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DUALITY FOR A CLASS OF NONSMOOTH SEMI-INFINITE

MULTIOBJECTIVE FRACTIONAL OPTIMIZATION PROBLEMS

by Vivek Singh1, Anurag Jayswal2, Ioan Stancu-Minasian3 and Andreea Mădălina Rusu-Stancu4

In this paper, we continue the effort of Singh et al. [ V. Singh, A. Jayswal,
I. Stancu-Minasian and A.M. Rusu-Stancu, Isolated and proper efficiencies for semi-

infinite multiobjective fractional problems, U.P.B. Sci. Bull., Series A, Vol. 83, Iss.

3, 2021, pp. 111-124] to discuss duality results for a nonsmooth semi-infinite multi-
objective fractional optimization problem with infinite number of inequality constraints

by employing some advanced tools of variational analysis and generalized differentia-

tion. We propose a Mond-Weir dual problem and prove weak/strong duality theorems
for local properly efficient solutions under generalized convexity. In order to justify the

significance of obtained results we consider a numerical example.
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1. Introduction

Many realistic problems that arise practically in various fields of science, business,
and technology deal with several conflicting ratios of objective functions, which have to
be optimized simultaneously. Such problems are known as vector fractional problems or
multiobjective fractional problems. The difficulty of multiobjective fractional programming
lies in the fact that the ratio of objectives of vector fractional problems are in conflict
with each other and an improvement of one objective may lead to the reduction of other
objectives. A multiobjective fractional model provides the mathematical framework to deal
with such situations. The available literature on optimality conditions and various types of
duality for multiobjective fractional programming problems is very rich (see, for example,
several monographs on multiobjective fractional programming which have been published
in recent past (c.f., [1, 2, 3, 17, 18, 20, 27, 28, 29, 31])).

The specialty of a multiobjective fractional optimization problem is that its objective
functions are generally not convex functions. Indeed under all the more restrictive con-
cavity/convexity assumptions, multiobjective fractional optimization problems are generally
nonconvex ones. While, the (approximate) extremal principle [22], which plays a central role
in variational analysis and generalized differentiation, has been well-recognized as a varia-
tional counterpart of the separation theorem for nonconvex sets. Subsequently, utilizing the
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extremal principle and other advanced techniques of variational analysis and generalized
differentiation to prove optimality conditions appears to be appropriate for nonconvex and
nonsmooth optimization problems.

A semi-infinite multiobjective fractional problem is the simultaneously minimization
of finitely many scalar ratio objective functions subject to an arbitrary (possibly infinite) set
of constraint functions. Fundamental theoretical aspects and a wide range of applications
of both scalar and multiobjective semi-infinite fractional programming problems have been
studied intensively by many researchers (see, for example, [1, 7, 13, 16, 19] and others).

During the most recent two decades, there has been a vastly fast evolution in subdiffer-
ential calculus of nonsmooth analysis which is well-recognized for its numerous applications
to optimization theory. The Mordukhovich subdifferential is a highly vital concept in non-
smooth analysis and closely related to optimality conditions of locally Lipschitzian functions
of optimization theory (see, [15, 24, 32]). The Mordukhovich subdifferential is a closed sub-
set of the Clarke subdifferential and these subdifferentials are in general nonconvex sets,
unlike the well-known Clarke subdifferentials. Therefore, keeping the importance of opti-
mization problems and its wide applications, the explanations of the optimality conditions
and calculus rules in terms of Mordukhovich subdifferentials provide more sharp results than
those given in terms of the Clarke generalized gradient (see e.g., [22]). Chuong and Kim
[6] derived optimality conditions and duality relations that are expressed in terms of lim-
iting/Mordukhovich subdifferentials for nonsmooth multiobjective fractional programming
problems.

In this paper, inspired by the earlier works, we use the limiting/ Mordukhovich sub-
differentials given in [22, 23] to demonstrate several duality theorems under the assumption
of generalized convexity. Although many discussions have been done on this topic, it still
remains a very interesting and demanding area of research. There are several approaches
developed in the literature, see [14, 12, 20, 18, 22, 23] and the references therein.

We now moving forward to discuss the contents of this paper. Section 2 consists of
some basic definitions and background material. In Section 3, we turn to an investigation of
the notion of duality for (local) positively properly efficient solutions in a nonsmooth semi-
infinite multiobjective fractional optimization problem. Here, we propose a Mond-Weir type
dual problem and prove weak and strong duality theorems. Finally, the paper is concluded
in Section 4.

2. Preliminaries

The aim of this section is to provide some basic concepts and auxiliary results that
will be used often throughout the paper.

Let Rn be the n-dimensional Euclidean space and Rn+ be its non-negative orthant.
Unless otherwise stated, all the spaces considered in the paper are Banach whose norms are
always denoted by ‖.‖ and X∗ is dual of a given space X. The canonical pairing between
X and X∗ is denoted by 〈., .〉 and S◦ = {x∗ ∈ X∗ : 〈x∗, x〉 ≤ 0, ∀x ∈ S} is the polar cone
of a set S ⊂ X. As usual, the notation clS and intS represent the closure and respectively,
the interior of S. Now, we recall the following Definitions 2.1-2.4 from Mordukhovich [22].

Definition 2.1 (Mordukhovich [22]). Let F : X ⇒ X∗ be a multifunction. Then the
sequential Painlevé-Kuratowski upper/outer limit of F as x → x̄ with respect to the norm
topology of X and the weak∗ topology of X∗ is given by

Lim sup
x→x̄

F (x) = {x∗ ∈ X∗ : ∃ sequences xn → x̄ and x∗n
w∗

→ x∗

with x∗n ∈ F (xn) for all n ∈ N},
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where the notation
w∗

→ indicates the convergence in the weak∗ topology of X∗ and N denotes
the set of all natural numbers.

Definition 2.2 (Mordukhovich [22]). For a given ε ≥ 0 and a set S, the collection of
ε-normals to S at x̄ ∈ S is defined by

N̂ε(x̄, S) = {x∗ ∈ X∗ : Lim sup
x

S→x̄

〈x∗, x− x̄〉
‖x− x̄‖

≤ ε}, (2.1)

where x
S→ x̄ means that x→ x̄ with x ∈ S.

In the above definition, for all ε ≥ 0, if x̄ /∈ S, we write N̂(x̄, S) = ∅. If we suppose

ε = 0 in (2.1), then the set N̂0(x̄, S) is called the Fréchet normal cone to S at x̄.

Definition 2.3 (Mordukhovich [22]). The limiting/Mordukhovich normal cone to S at

x̄ ∈ S, denoted by N(x̄, S), is obtained from N̂ε(x, S) by taking the sequential Painlevé-
Kuratowski upper limits as

N(x̄, S) = Lim sup
x

S→x̄,ε↓0

N̂ε(x, S) (2.2)

If x̄ /∈ S, we put N(x̄, S) = ∅. Note that, if S is (locally) closed around x̄, i.e., there
is a neighborhood U ⊂ X of x̄ such that S ∩ clU is closed then one can put ε = 0 in (2.2)
(see Mordukhovich [22], Theorem 1.6).

Definition 2.4 (Mordukhovich [22]). The limiting/Mordukhovich subdifferential and the
Fréchet subdifferentials of an extended real-valued function ψ : X → R̄ = [−∞,∞], at
x̄ ∈ X with |ψ(x̄)| <∞ are respectively defined by

∂ψ(x̄) = {x∗ ∈ X∗ : (x∗,−1) ∈ N((x̄, ψ(x̄)), epiψ)} (2.3)

and
∂̂ψ(x̄) = {x∗ ∈ X∗ : (x∗,−1) ∈ N̂((x̄, ψ(x̄)), epiψ)}, (2.4)

where epiψ = {(x, α) ∈ X × R : α ≥ ψ(x)}.

If |ψ(x̄)| =∞, one puts ∂ψ(x̄) = ∂̂ψ(x̄) = ∅. It is clear from Mordukhovich [22] that,
if ψ is a convex function, then above-defined limiting/ Mordukhovich subdifferential and the
Fréchet subdifferentials coincide with the subdifferential in the sense of convex analysis (cf.
Rockafellar [25]).

In the sequel of the paper, assume that S is a nonempty locally closed subset of X,
and let J be an arbitrary (possibly infinite) index set.

The problem to be considered in the present analysis is the following semi-infinite
multiobjective fractional programming problem of the form:

(P) min
Rp

+

{
θ(x) =

(
f1(x)

g1(x)
, ...,

fp(x)

gp(x)

)
: x ∈ F

}
.

Here, the constraint set is defined by

F = {x ∈ S : hj(x) ≤ 0, j ∈ J}, (2.5)

and the functions fi, gi, i = 1, ..., p, and hj , j ∈ J , are locally Lipschitz on X. For the
purpose of convenience, we assume further that gi(x) > 0, i = 1, ..., p, for all x ∈ S, and
that fi(x̄) ≤ 0, i = 1, ..., p, for the reference point x̄ ∈ S. Hereafter, we use the notation

hJ = (hj)j∈J and θ = (θ1, θ2, ..., θp), where θi = fi
gi
, i = 1, ..., p.

By keeping in view, the definition local positively properly efficient solution in mul-
tiobjective optimization, given by Göpfert et al. [14, p. 110], we present the following
definitions.
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Definition 2.5. (i) A point x̄ ∈ F is called a local efficient solution of problem (P) iff
there exists a neighborhood U of x̄ such that

∀x ∈ U ∩ F, θ(x)− θ(x̄) /∈ −Rp+ \ {0}.

(ii) A point x̄ ∈ F is called a local positively properly efficient solution of problem (P) iff
there exist a neighborhood U of x̄ and λ ∈ intRp+ such that

∀x ∈ U ∩ F, 〈λ, θ(x)〉 ≥ 〈λ, θ(x̄)〉 .

The set of local efficient solutions and local positively properly efficient solutions of
problem (P) are denoted by locE(P) and locEp(P) respectively. If U = X, one has the
concepts of efficient solution and positively properly efficient solution for problem (P), and
in this case we denote these solution sets by E(P) and Ep(P) respectively.

It is known (see e.g., [9, 10]) that for our framework the inclusions

locEp(P) ⊂ locE(P)

are always valid, and the converse inclusions do not hold in general.

Definition 2.6 (Chuong and Yao[7]). Let x̄ ∈ F. We say that the limiting constraint
qualification (LCQ) is satisfied at x̄ iff

N(x̄,F) ⊂
⋃

µ∈Λ(x̄)

∑
j∈J

µj∂hj(x̄)

+N(x̄, S).

Definition 2.7 (Chuong [4]). We say that (θ, hJ) is generalized convex on S at x̄ ∈ S if
for any x ∈ S, u∗i ∈ ∂fi(x̄), v∗i ∈ ∂gi(x̄), i = 1, ..., p, and ξ∗j ∈ ∂hj(x̄), j ∈ J there exists
ω ∈ N(x̄, S)◦ such that

fi(x)− fi(x̄) ≥ 〈u∗i , ω〉 , i = 1, ..., p,

gi(x)− gi(x̄) ≥ 〈v∗i , ω〉 , i = 1, ..., p,

hj(x)− hj(x̄) ≥
〈
ξ∗j , ω

〉
, j ∈ J.

3. Mond-Weir type duality for proper efficiency

In this section, we present a Mond-Weir dual problem of problem (P) and establish
weak and strong duality theorems under generalized convexity assumptions.

The following necessary condition for local positively properly efficient in semi-infinite
multiobjective fractional problem (P) under the fulfillment of the (LCQ) defined in Definition
2.6, derived by Singh et al. [[26], Theorem 3.3], will be required in the proof of the strong
duality theorem.

Let R(J)
+ be the collection of all the functions µ : J → R taking positive values µj only

at finitely many points of J , and equal to zero at other points. The set of active constraint
multipliers at x̄ ∈ S is defined by

Λ(x̄) = {µ ∈ R(J)
+ : µjhj(x̄) = 0, ∀j ∈ J}. (3.1)

Theorem 3.1. Let the (LCQ) be satisfied at x̄ ∈ F. If x̄ ∈ locEp(P), then there exist
λ = (λ1, ..., λp) ∈ intRp+ and µ ∈ Λ(x̄) such that

0 ∈
p∑
i=1

λi
gi(x̄)

(
∂fi(x̄)− fi(x̄)

gi(x̄)
∂gi(x̄)

)
+
∑
j∈J

µj∂hj(x̄) +N(x̄, S).
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Let y ∈ X, λ = (λ1, ..., λp) ∈ intRp+ with
p∑
i=1

λi = 1, and µ ∈ R(J)
+ . In connection with

semi-infinite multiobjective fractional optimization problem (P), we consider a semi-infinite
multiobjective fractional Mond-Weir [21] dual problem of the form:

(D) max
Rp

+

{
θ̃(y, λ, µ) =

(
f1(y)

g1(y)
, ...,

fp(y)

gp(y)

)
: (y, λ, µ) ∈W

}
.

Here, the constraint set is defined by

W =

{
(y, λ, µ) ∈ S × intRp+ × R

(J)
+ : 0 ∈

p∑
i=1

λi
gi(y)

(
∂fi(y)− fi(y)

gi(y)
∂gi(y)

)

+
∑
j∈J

µj∂hj(y) +N(y, S),
∑
j∈J

µjhj(y) ≥ 0

 .

(3.2)

We need to notice that a (local) efficient solution (respectively, (local) positively
properly efficient solution) of the dual problem (D) is defined similarly as in Definition
2.5 by replacing −Rp+ (respectively, intRp+) by Rp+ (respectively, −intRp+). Also, the set
of efficient solutions (respectively, positively properly efficient solutions) of problem (D) is
denoted by E(W) (respectively, Ep(W)).

In what follows, we use the following notation for convenience:

a � b⇔ a− b ∈ −Rp+ \ {0}, a � b is the negation of a � b.

Now, we establish weak and strong duality relations between (P) and (D).

Theorem 3.2 (Weak Duality). Let x ∈ F and (y, λ, µ) ∈ W. Assume that (θ, hJ) is

generalized convex on S at y. Then θ(x) � θ̃(y, λ, µ).

Proof. Since (y, λ, µ) ∈W, there exist λ = (λ1, ..., λp) ∈ intRp+ with
p∑
i=1

λi = 1, and µ ∈ R(J)
+ ,

u∗i ∈ ∂fi(y), v∗i ∈ ∂gi(y), i = 1, ..., p, and ξ∗j ∈ ∂hj(y), j ∈ J such that

−

 p∑
i=1

λi
gi(y)

(
u∗i −

fi(y)

gi(y)
v∗i

)
+
∑
j∈J

µjξ
∗
j

 ∈ N(y, S), (3.3)

∑
j∈J

µjhj(y) ≥ 0. (3.4)

Suppose to the contrary that

θ(x) � θ̃(y, λ, µ).

Due to λ ∈ intRp+ the above inequality imply〈
λ, θ(x)− θ̃(y, λ, µ)

〉
< 0.

This is equivalent to the following inequality

p∑
i=1

λi

[
fi(x)

gi(x)
− fi(y)

gi(y)

]
< 0. (3.5)
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By the definition of the polar cone and the generalized convexity of (θ, hJ) on S at y, it
follows from (3.3) that for each x ∈ S, there is ω ∈ N(y, S)◦ such that

0 ≤
p∑
i=1

λi
gi(y)

(
〈u∗i , ω〉 −

fi(y)

gi(y)
〈v∗i , ω〉

)
+
∑
j∈J

µj
〈
ξ∗j , ω

〉
≤

p∑
i=1

λi
gi(y)

[
fi(x)− fi(y)− fi(y)

gi(y)
(gi(x)− gi(y))

]
+
∑
j∈J

µj(hj(x)− hj(y))

=

p∑
i=1

λi
gi(y)

(
fi(x)− fi(y)

gi(y)
gi(x)

)
+
∑
j∈J

µj(hj(x)− hj(y)).

Hence, 0 ≤
p∑
i=1

λi

gi(y)

(
fi(x)− fi(y)

gi(y)gi(x)
)

+
∑
j∈J

µj(hj(x) − hj(y)). From (3.4) and the fact

that x ∈ F, the above inequality yields 0 ≤
p∑
i=1

λi

gi(y)

(
fi(x)− fi(y)

gi(y)gi(x)
)

, or equivalently

0 ≤
p∑
i=1

λi

[
fi(x)

gi(x)
− fi(y)

gi(y)

]
,

which contradicts (3.5). This completes the proof. �

The example below shows that the generalized convex property of (θ, hJ) on S imposed
in the above theorem cannot be omitted.

Example 3.1. Let θ : R2 → R2 be defined by θ(x) =
(
f1(x)
g1(x) ,

f2(x)
g2(x)

)
, where

f1(x) = min{0, x3
1}, f2(x) = min{0, x3

2},
g1(x) = g2(x) = x2

1 + x2
2 + 1, x = (x1, x2) ∈ R2,

and let hj : R2 → R be given by

hj(x) = −j(|x1|+ |x2|), x = (x1, x2) ∈ R2, j ∈ J = (0,∞).

Consider problem (P) with p = 2, and S = [−2, 0] × [−2, 0] ⊂ R2. Then F = S, and let
us select x̄ = (x̄1, x̄2) = {(−1,−1)} ∈ F. Now, consider the dual problem (D). By choosing
ȳ = {(0, 0)} ∈ S, λ̄ =

(
1
2 ,

1
2

)
and µ̄ = 0, it holds that (ȳ, λ̄, µ̄) ∈W and that

θ(x̄) =

(
−1

3
,−1

3

)
≤ (0, 0) = θ̃(ȳ, λ̄, µ̄),

showing that conclusion of Theorem 3.2 fails to hold. The reason is that (θ, hJ) is not
generalized convex on S at ȳ.

The next theorem presents a strong duality relation between the primal problem (P)
and the dual problem (D). This theorem shows that the absence of duality gap holds for a
Mond-Weir dual if some requirements are satisfied.

Theorem 3.3 (Strong Duality). If x̄ ∈ locEp(P), and the (LCQ) is satisfied at x̄, then

there exist (λ̄, µ̄) ∈ intRp+×R
(J)
+ such that (x̄, λ̄, µ̄) ∈W and θ(x̄) = θ̃(x̄, λ̄, µ̄). Furthermore,

if (θ, hJ) is assumed to be generalized convex on S at any y ∈ S, then (x̄, λ̄, µ̄) ∈ E(W).

Proof. By assumption, x̄ ∈ locEp(P), and the (LCQ) is satisfied at x̄. Then, there exist
λ = (λ1, ..., λp) ∈ intRp+ and µ ∈ Λ(x̄) such that necessary conditions (Theorem 3.1) are
fulfilled at x̄. Thus, we have

0 ∈
p∑
i=1

λi
gi(x̄)

(
∂fi(x̄)− fi(x̄)

gi(x̄)
∂gi(x̄)

)
+
∑
j∈J

µj∂hj(x̄) +N(x̄, S). (3.6)
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Setting

λ̄i =
λi
p∑
i=1

λi

, i = 1, ..., p, µ̄j =
µj
p∑
i=1

λi

, j ∈ J,

it is easy to see that λ̄ = (λ̄1, ..., λ̄p) ∈ intRp+,
p∑
i=1

λ̄i = 1, and µ̄ = (µ̄j)j∈J ∈ R(J)
+ .

Observe that the assertion in (3.6) is also valid when λi’s and µj ’s are replaced by λ̄i’s and
µ̄j ’s, respectively. In addition, due to the fact that µ ∈ Λ(x̄), µjhj(x̄) = 0, for all j ∈ J , and
thus,

∑
j∈J

µjhj(x̄) = 0. So, we conclude that (x̄, λ̄, µ̄) ∈W. Obviously

θ(x̄) = θ̃(x̄, λ̄, µ̄).
Now, by assumption that (θ, hJ) is generalized convex on S at any y ∈ S, thus invoking the
weak duality result in Theorem 3.2, we obtain

θ̃(x̄, λ̄, µ̄) = θ(x̄) � θ̃(y, λ, µ),

for any (y, λ, µ) ∈W. It means that (x̄, λ̄, µ̄) ∈ E(W). This complets the proof. �

4. Conclusion

In the present work, we have proposed a Mond-Weir dual problem for a nonsmooth
semi-infinite multiobjective fractional optimization problem, and examined weak and strong
duality relations under the generalized convex assumptions. We will extend the results
established in the paper to a larger class of nonsmooth variational and nonsmooth control
multiobjective optimization problems. This will orient the future research of the authors.
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