search, and can simulate a random string ipfsadd representing a query after
adding a file. The required ipfsadd to update can also be simulated by s, and the
simulated results are indistinguishable from the real results. It is important to note
that the leakage function Lupgate Satisfies the definition of forward security. Based
on Lupdate, S follows the simulation process of constructing the index to generate
simulated additions. It is infeasible to determine the correlation between different
search trapdoors by encoding new strings into newly added index items.
Furthermore, the random oracle model exhibits pseudorandomness, and symmetric
encryption is semantically secure. As a result, the attacker A cannot distinguish

A dynamic symmetric searchable encryption algorithm with an extended dual-index (...) 201

between the outputs of the real probability model RealA (k) and the ideal
probability model Ideal As s (k). This proves the security of the designed encrypted
search algorithm within the defined leakage functions.

4. Experimental Analysis

4.1 Experimental Setup

The experiment implemented the searchable encryption scheme using
Python and Solidity. Python was used to implement various encryption methods,
while Solidity was used to simulate the Ethereum blockchain using the Ganache
Ethereum private chain tool. The encryption library in Python was used to
implement symmetric encryption with AES-128 and pseudo-random functions with
HMAC-256.The experiment utilized the publicly available dataset ”Eron Email”
and preprocessed it into a (keyword, file set) format. After preprocessing, files of
different sizes were associated with different keyword-file pairs. In this experiment,
the comparative scheme used was the dual index scheme [9]. We reproduced the
same scheme in the same experimental environment.

4.2 Experimental Metric

The main experimental metric is the runtime, which measures the time taken
by various algorithms in the searchable encryption scheme. Specifically, we tested
the time overhead of four algorithms: index construction, keyword searching, file
addition, and file deletion.

4.3 Analysis of Experimental Results

The result of index construction is shown in Fig. 1. It can be observed that
the proposed solution in this paper exhibits reasonable time overhead as the data
volume of index items increases from 10K to 160K, with the time ranging from 1.7
seconds to 13.0 seconds. Similarly, the dual-index scheme [9] was reproduced in
the experiment, and the time for index creation ranged from 2.4 seconds to 17.3
seconds. It can be observed that the proposed solution has a more favorable time
overhead. The main time overhead of the proposed solution lies in storing the index
table on the blockchain. Since each index entry is (w : IPFSaddress[f1, 2, ...fn]), that
is a keyword corresponds to a document set and the document set is stored as an
IPFS hash value, each index item has a fixed size of 256*2+ 8. The total number of
stored indexes is equal to the number of keywords. Therefore, the time overhead
for index construction mainly depends on the number of keywords. On the other
hand, the dual-index scheme stores a verification table on the blockchain, which
grows linearly with the number of files and has a size of 256*n where n is the
number of files. Additionally, the dual-index scheme adopts an index format where
each keyword corresponds to a file. The number of indexes and keywords is related

202 Yi Cai, Mingsheng Feng

to the number of files. Therefore, the dual-index scheme incurs more time overhead
in index construction and storage.

25

20

-

5

Time/s

-

0

10k 20k 40k 80k 160k
File size

Fig. 1. Comparison Chart of Index Construction Time Overhead

Keyword queries were tested, as shown in Fig.2. The proposed approach
was tested under two different conditions: one without adding any files, where a
search keyword corresponds to only one index item, and another condition with
added data. From Fig. 2, it can be observed that for queries without adding any files
or updating the index, the time overhead remains consistent at around 0.07 seconds.
This is because the indexing storage format in the proposed approach is (w :
IPFSaddress[f1, 2, ...fn]), so querying the index table once provides all the results.
However, when files are added, the query time increases as multiple index items
need to be searched and the corresponding document set’s IPFS hash value needs
to be updated, merging multiple index items into one. Therefore, the query time
increases based on the number and size of files added. The query data in the graph,
ranging from 2k to 32k, corresponds to cases where files were added 1 to 5 times,
and the query time increases from 0.12 seconds to 0.45 seconds.

A dynamic symmetric searchable encryption algorithm with an extended dual-index (...) 203

1.2
— Nofile added
=== dual-index
== file added
1.0 p)
0.8
) /
£ 0.6 e
=
/"‘/ e
0.4 = e
.»"‘-“’ s g
L P
0. 2mrget et
T
p 4
.,__—/0__\”___—.’———"
0.0
2k 4k 8k 16k 32k
File size

Fig. 2. Comparison Chart of Keyword Query Time Overhead

In contrast, the dual-index scheme requires multiple queries during the
search since it stores data in the format (w : f), retrieving all files corresponding to
the keyword. Thus, the query time increases with the size of the file set.
Additionally, the dual-index scheme requires data verification, and the size of the
verification table is also related to the file set size. In our proposed approach,
verification is not needed as the IPFS hash value itself provides verification
functionality.

15

——our scheme
===dual-index.

»
/

Time/s

0
2k 4k 8k 16k 32k

File size
Fig. 3. Comparison Chart of Insert File Time Overhead

In the experiment, the dynamic update algorithm was tested for adding and
deleting files. As shown in Fig. 3, our proposed solution has a time cost ranging
from 0.82 seconds to 4.9 seconds when adding files from 2K to 32K. In comparison,
the dual-index scheme has a time cost ranging from 0.9 seconds to 13.2 seconds. It
can be observed that our solution outperforms the dual-index scheme in terms of

204 Yi Cai, Mingsheng Feng

performance. This is because in our proposed solution, when adding new files, they
are added in the form of (w : IPFSaddress[fl, 2, ...fn]), while the dual-index
scheme adds files in the form of (w : f). Consequently, our solution has a larger
number of additional index entries, resulting in relatively higher time costs. This
difference in time costs becomes more apparent, especially when adding larger
files.

10

Time/s

0

2k 4k 8k 16k 32k
File size

Fig. 4. Comparison Chart of File Remove Time Overhead

As shown in Fig. 4, the experiment also evaluated the performance of file
deletion. The size of the deleted files ranged from 2K to 32K, and the time overhead
increased from 0.82 seconds to 6.98 seconds. When deleting files, the main
operation is to modify the index table on the blockchain. The deletion operation
requires modifying each index entry associated with the file. Similarly, the dual-
index scheme was tested, and its time overhead was similar to the proposed scheme,
increasing from 0.79 seconds to 7.2 seconds. The dual-index scheme also modifies
each associated index entry for the file and requires additional calculations when
searching for the next index entry, resulting in slightly more time. Since both
schemes only mark the files for deletion without actually deleting them, the overall
time overhead is relatively small.

Through experimental comparative analysis, it can be seen that our
proposed scheme has more advantages, especially in the query phase and file
addition phase, where it demonstrates higher efficiency.

5. Conclusion

This paper analyzes blockchain-based searchable encryption schemes and
addresses the issue of low efficiency in blockchain queries. To tackle this problem,
we propose a dynamic searchable encryption scheme based on blockchain.

A dynamic symmetric searchable encryption algorithm with an extended dual-index (...) 205

This scheme improves upon the existing algorithm based on a dual-index
structure, improving the storage and retrieval efficiency of index key-value pairs.
Leveraging the self-verification feature of IPFS in the algorithm enhances the
verification efficiency of data stored on the blockchain. Improving the mapping
relationship between keywords and files in index pairs enhances the multi-file hit
rate in searches. Furthermore, by linking the initially added index items to the head
of the index chain, forward security is ensured.

We provide a security analysis and proof for the proposed scheme, verifying
its security guarantees. Finally, through a comparative experimental study, we
compare our scheme with the dual-index scheme, validating the feasibility and
advantages of our approach. Overall, this paper presents a viable and advantageous
solution for blockchain-based searchable encryption. Our scheme enhances query
efficiency and provides secure data storage and efficient secure queries. It
demonstrates practical potential in protecting sensitive information on the
blockchain.

Acknowledgment

This work is funded by the Science and Technology Program of Guangzhou,
China (202102080644).

REFERENCES

[1] D. Sikeridis, A. Bidram, M. Devetsikiotis, and M. J. Reno, “A blockchain-based mechanism for
secure data exchange in smart grid protection systems,” in 2020 IEEE 17th Annual Consumer
Communications & Networking Conference (CCNC). IEEE, 2020, pp. 1-6.

[2] V. Dehalwar, M. L. Kolhe, S. Deoli, and M. K. Jhariya, “Blockchainbased trust management
and authentication of devices in smart grid,” Cleaner Engineering and Technology, vol. 8, p.
100481, 2022.

[3] A. Mosteiro-Sanchez, M. Barcelo, J. Astorga, and A. Urbieta, “End to end secure data exchange
in value chains with dynamic policy updates,” arXiv preprint arXiv:2201.06335, 2022.

[4] Z. A. Hussien, H. A. Abdulmalik, M. A. Hussain, V. O. Nyangaresi, J. Ma, Z. A. Abduljabbar,
and I. Q. Abduljaleel, “Lightweight integrity preserving scheme for secure data exchange in
cloud-based iot systems,” Applied Sciences, vol. 13, no. 2, p. 691, 2023.

[5] Y. S. Kuyak, A. Poor, Isil irem Budakoglu, Ozlem Coskun, “Holochain: A novel technology
without scalability bottlenecks of blockchain for secure data exchange in health professions
education,” Discover Education, vol. 1, no. 1, p. 13, 2022.

[6] S. Hu, C. Cai, Q. Wang, C. Wang, X. Luo, and K. Ren, “Searching an encrypted cloud meets
blockchain: A decentralized, reliable and fair realization,” in IEEE INFOCOM 2018 - IEEE
Conference on Computer Communications, 2018, pp. 792-800.

[7]1 C. Ge, W. Susilo, J. Baek, Z. Liu, J. Xia, and L. Fang, “Revocable attribute-based encryption
with data integrity in clouds,” IEEE Transactions on Dependable and Secure Computing, vol.
19, no. 5, pp. 28642872, 2022.

[8] H. Li, F. Zhang, J. He, and H. Tian, “A searchable symmetric encryption scheme using
blockchain,” CoRR, 2017. [Online]. Available: http://arxiv.org/abs/1711.01030

206 Yi Cai, Mingsheng Feng

[9] H. Li, H. Zhou, H. Huang, and X. Jia, “Verifiable encrypted search with forward secure updates
for blockchain-based system,” in Wireless Algorithms, Systems, and Applications, D. Yu, F.
Dressler, and J. Yu, Eds. Cham: Springer International Publishing, 2020, pp. 206-217.

[10] Y. Zhao, Y. Yu, Y. Li, G. Han, and X. Du, “Machine learning based privacy-preserving fair
data trading in big data market,” Information Sciences, vol. 478, pp. 449-460, 2019.

[11] W. Q. Qiao R, Cao Y, “Traceability mechanism of dynamic data in internet of things based on
consortium blockchain,” Journal of Software, vol. 30, no. 6, p. 16141631, 2019.

[12] Z. Wang, Y. Tian, and J. Zhu, “Data sharing and tracing scheme based on blockchain,” in 2018
8th international conference on logistics, Informatics and Service Sciences (LISS). IEEE,
2018, pp. 1-6.

[13] S. Delgado-Segura, C. Pérez-Sola, G. Navarro-Arribas, and J. Herrera-Joancomarti, “A fair
protocol for data trading based on bitcoin transactions,” Future Generation Computer
Systems, vol. 107, pp. 832-840, 2020.

[14] Y. Chen, J. Guo, C. Li, and W. Ren, “Fade: a blockchain-based fair data exchange scheme for
big data sharing,” Future Internet, vol. 11, no. 11, p. 225, 2019.

[15] C.-H. Liao, X.-Q. Guan, J.-H. Cheng, and S.-M. Yuan, “Blockchainbased identity management
and access control framework for open banking ecosystem,” Future Generation Computer
Systems, vol. 135, pp. 450-466, 2022.

[16] S. Alshehri, O. Bamasaq, D. Alghazzawi, and A. Jamjoom, “Dynamic secure access control
and data sharing through trusted delegation and revocation in a blockchain-enabled cloud-iot
environment,” IEEE Internet of Things Journal, vol. 10, no. 5, pp. 4239-4256, 2022.

[17] H. Yin, J. Zhang, Y. Xiong, L. Ou, F. Li, S. Liao, and K. Li, “Cp-abse: A ciphertext-policy
attribute-based searchable encryption scheme,” IEEE Access, vol. 7, pp. 5682-5694, 2019.

[18] M. B. Hinojosa-Cabello, M. Morales-Sandoval, and H. M. Marin-Castro, “Novel constructions
for ciphertext-policy attribute-based searchable encryption,” in 2022 IEEE Mexican
International Conference on Computer Science (ENC). IEEE, 2022, pp. 1-8.

[19] Y. Wang, S.-F. Sun, J. Wang, J. K. Liu, and X. Chen, “Achieving searchable encryption scheme
with search pattern hidden,” IEEE Transactions on Services Computing, vol. 15, no. 2, pp.
1012-1025, 2020.

[20]J. Su, L. Zhang, and Y. Mu, “Ba-rmkabse: blockchain-aided ranked multi-keyword attribute-
based searchable encryption with hiding policy for smart health system,” Future Generation
Computer Systems, vol. 132, pp. 299-309, 2022.

