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A DYNAMIC SYMMETRIC SEARCHABLE ENCRYPTION 

ALGORITHM WITH AN EXTENDED DUAL-INDEX 

STRUCTURE LEVERAGING IPFS  

Yi CAI1,*, Mingsheng FENG2 

Traditional encryption methods typically encrypt the entire dataset and 

searching and querying can only be performed after decryption. Searchable 

Encryption enables searching, matching, and querying operations to be performed on 

encrypted data, providing search results without revealing plaintext information. 

Dynamic Symmetric Searchable Encryption allows dynamic insertion, updating, and 

deletion operations to be performed on encrypted data while maintaining the data's 

searchability and security. This paper improves the dynamic symmetric searchable 

encryption algorithm based on a dual-index structure. It extends the index structure 

and utilizes the IPFS self-verification mechanism to achieve rapid verification, 

thereby reducing the number of queries and time required.  Additionally, it reduces 

the data storage costs on the blockchain. Finally, the proposed approach is tested on 

the Ethereum blockchain using the publicly available dataset Eron email, and the 

results effectively demonstrate the superiority of this solution in terms of time 

overhead. 
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1. Introduction 

Currently, many distributed storage and application systems have 

increasingly high-security requirements for data interaction. For example, smart 

grids [1] [2] have introduced a blockchain-based distributed architecture to protect 

the security of data interactions. During the process of data transactions in those 

Secure Data Exchange Systems (SDES) [3-5], caching mechanisms and 

cryptographic hash functions are often employed to improve data retrieval 

efficiency and reduce the number of data uploads to the system. The caching data 

is stored in the blockchain and it needs to keep privacy and security during the 

search process. So, the cache transaction data will be encrypted before upload. And 

searchable encryption techniques are used to achieve the search functionality while 

ensuring privacy and security. 
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Most searchable encryption schemes [6][7] are designed for cloud storage, 

but there are few searchable encryption schemes based on blockchain [8][9]. In this 

paper, we first analyze other searchable encryption schemes based on blockchain. 

Then, addressing their limitations, we propose a dynamic searchable encryption 

scheme based on blockchain. We provide algorithm definitions and security proofs 

for the proposed scheme and finally validate the feasibility and advantages of the 

scheme through experimental analysis. 

1.1 Related Work 

Many scholars are dedicated to addressing various issues in data trading. 

Some researchers [10-12] are dedicated to addressing the contentiousness of data, 

including concerns such as data sources' accuracy, data integrity, and data 

authenticity. Another area of research [13] focuses on the security of the transaction 

process, ensuring that both parties cannot repudiate the transaction and that privacy 

is not compromised. Furthermore, there is research being conducted on secure and 

efficient data retrieval [6-9]. Lastly, researchers are exploring access control issues 

for data commodities, such as granting and revoking access control permissions 

[14-16] or using Ciphertext-Policy Attribute-Based Searchable Encryption [17-18] 

and also focus on search mode hidden [19-20], especially in the context of health 

data management. 

Traditional applications of searchable encryption are mostly found in cloud 

storage, where encrypted data is stored along with the corresponding indices on 

cloud servers. Current searchable encryption schemes include public-key 

encryption search, symmetric encryption search, fuzzy search, Boolean search, and 

others. However, most of these schemes are based on a central server, and the 

correctness of the search results returned by an untrusted central server cannot be 

guaranteed. 

With the development of blockchain technology, there have also been 

searchable encryption schemes related to blockchain. For example, in Scheme [8], 

a Bitcoin framework is used to achieve fast retrieval of data stored on the 

blockchain. However, this scheme does not consider dynamic updates. Scheme [6] 

combines dynamic searchable encryption with Ethereum, storing the index and 

encrypted data on the Ethereum blockchain. It designs a fair data retrieval scheme 

using smart contracts. However, storing both the index and encrypted data on the 

blockchain incurs significant storage costs. 

Scheme [9] utilizes a dual-index structure to achieve fast update operations. 

This scheme also considers the verification of search result sets, with the 

verification data stored on the blockchain. However, the index data is stored in a 

one-to-one format using keyword files (w, f), and the number of index items 

increases with the growth of files. Similarly, the verification data increases linearly 

with the growth of the file set and the verification process adds to the query time. 
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1.2 Our Contribution 

This paper proposes a blockchain-based dynamic searchable encryption 

scheme based on the foundation of Scheme [9] and integrating blockchain 

technology. Firstly, the scheme employs a dual-index structure to enable efficient 

dynamic updates. Secondly, by storing encrypted files on IPFS and referencing their 

IPFS hash values on the blockchain, the scheme ensures secure and efficient data 

access while reducing the storage load of the blockchain. Thirdly, it stores the 

document set associated with a keyword using IPFS, reducing the number of queries 

and query time. Finally, it provides a forward security guarantee by linking new 

index items to the head of the existing index chain. By incorporating these features, 

the proposed scheme aims to address the limitations of previous approaches and 

provide an advanced solution for dynamic searchable encryption based on 

blockchain. 

2. Scheme Construction 

The main components of this scheme include index construction, keyword 

search, file addition, and file deletion. The main steps are as follows: 

2.1 Index construction algorithm 

The index construction algorithm is executed by the data owner and 

generates two outputs: the index table I and the state table S. The index table I is 

stored on the blockchain network, while the state table S is stored locally on the 

user’s device. The index table I contains the mappings between keywords and files, 

allowing for efficient retrieval of files based on the index. The state table S 

maintains various status information, such as the search frequency of keywords, file 

additions, and deletions. 

The index in this scheme consists of a dual-index structure, which includes 

a keyword index and a file index. The keyword index enables fast file retrieval. The 

index is composed of the index table address entry idw , the keyword index entry 

Iw ,the encrypted data IPFS storage address ipfsadd, and the file deletion table B. 

During a query operation, the search trapdoor allows for quick location of the 

address in the index table, leading to the corresponding data retrieval. The file index 

contains the file id and the set of corresponding index table address entries  idw . 

When adding or deleting files, this index facilitates quick location of the index 

entries for updates. The index construction process is as follows: 

1) For each keyword  1w ,i ,mi  , update the status a ,r,d ,search count s, and file 

count n. a records the file addition operation corresponding to the keyword, r 

records the search operation corresponding to the keyword, and d records the file 

deletion operation corresponding to the keyword. a, r, d ensure forward security of 
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the search. s is initialized to 0, and n represents the number of files corresponding 

to the keyword. 

2) For each keyword iw , an index address entry 
f

idwi
is generated using the private 

key K, a pseudorandom function Gw , a hash function H1 , and flags a and r. The 

encryption key kenc is used for file encryption. The search trapdoor kw is related to 

the private key K and the search state r, while the encryption key is only related to 

the search state r. 

3) For each keyword, the keyword index Iw is generated using the hash function H1 

and the index address entry  
f

idwi
 . In the index construction phase, the Iw does not 

embed the next index address entry because there is only one address entry at this 

point. The entire file collection is encrypted using a pseudorandom function F and 

the encryption key kenc , and then uploaded to IPFS to obtain the IPFS address, 

which is a hash of the data content and can be used for data verification. Finally, 

the encrypted index entry consists of [
f

idwi
: Iwi

,ipfsadd, B, d]. 

4) For each file f , its position in each keyword file collection is recorded and stored 

in the state table. The final state table S consists of [fj : (
f

idwi
 , j)...(

f
idwn

 , m)][wi : 

(
f

dwi
i  , j), a, r, n, s]. 

Algorithm 1: Setup 

Data:Given a private key K, the pseudorandom function {F, Gw}, the multiset hash function {H1, 

H},keyword set {wi }, i ∈ {1, m}, file set { fj }, j ∈ {1, n} 

Result: The index table I and the state table S. 

Initialize a empty hash table as a state table.  

for wi from w1 to wm do: 

     Update state a,r,d,set search count s = 0, and file count n = 0. 

     
f

idwi
=H1(wi , H({fj}) ) 

       kw     = Gw(K ,   wi||r ) 

       kenc  = Gf  (K ,   wi   )  //Key for encrypt files. 

       fenc = F  (Kenc , {fj} ), j ∈ {1, n} 

       ipfsadd = F(kenc,ipfs.put(fenc)) 

       
I w

i
= H1(kw , idw

i

f
)⊕⊥

 
       Initializing file deletion table B. 

       for fj ∈ DB(wi) do 

             if s[fj] is not exist then 

                   Add ( fj , (
f

idwi
,j) ) to  state table S; 

             else 
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                   S[fj].insert( ( fj , (
f

idwi
,j) ) ); 

             end 

       end 

       Add [
f

idwi
: Iwi

, ipfsadd, B, d ] to index table I. 

       Add [wi: 
f

idwi
, a, r, n, s] to state table S. 

       i++ 

end 

Uploading encrypted index table I to the blockchain network. 

 

2.2 Query algorithm 

The query process primarily involves searching keyword indexes with three 

main steps. 

1) Generating search trapdoor. The user searches for the state table S locally 

based on keywords, obtaining the corresponding index item address and other state 

values. User use a pseudorandom function Gw , private key K,and the retrieved state 

r to generate the search tag kw and encryption key kenc . After each search, the search 

count s is updated. Then, the search trapdoor (kw , kenc , idw ) is sent to the blockchain 

network. 

2) Executing the query. Once the blockchain network receives the query trapdoor, 

the querying process begins as follows: Firstly, the index table is queried based on 

the initial index item address 
f

idw  . It provides the corresponding encrypted data 

ipfsadd, deletion table B, and deletion status d. Next, by applying the hash function 

H1 (kw , 
f

idw  ) and XOR operation with Iw , the next address item is obtained. This 

is because newly added data is temporarily stored in new index items and linked 

with the old index items. Once the entire search is completed, the result set 

containing ipfsadd is returned to the user. 

3) Downloading the data and updating the index. After decrypting the IPFS 

address using the decryption private key kenc, the user downloads the file collection 

based on the IPFS address. For each file collection, the user checks the deletion flag 

d and examines if there are any files marked for deletion. If there are files to be 

deleted, the user updates each file collection based on the deletion table B. Once all 

the updates are completed, the user checks if new file collections were added before 

this query, indicated by the flag a. If new files were added user combines multiple 

file collections and reuploads them to IPFS to obtain a new address value. This is 

done to improve the efficiency of regular queries (i.e., without file updates). Then, 

the corresponding ipfsadd for the blockchain index table, keyword index item 
I wi  , 

and local status table S are updated. 
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Algorithm 2: Search 

Data:Given a private key K, the pseudorandom function {F, Gw}, the multiset hash function {H1, 

H},keyword w 

Result: Matched result file collection. 

//Generating query token for the user. 

f
idwi

, a, r, n, s =S[w] 

kenc=Gw(K,w) 

kw=Gw(K,w||r) 

s++ 

Sending (kw , 
f

idwi
 ) to the blockchain network. 

 

//Executing the query on the blockchain. 

Iw , ipfsadd, B, d = I[
f

idwi
 ] 

I’w  =Iw ,   
f'

idw  =
f

idw  

// Initializing the result set Res. 

Res.insert( ipfsadd,  B,  d) 

while H1 (kw , 
f'

idw  ) ⊕ I′w is not equal ⊥ do  

      idw=H1(kw, 
f'

idw ⊕ I′w 

      
f'

idw =idw  

     I′w , newipfsadd, newB, newd=I[
f'

idw ] 

     Res.insert((newipfsadd,newB,newd)) 

end 

Return the result set Res. 

//The user downloads data and updates the index. 

//The user decrypts using the private key kenc and obtains the plaintext IPFS address. 

for ipfsi ∈ Res do 

      datai=ipfs.get(ipfsi) 

      id’=H1(w,H(datai)) 

      for f ∈ datai do 

            Update S[f], (id’,nf) 
f

(idw→ ,nf) 

             if 0d  then  

                   Update datai with delete table B. 

                    d=0 

             end 

      end 

      if  0a  then 

             Integrate all file sets corresponding to w and upload the [datai , ..., dataj ] to IPFS 

             and get the corresponding IPFS address value newipfsadd. 



A dynamic symmetric searchable encryption algorithm with an extended dual-index (…)  197 

             A=0 

           Iwi
= H1(kw, 

f
idw )⊕⊥ 

             Send [
f

idwi
 , Iwi

 , newipfsadd, d] to blockchain to update the index table I.  

             Update state of S[w]. 

       end  

       Decrypt datai using the private key kenc to obtain the plaintext data Datai . 

end 

2.3 File insert algorithm 

The insertion algorithm focuses on the insertion of existing keywords 

because inserting new keywords follows the same index construction algorithm. 

The file insertion process is as follows: 

1) Obtain the state values a, r, n, s, index address entries 
f

idwi
from the state table S 

based on the keyword w. 

2) Update the insertion flag a and the file count n. 

3) Generate a new index entry 
'f

idwi
based on the new file f and the hash function. 

4) According to the search count s, update the search flag r. Then reset the value of 

s. 

5) Generate an encryption key kenc using a pseudorandom function and the private 

key K. Encrypt the file and upload it to IPFS to obtain the corresponding address 

value. 

6) Using the hash function H1 and the new index entry address 
'f

idwi
, generate a 

keyword index Iwi
 and embed the previous index address entry, linking the old 

data together. Then update the state table S and the index table I. 

 

Algorithm 3: AddFile 

Data:Given a private key K, the pseudorandom function {F, Gw}, the multiset hash function {H1, 

H},new file f,state table S. 

Result: The updated index table Iupt and the state table Supt. 

for wi ∈ DB(f) do 

      
f

idwi
, a, r, n, s =S[wi] 

       a++ 

       n++ 
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i

f'
idw =H1(wi, H(f) ) 

        if  0s   then 

              r++,s=0 

        end 

kenc=Gw(K,wi)  //Key for encrypt file. 

fenc= F (kenc,{f}) 

ipfsadd = F(kenc, ipfs.put(fenc)) 

kw=Gw(K,wi||r) 

Iwi
= H1(kw, 

i

f'
idw )⊕

i

f
idw  

S[wi] = (
i

f'
idw , a, r, n, s) 

Add [
i

f'
idw : Iwi

, ipfsadd,  B, d] to index table I′. 

Add [f, (
i

f'
idw , n)] to state table S. 

End 

Send new index I′ to blockchain to update.  

2.4 File delete algorithm 

The scheme adopts a dual indexing structure, where the index address 

entries corresponding to the files are recorded in the state table. When deleting a 

file, it is only necessary to locate the corresponding index address entries in the 

state table S based on the file f. These index address entries are then sent to the 

blockchain, where the blockchain updates the deletion flag and the pending deletion 

file table based on the index address entries. The actual file deletion is postponed 

until the next query, reducing the time consumption associated with file deletion.  

Algorithm 4: DeleteFile 

Data: Given the file f for delete, and the state table S. 

Result: The updated index table Iupt. 

//User generate the trapdoor. 

[(
f

idwi
, i), ..., ( j

f
idw , j)] = S[f] 

Send [(
f

idwi
, i), ..., ( j

f
idw , j)] to blockchain. 

//The blockchain network delete the file. 

for (
f

idwi
,i), i ∈ (i, j) do 

B, d = I[
f

idwi
] 

d + + 
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B.insert(i) 

I[
f

idwi
] = B, d 

end 

3. Security Analysis 

All data in this proposed solution is stored in encrypted form, adhering to 

the security definition of searchable symmetric encryption.Nodes on the blockchain 

only know the size of the index and cannot know any other potential information. 

By using IPFS to store data, IPFS addresses data using content hashes, and the IPFS 

address itself serves as data verification. Therefore, as long as the data can be 

retrieved through a search, it indicates that the data is correct and accurate. When 

dynamically updating and adding new files, new indexes are generated based on 

new private keys and new state values. This prevents old search traps from linking 

to new data, ensuring forward security. Additionally, newly inserted index entries 

will be linked to existing data, ensuring the integrity of the entire dataset. Therefore, 

the searchable encryption algorithm presented in this article is secure and reliable. 

According to the security concepts of dynamic Searchable Symmetric 

Encryption (DSSE), this article provides a formal security definition and proves the 

forward security of the blockchain-based dynamic searchable encryption algorithm. 

From the perspective of an attacker, we define three leakage function as follows: 

Leakage function Lset for index construction: This function describes the 

information that an attacker can obtain from the execution of the algorithm during 

the index construction process. It includes the extent of leakage of input data used 

to generate the index. Lset=(< |Iw|, |ipfsadd|, |B|, |d| >), where m identifies the count 

of entries in the index table, and < |Iw|, |ipfsadd| > refers to the size or length of a 

single encrypted index item. 

Leakage function Lsearch for search: This function describes the information 

that an attacker can obtain from the execution of the algorithm during the search 

process. It includes the extent of leakage of search queries, search results, search 

patterns, etc. Lsearch=(Kw, < |Iw|, |ipfsadd|, |B|, |d| >), where Kw represents the query 

key corresponding to the keyword. During the querying process, it may lead to 

index updates. <|Iw|, |ipfsadd|, |B|, |d| > is the size of new index. 

Leakage function Lupdate for update: This function describes the information 

that an attacker can obtain from the execution of the algorithm during the update 

process. It includes the extent of leakage of updated files, types of update 

operations, timestamps, etc. Lupdate=(op, < |Iw|, |ipfsadd|, |B|, |d| >u), where op 

represents the two types of update operations, which are adding(add) or deleting 

(del) files. u represents the number of newly added or deleted indexes. 
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Definition 1. According to the definition of dynamic SSE algorithm, the 

encryption search algorithm designed in this paper can be represented as (KeyGen, 

Setup, Search, Update), where the leakage functions are represented as Lset, Lsearch, 

Lupdate. Additionally, two probabilistic models, Real A (k) and Ideal ，SAs s (k), are 

defined to measure the security of the algorithm. These models involve a 

probabilistic polynomial time (PPT) attacker A  and a simulator S . 

Real A (k): First, the data owner generates a private key K using the KeyGen 

algorithm, which serves as the initial key parameter for subsequent algorithms. 

Attacker A  provides a dataset DB(w). The data owner constructs the index using 

the index construction algorithm Setup or updates the encrypted index using the 

index update algorithm Update. Then, A  adaptively constructs a series of 

probabilistic polynomial time(PPT) search queries by executing the search 

algorithm Search. Finally, A  returns the observed results as output. 

Ideal ，SAs s (k): Attacker A  is given a dataset DB(w), and simulator S  

utilizes the leakage functions Lset and Lupdate to simulate the encrypted index and the 

update process for attacker A . Then, A  adaptively constructs a series of 

probabilistic polynomial-time (PPT) search queries. S  utilizes the leakage function 

Lsearch obtained from each simulated query to simulate search tokens and encrypted 

data items. Finally, A  returns the obtained results as output. Assuming that for all 

PPT attackers A   with leakage functions Lset, Lsearch,  Lupdate, the dynamic searchable 

encryption algorithm satisfies adaptive security, there exists a simulator S  that 

satisfies the following condition: Pr[Real A (k) = 1] - P r[Ideal ，SAs s (k) = 1] ≤ 

negl(k), where the function negl(k) is negligibly small. 

Theorem 1. If G and F are secure pseudorandom functions, then the 

algorithm with leakage functions (Lset, Lsearch, Lupdate) is adaptively secure in the 

random oracle model. 

Proof: The simulator S  can utilize the leakage functions Lset and simulate 

an indistinguishable encrypted index (Iw, ipfsadd, B, d) that contains m random 

items, where each index item is a random string of length |Iw|+|ipfsadd|+|B|+|d|. 

Through the leakage function Lsearch, S  can simulate the first search trapdoor, and 

the simulated result is indistinguishable from the real result. For queries, S  

generates a random string representation of the query trapdoor Kw, performs a 

random search, and can simulate a random string ipfsadd representing a query after 

adding a file. The required ipfsadd to update can also be simulated by S , and the 

simulated results are indistinguishable from the real results. It is important to note 

that the leakage function Lupdate satisfies the definition of forward security. Based 

on Lupdate, S  follows the simulation process of constructing the index to generate 

simulated additions. It is infeasible to determine the correlation between different 

search trapdoors by encoding new strings into newly added index items. 

Furthermore, the random oracle model exhibits pseudorandomness, and symmetric 

encryption is semantically secure. As a result, the attacker A  cannot distinguish 
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between the outputs of the real probability model Real A (k) and the ideal 

probability model Ideal ，SAs s (k). This proves the security of the designed encrypted 

search algorithm within the defined leakage functions. 

4. Experimental Analysis 

4.1 Experimental Setup 

The experiment implemented the searchable encryption scheme using 

Python and Solidity. Python was used to implement various encryption methods, 

while Solidity was used to simulate the Ethereum blockchain using the Ganache 

Ethereum private chain tool. The encryption library in Python was used to 

implement symmetric encryption with AES-128 and pseudo-random functions with 

HMAC-256.The experiment utilized the publicly available dataset ”Eron Email” 

and preprocessed it into a (keyword, file set) format. After preprocessing, files of 

different sizes were associated with different keyword-file pairs. In this experiment, 

the comparative scheme used was the dual index scheme [9]. We reproduced the 

same scheme in the same experimental environment. 

4.2 Experimental Metric 

The main experimental metric is the runtime, which measures the time taken 

by various algorithms in the searchable encryption scheme. Specifically, we tested 

the time overhead of four algorithms: index construction, keyword searching, file 

addition, and file deletion. 

4.3 Analysis of Experimental Results 

The result of index construction is shown in Fig. 1. It can be observed that 

the proposed solution in this paper exhibits reasonable time overhead as the data 

volume of index items increases from 10K to 160K, with the time ranging from 1.7 

seconds to 13.0 seconds. Similarly, the dual-index scheme [9] was reproduced in 

the experiment, and the time for index creation ranged from 2.4 seconds to 17.3 

seconds. It can be observed that the proposed solution has a more favorable time 

overhead. The main time overhead of the proposed solution lies in storing the index 

table on the blockchain. Since each index entry is (w : IPFSaddress[f1, f2, ...fn]), that 

is a keyword corresponds to a document set and the document set is stored as an 

IPFS hash value, each index item has a fixed size of 256*2+ 8. The total number of 

stored indexes is equal to the number of keywords. Therefore, the time overhead 

for index construction mainly depends on the number of keywords. On the other 

hand, the dual-index scheme stores a verification table on the blockchain, which 

grows linearly with the number of files and has a size of 256*n where n is the 

number of files. Additionally, the dual-index scheme adopts an index format where 

each keyword corresponds to a file. The number of indexes and keywords is related 
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to the number of files. Therefore, the dual-index scheme incurs more time overhead 

in index construction and storage. 

 

Fig. 1. Comparison Chart of Index Construction Time Overhead 

 

Keyword queries were tested, as shown in Fig.2. The proposed approach 

was tested under two different conditions: one without adding any files, where a 

search keyword corresponds to only one index item, and another condition with 

added data. From Fig. 2, it can be observed that for queries without adding any files 

or updating the index, the time overhead remains consistent at around 0.07 seconds. 

This is because the indexing storage format in the proposed approach is (w : 

IPFSaddress[f1, f2, ...fn]), so querying the index table once provides all the results. 

However, when files are added, the query time increases as multiple index items 

need to be searched and the corresponding document set’s IPFS hash value needs 

to be updated, merging multiple index items into one. Therefore, the query time 

increases based on the number and size of files added. The query data in the graph, 

ranging from 2k to 32k, corresponds to cases where files were added 1 to 5 times, 

and the query time increases from 0.12 seconds to 0.45 seconds.  
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Fig. 2. Comparison Chart of Keyword Query Time Overhead 

In contrast, the dual-index scheme requires multiple queries during the 

search since it stores data in the format (w : f), retrieving all files corresponding to 

the keyword. Thus, the query time increases with the size of the file set. 

Additionally, the dual-index scheme requires data verification, and the size of the 

verification table is also related to the file set size. In our proposed approach, 

verification is not needed as the IPFS hash value itself provides verification 

functionality. 

 
Fig. 3. Comparison Chart of Insert File Time Overhead 

In the experiment, the dynamic update algorithm was tested for adding and 

deleting files. As shown in Fig. 3, our proposed solution has a time cost ranging 

from 0.82 seconds to 4.9 seconds when adding files from 2K to 32K. In comparison, 

the dual-index scheme has a time cost ranging from 0.9 seconds to 13.2 seconds. It 

can be observed that our solution outperforms the dual-index scheme in terms of 
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performance. This is because in our proposed solution, when adding new files, they 

are added in the form of (w : IPFSaddress[f1, f2, ...fn]), while the dual-index 

scheme adds files in the form of (w : f). Consequently, our solution has a larger 

number of additional index entries, resulting in relatively higher time costs. This 

difference in time costs becomes more apparent, especially when adding larger 

files. 

 
Fig. 4. Comparison Chart of File Remove Time Overhead 

As shown in Fig. 4, the experiment also evaluated the performance of file 

deletion. The size of the deleted files ranged from 2K to 32K, and the time overhead 

increased from 0.82 seconds to 6.98 seconds. When deleting files, the main 

operation is to modify the index table on the blockchain. The deletion operation 

requires modifying each index entry associated with the file. Similarly, the dual-

index scheme was tested, and its time overhead was similar to the proposed scheme, 

increasing from 0.79 seconds to 7.2 seconds. The dual-index scheme also modifies 

each associated index entry for the file and requires additional calculations when 

searching for the next index entry, resulting in slightly more time. Since both 

schemes only mark the files for deletion without actually deleting them, the overall 

time overhead is relatively small. 

Through experimental comparative analysis, it can be seen that our 

proposed scheme has more advantages, especially in the query phase and file 

addition phase, where it demonstrates higher efficiency. 

5. Conclusion 

This paper analyzes blockchain-based searchable encryption schemes and 

addresses the issue of low efficiency in blockchain queries. To tackle this problem, 

we propose a dynamic searchable encryption scheme based on blockchain.  
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This scheme improves upon the existing algorithm based on a dual-index 

structure, improving the storage and retrieval efficiency of index key-value pairs. 

Leveraging the self-verification feature of IPFS in the algorithm enhances the 

verification efficiency of data stored on the blockchain. Improving the mapping 

relationship between keywords and files in index pairs enhances the multi-file hit 

rate in searches. Furthermore, by linking the initially added index items to the head 

of the index chain, forward security is ensured.  

We provide a security analysis and proof for the proposed scheme, verifying 

its security guarantees. Finally, through a comparative experimental study, we 

compare our scheme with the dual-index scheme, validating the feasibility and 

advantages of our approach. Overall, this paper presents a viable and advantageous 

solution for blockchain-based searchable encryption. Our scheme enhances query 

efficiency and provides secure data storage and efficient secure queries. It 

demonstrates practical potential in protecting sensitive information on the 

blockchain. 
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