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ANALYSIS OF AN ITERATIVE ALGORITHM FOR SOLVING
GENERALIZED VARIATIONAL INEQUALITIES AND FIXED POINT
PROBLEMS
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In this paper, we investigate iterative algorithms for solving the generalized
variational inequalities and fixed point problems in Hilbert spaces. We construct an
iterative algorithm for finding a common solution of the generalized variational inequal-
ities involved in inverse strongly monotone operator and relaxed cocoercive operator and
fized point problem of asymptotically pseudocontractive operators. Strong convergence
analysis of the constructed algorithm is given.

Keywords: Variational inequality, inverse strongly monotone, relaxed cocoercive oper-
ator, fixed point, asymptotically pseudocontractive operator.

MSC2020: 49J53, 49M37, 656K10, 90C25.

1. Introduction

Let H be a real Hilbert space with inner product (-,-) and norm || - ||. Let C be a
nonempty closed convex subset of H. Let f : C — H and ¢ : C — C be two operators.
Recall that the generalized variational inequality is to find a point 7 € C' such that

(f(z"), p(@) = p(ah)) > 0, Vo e C. (1)
The solution set of (1) is denoted by Sol(C, f, ¢).

If ¢ = I, then the generalized variational inequality (1) reduces to find a point z' € C

such that
(f(z"),z — 2"y >0, Vz € C. (2)
The solution set of (2) is denoted by Sol(C, g).

Variational inequality acts as a key role and offers helpful techniques and means
for solving many important problems arising in industry, finance, economics, social, ecology,
regional, pure and applied sciences and so on ([8, 12, 15]). It has been shown that variational
inequality theory provides a simple, natural and unified framework for a general treatment
of unrelated problems. Variational inequality (2) was introduced by Stampacchia [28] in
1964. A lot of work and a great deal of algorithms for solving (2) have been proposed and
investigated, see, e.g., [1, 18, 44, 45, 46, 49]. One of basic techniques for solving (2) is the
projection method which generates a sequence {z,} by the following iterate

Tny1 = PC(I - Tf)(En, n >0, (3)

where 7 > 0 is step-size and P¢ is the orthogonal projection from H onto C.
Projection method (3) delegates a critical tool for finding the approximate solution
of assorted types of variational inequalities. The general variational inequality (1) was
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introduced and studied by Noor in [20]. It has been shown that the minimum of a dif-
ferentiable nonconvex function on the nonconvex set can be characterized by the general
variational inequality ([21]). On the other hand, we note that the variational inequalities
(1) and (2) can be transformed into fixed points problems. These equivalent relations have
been applied to construct relevant iterative algorithms including proximal point methods
([2, 10, 53]), projection methods [14, 35, 51], Wiener-Hopf equations ([22, 25]), auxiliary
principle techniques ([11, 16], extragradient methods ([4, 7, 33, 54]), subgradient meth-
ods ([6, 34]), Tseng’s methods ([48]) and splitting methods ([3]) for solving variational
inequalities (1) and (2). Especially, iterative algorithms for solving variational inequalities
and/or fixed point problems have been investigated extensively by many authors ([5, 19],[24]-
[31],[38]-[43],[13, 23, 37, 50, 52, 56]).

The main purpose of this paper is to investigate the following variational inequalities
and fixed point problems of finding a point p such that

p € Sol(C, f,) and p(p) € Sol(C, g) N Fix(S), (4)

where g : C — H, S : C — C are two operators and F'iz(S) denotes the fixed point set of
S.

We construct an iterative algorithm for solving (4) in which the involved operators
f, g and S are inverse strongly p-monotone, relaxed (v, )-cocoercive, and asymptotically
pseudocontractive, respectively. Under some additional assumptions, we show that the
constructed algorithm converges strongly to a special solution of problem (4).

2. Preliminaries

In this section, we collect several relevant notations and lemmas. Let C be a nonempty
closed convex subset of a real Hilbert space H. For Va! € H, there exists a unique point
in C, denoted by Pc[z'], such that ||zt — Po[z!]]| < ||z — 2T||, V2 € C. Furthermore, P¢ is
firmly nonexpansive, namely,

1Pcfa] — Polo'|* < (Pefa] — Polo'],a — o), va,v' € H. (5)
Pc has the characteristic ([47]), Va € H,
(i — Pola), 2t — Pola]) <0, Vo't e C. (6)

In Hilbert space H, we have the following equality
llep + (L = e)pTI* = ¢llpll* + (1 = ) [p"[I* — e(1 = &)l — p"|1%, (7)
for all p,pt € H and any constant ¢ € R.
Recall that an operator f : C' — H is said to be
e o-strongly monotone, if Vu,v € C|

(f(w) = f(v),u—v) > ollu—v|,

where ¢ > 0 is a constant.
e a-inverse strongly -monotone, if Vu,v € C,|

(f(w) = f(v), p(u) = p(v)) = all f(u) = f)]%,

where a > 0 is a constant and ¢ : C' — C' is an operator.
e relaxed (v, o)-cocoercive ([9, 32]), if Vu,v € C,

(f(w) = f(v),u—v) = (=) f(u) = F)I* + ollu -],

where v > 0 and g > 0 are two constants.
Recall that an operator S : C' — C' is said to be
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e k,-asymptotically pseudocontractive if for all n > 1 and for all p,v" € C,
<Sn(ﬁ) - Sn(UT)vﬁ - UT> S kn”ﬁ - UTHQa
equivalently,
15™(B) — S™ ()| < (2kn — D[IF = 0T [I” + [|(I = 5™)5 — (I = S™)oT||?, (8)

where {k,} is a real number sequence in [1,00) satisfying lim, o k, = 1.
e uniformly Lo-Lipschitz if for all n > 1 and for all p,v" € C,

15™(B) — S™ ()| < Lallp — o',

where Ly > 0 is a constant.
An operator h : C — C is said to be k-contractive if for all p,v" € C,

1h(B) — AN < &ll5 —oF|l,

where £ is a constant in [0,1).

Let T be a multi-valued operator of H into 2. The effective domain of T is denoted
by dom(T), that is, dom(T) = {z € H : T(z) # 0}. A multi-valued operator T is said to
be monotone iff (z —y,2* — y*) > 0 for all x,y € dom(T), x* € T(x), and y* € T(y). A
multi-valued operator T is said to be a maximal monotone operator iff T' is monotone and
its graph is not properly contained in the graph of any other monotone operator on H.

Lemma 2.1 ([42]). Let C be a nonempty closed convex subset of a real Hilbert space H.
Let f be an a-inverse strongly p-monotone operator. Then, Vx,y € C, we have

(p(x) — Bf () = (2(y) = BFW)I® < lle(x) — eW)II” + BB — 20) |1 f(x) — f(»)]I>.

Lemma 2.2 ([55]). Let C be a nonempty closed convex subset of a real Hilbert space H.
Let S: C' — C be a uniformly L-Lipschtzian and asymptotically pseudocontractive operator.
Then, I — S is demiclosed at zero.

Lemma 2.3 ([36]). Let {0,} C [0,00), {an} C (0,1) and {¢n} be real number sequences.
Suppose that the following conditions are satisfied
(1) On+1 < (1 - an)@n + Cn;vn > 17'
(i) S0, g = oo
(iii) limsupc—n <0 or > 07 ¢l < o0.
o s

n— o0 n
Then lim,, _,~ 0n = 0.

Lemma 2.4 ([17]). Let {¢n} be a sequence of real numbers that does not decrease at infinity,
in the sense that there exists a subsequence {¢pn,} of {¢n} such that ¢n, < ¢n,41 for alli > 0.
For every n > ng, define an integer sequence {y(n)} as

7(”‘) = max{kz =n: ¢TL1 < ¢77wi+1}'

Then v(n) — oo as n — oo and for all n > ny,
max{(b’y(n)v d)n} < ¢fy(n)+1‘

3. Main results

In this section, we introduce our main results. Let C' be a nonempty closed convex
subset of a real Hilbert space H. Assume that the operators h, ¢, f, g and S satisfy the
following conditions
(C1): h:C — C is k-contractive;
(C2): ¢ : C — C is o-strongly monotone and weakly continuous with R(yp) = C;
(C3): f:C — H is a-inverse strongly p-monotone;

(C4): g: C — H is relaxed (7, p)-cocoercive and L;-Lipschitz continuous;
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(C5): S: C — C is ky-asymptotically pseudocontractive and uniformly Lo-Lipschitz contin-
uous.

Let {an}, {9,} and {{,} be three real number sequences in [0, 1] and {3, } and {7,} be two
real number sequences in (0,00). Let n be a positive constant in (0, 1). Use A to denote the
solution set of problem (4), that is, A = Sol(C, f,¢) (¢~ 1(Sol(C, g) N Fiz(S)). Now, we
construct an iterative algorithm for solving problem (4).

Algorithm 3.1. Let 9 € C be a fized point. Let {x,} be a sequence generated by the
following iterative format

Sn = O‘nh(xn) + (1 - an)PC[@(xn) - an(xn)}v

t, = PC[Sn - Tn.g(sn)]a

P(@nt1) = (1 = n)p(xn) + nwn, n > 0.
Theorem 3.1. Suppose that A # (). Suppose that the following restrictions hold:
(r1): limy ooy = 0 and 307 | v, = 00;
(r2): 0 <k <o <2a and 0 < liminf, o B, <limsup,,_, . Bn < 2a;
2
(r3): Q>7L%+% and 0 < a1 <1, <as < 2(""_Li?zl)foralanO;
(
(

rd): Ly >1 and0<b1<ﬁn<b2<§n<@foralln20;

r5): 1< ky <2, limy oo 2= = 0 and 307, (ky — 1) < 400,

Then the sequence {x,} generated by (9) converges strongly to p € A which solves the
following VI

(h(B) — ¢(B), p(a') = (p)) <0, Val €A (10)

Proof. Since ¢ is o-strongly monotone, we deduce (@) —p(9)]| > o||a—2| for all 4,7 € C.
This indicates that VI (10) has a unique solution p. Then, p € Sol(C, f,¢) and ¢(p) €
Sol(C, g) N Fiz(S). By inequality (6), we receive p(p) = Pce(p) — Bnf(P)] for all n > 0.

Set y, = PC[(P(xn) - /an(xn)] and v, = @(xn) - ﬁnf(xn) - (‘P(ﬁ) - ﬁnf(ﬁ)) for all n > 0.
According to Lemma 2.1, we deduce

lyn = 2@ < llval® < llo(zn) = @I = Bn(2a = Ba) | f(xn) — £(B)]. (11)
Note that |[¢(zn) — @(B)|| > oz, — pl|. From (9), (11) and (r2), we achieve
[sn = @@)|| = llanh(zn) + (1 = an)yn — Pele(p) — Buf D]
< llom (h(zn) — ©(B) + B f (D)) + (1 — an)on|l

< onllh(za) — hD) + anllh(@) — 9@) + Buf B + (1 - an)llenl D
<[ =1 =r/o)an]lle(@n) — @) + an(lh(p) — @) + 2 f(D)I])-
Taking into account (11) and (12), we obtain
”Sn - ‘P(ﬁ)HQ < Han(h(xn) - @(ﬁ) + an(ﬁ)) + (1 - O‘n)vnH2
< apllh(zn) — @(B) + BafB) I + (1 — an)|Jvn]? (13)

< anllh(@n) = (@) + Baf D)I° + (1 = an)[ll(zn) — ()]
+ ﬂn(za - Bn)”f(zn) - f(ﬁ)”ﬂ
Since g is relaxed (7, g)-cocoercive and Li-Lipschitz, for all z,y € C, we have
(9(x) = g(y),z —y) = (=lg(x) —gWI* + ellz — y[|* > (e = vLD)[lz — y|* >0, (14)

which implies that g is monotone and it follows from (14) that

(9(sn) = 9(0(B)), 50 — (D)) = (0 = ¥LY)llsn — ¢ (B) |-
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Thus,

l[sn — ©(B) = 7 (g(sn) — g((®)))II”
= [lsn — @B = 270 (g(sn) — 9(2(P)), 5n — (B)) + T2 llg9(sn) — 9(2(B))|I”
< lsn — @(D)|I* + 210y L5 — ©(P)II> — 27n0llsn — (D) (15)
+ 7L |lsn — ()17
= (14277 LF = 2700 + 72 L) |Isn — (D).

Since 0 < 7, < 2(9;7;@, 0 <1+ 27,v7L? — 27,0+ 72L% < 1. Hence, from (15), we obtain

[[sn = @(B) = Tn(g(sn) — gl < llsn — (D).
Therefore,
[tn — o) = [Pc(I = Tag)sn — Po(l — mg)e (D)
<N =7ng)sn — (I = Tg)p (D) (16)
< lsn —(@)I-
Set uy = (1 = ()tn + (nS™(ty,) for all n > 0. By (8), we have
1™ (tn) = 0B)|I* = 1™ (tn) = S™ (@B < 2k — Dlltn — eB)I* + Itn — S™(#)[I*, (17)
and
15 (un) = @)1 < (2kn — Dllun — @B)I* + llun — S™ (un)|*. (18)
Using (7) and (17), we have
lun = 0B = (1 = ¢a) (tn — ¢ (B)) + Ca(S™ (tn) — 9(B)) |
= (1= C)litn — @B)I” + Call S"(tn) = LB = Ga (L = Ga)lltn = S™ (ta) I
< (1= Galltn = @B)I° + G ((2kn = Dltn — ¢B)* + It — S")I?)  (19)
= Gl = Ga)lltn — S™(ta)
= 1+ 2(kn — DGallltn — 2B I* + Galltn — S (ta) |-

As a result of uniform Ly-Lipschitz continuity of S, ||S™(un) — S™(tn)|| < Lallun — tn]| =
LoCu||tn — S™(tn)||- This together with (7) implies that

= S™ (a1 = [[(1 = Ca) (tn = §™ (un)) + Cu(S™ (tn) — 8™ (un)) |
= (1= Ga)lltn = 8™ (un)I* + Call S™ (tn) — 8" (un)|I?
= Gl = Ga)lltn — 8™ (ta)1?
< (1= Ga)lltn = 8™ (un) [1* = Ga(1 = Cu = L3 lItn — S™ (ta)II*.
By virtue of (18)-(20), we obtain
15" (un) = 0B < (2kn = D[+ 2(kn — DGallltn — 9B)I* + (2kn — 1)Glltn — S"(ta) 12
+ (1= Ga)lltn = 8™ (un)|” = G (1 = Gu = L3G) [1tn — 8™ (tn)|I?
)
)

(20)

(k= DL+ 20k = DGlltn — 0@+ (L= )l = S ()

_Cn(l_anCn L%Q ||t _Sn( )H2
— 2knCn — ¢2L3 > 0. On account of (21), we deduce

: 1 1
<
Stace G < 244/L3+4 = knt+y/k2+ sz

15" (un) = B < (2kn — D[L +2(kn — DGallltn — @B)I* + (1 = Ga)lltn — S™(un)|1?. (22)
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In the light of (7) and (22), we get
lwn = @B)I* = 11 = 0n)(tn — ©(B)) + In (5" (un) — ¢(B)) I
= (1= In)lltn — @I + InllS" (un) — ()|
— In (1= )|t — S™ ()|
< On(2kn — D1+ 2(kn = DGallltn — 0B + (1 = In)lltn — 2(B)|
+0n(1 = Ca)lltn = 8™ (un) [* = In(1 = Fn) [t — S" (un)||?
= [1+ 200 (kn — 1) + 26000 (2kn — 1) (ke = D][Itn — () ]1?
+ 00 (O = Ca)lltn — S (un)|®
< [1+8(kn = Dlltn = ¢®)II* = 0n(Cn = O)lItn — 8" (un)|1*.
Furthermore,
lwn = e@) < 1+ 4(kn = D]ltn — 0 ®)]- (24)
From (9), (12), (16) and (24), we obtain
le(@n1) =@ < (L =n)lle(@n) = LB + nllwn — o)
< (I =n)lle@n) = e@I + 0l + 4(kn = Dlllsn — » ()]l
<[l +4(kn = DI[1 = (1 = s/o)an]llp(zn) = »(B)]]
+ L+ 4k — Do ([[2(5) — e + 2o/ £ (D))
+ (L =n)lle(zn) — w®)]l
<[44k, = DIL = (1 = s/o)nan]llp(zn) — »(B)]|

+14 4l — DI(1 = w/oya, (M= AP 207D

(25)

It follows that

o), 17(P) — (D) + 20| f (B )II}

lo(zn) — H1—|—4kz —1)] max{||<p(a:0) = /o

Then, {¢(z,)} is bounded. Note that ||z, — p|| < L|l@(zyn) — @(B)|. So, {zn}, {sn} {tn}
and {w,} are bounded. By (9), we receive
le(zns1) = B = llo(zn) — o(B)]
= nllwn = e@)II° = lle(zn) = @B — lwn — o(2a) 7] + 7°llwn — (2a)|> (26)
= nllwn — e@)I* — lle(@n) = e@B)*] = (L = n)llwn — o(an)|*.
In terms of (12), (16) and (23), we get

lwn = @@)II* < [+ 8(kn — Dllsn — 2(B)]
< [1 4 8(kn — DI = (1 = £/0)am]llo(za) — 0 ()]?

+ 14 8(kn — D)(1 — £/0)an ( 17(p) — 1(_)|,L702a”f( )|I>

Next, we consider two possibilities: the sequence {||¢(z) — @(p)||} is either monotone
decreasmg (Case 1) or not (Case 2), i

Case 1. There exists positive integer no such that {||¢(z,) —¢(P)||} is decreasing for
all n > ng.

Case 2. For any positive integer N, there exists at least a positive integer ng > N
such that [9(ny) — P < [(@ne1) — 2B

(27)
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For Case 1, it is obviously that lim,  [|@(z,) — ©(p)| exists. Owing to (26) and
(27), we obtain

(1 = n)llwn = @(za)|* < llp(zn) = 0B = l(@nt1) — 0B
+nllwn —e@)II” = le(@n) — 2B
< lle(xa) = 0B)? = l(@nt1) = @B + 8(kn — 1)ll¢(2 ) v

17(p) — o)l + 2] F (D)
1 - DJ(1—
#1144 806, ~ 1](1 = r/o)a, (1P =L
— 0,
which implies that
Jim[Jw,, — p(an)] = 0. (28)
Therefore,
1 lp(er) — ()| = lim pllw, — plz,)] = 0. (29)

From (9), (13) and (23), we achieve

le(@ns1) =@ < (1= n)llp@n) — B + nllwn — o (B)I>
< (L=n)lle(@n) = @)+ nll + 8k, — D]llsn — o (@)
< (14 8(kn — Vlnan|[h(zn) — ¢(B) + Buf (D)
+ (14 8(kn — V(1 — o) Bn(Bn — 20) | f(zn) — FB)II?
+ 1+ 8(kn — Dn(1 — an)llp(xn) — 9(B)|1? (30)
+ 1 =n)le(zn) — @)
<1+ 8(kn — DInawnllh(zn) — () + B f (D)
+ (14 8(kn — V(1 — o) Bu(Bn — 20) | f(2n) — FB)II?
+ 1+ 8(kn — Dllle(2a) — o).

+8
+38

It results in that
N1+ 8(kn — D](1 — ) B (2a = B)|Lf (2) — F(B)]1?
< [1+8(kn = Dllle(an) = 0B)” = lo(@n41) — 0 (B)I>
+[1+ 8k — Dlnanllh(en) — (B) + Baf(B)II?
— 0.

It follows that
lim_ | f(za) - £(B)] = 0. (31)

n— oo

Using (6) and (11), we have

[y — eB)1? = ||Pole(@n) — Buf(xn)] — PelpB) — Baf ()]
< <Un Yn — (ﬁ»

= 21l 4 g — 6@ ~ ) — v — Bu(Farn) — 1B}
< 2 {let@n) — @I + g — oD ~ loea) — vl ~ B2 () — FB)]
+ 26, (pln) = ys F(zn) = FB) }-
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It leads to
lyn = e®)II* < llo(zn) = @@)I° = Ball f(zn) = FB = lo(@n) = ynll?
+ 2B (p(xn) = Yn, f(zn) — f(D)).
On the basis of (9) and (32), we have
Isn = @B)I* < anllh(zn) — 0@ + 1 — an)llyn — 9B
< anlh(za) — @) + (1 — an)lle(za) — o (@) (33)

+2Bnll0(@n) = yallllf(@n) = FB) = 1 = an)llp(@n) = yal.

In view of (30) and (33), we obtain

lo(znr1) = @@? < [1+8(kn = D]llo(zn) — @B + [1+ 8(kn — D]ewlh(zn) — (B)]1*
— [148(kn — Dn(1 — o) o(@n) = ynll?
+2[1+ 8(kn — DIBulle(@n) — ynllllf (2n) — FB)]-

(32)

Hence,

[1+8(kn = DIn(1 — an)ll(@n) = yal®
< 1+ 8(kn — Dllle(@n) — 0@ = le(zns1) — @)

~ (34)
+2[1+8(kn = DnBulle(n) — yallll f (@n) — F(B)|
+ [1+ 8(kn — Dlnan|Ih(zn) — ()]
By virtue of (29), (31) and (34), we deduce
lim [l (2,) = ynl| = 0. (35)
n—oo
Since s, — yn = an(h(zy) — yn) — 0, from (28), (29) and (35), we have
Jim lo(zn) = sall = lim [[o(zni1) = sal = lm [jw, = s, = 0. (36)

From (15) and (16), we get
tn = 2B)I* < llsn — e@)I* = 2a[=llg(sn) — 9(@)I* + ellsn — ¢(B)II’]
+72llg(sn) = g(e@)I
270

< llsn = 0@ + @y + 77 — 2 Mg(sn) = 9((B))]1*.

This together with (23) and (30) implies that
le(zni1) = e@)I* < (1 = n)lle(zn) = e@® + 1+ 8(kn = Dnllsn — v (B)]?

1 800k = Dln(2ry + 7 = 275 la(ow) = ol ()

which together with (34) implies that

(148 — DIn(@ry + 72 — 229 llg(s) — g0 ()]

L3
<@ =n)lel@n) =@ = lle(@ni1) — @I + [1 + 8(kn — DInllsn — 0(D)I1?
— 0.
Therefore,

lim {|lg(sn) — g(e(P)) = 0. (37)

n— oo
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In accordance with (6) and (16), we have
It = 0(@)I* = 1Pc(I = Tng)sn — Po(I = 1ng)o(B)|?
<A = 7ng)sn = (I = ng)@(P), tn — (D))

= {10 = s = (= mg)e G + It~ 2P

T = rag)sn — (I = 7ag)o(B) — (tn — @(ﬁ))IQ}

A

< 5{Isn = SO + It = 91 = Lo — = la(52) ~ a0

34 Isn = GO+ 6 = GO = o — 1l = 72lsn) = 9P

+ 20 {g(o0) — )0 — o)
which yields
[tn — ‘P(ﬁ)”g < lsn — @(]5)“2 — |lsn — tn||2 +274lg(sn) — g(@®)llsn — tall-
This together with (28) implies that
lp(zni1) = e@)* < (1 =n)lle(@n) = @B + 0L+ 8(kn — 1)][[sn — (B)]?

+2[1 + 8(kn — D)|n7nllg(sn) — g(e(®)|ll|sn — tall
=L+ 8(kn — 1)]llsn — th2~

It follows that

L+ 8(kn — D]llsn — tall> < (L =n)[le(zn) — 0@ + 01 + 8(kn — 1)][|sn — ©(D)|I?

+ 2[1 4+ 8(kn — Dnmnllg(sn) — g(0(@)lllsn — tnl (38)

— le(@ns1) — ().

By (29), (37) and (38), we gain
lim
n— oo

Combining (36) and (39), we have

|sn, — tn]| = 0. (39)

Tim w, =t = 0. (40)

In view of (23), we get

In(Gn = In)ltn — S (a1 < [1 4 8(kn — D]litn — 0(@)|* = llwn — 0(B)]*- (41)

It follows from (40) and (41) that

Jim[[t, — 5™ (un)[| = 0. (42)

Since S is uniformly Lo-Lipschitz, we have
[tn = 8™ ()| < [[tn = S™ (un)ll + 115" (un) — S™ ()|
< It = 8™ (un)ll + L2Galltn — S™ (a)|-
It follows that

1
_qn P _qn )
tn = S"(t)] < T ltn = 5" ()] (13
Based on (42) and (43), we deduce
. o _
Jim ([t — 5" (tn)] = 0. (44)
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Observe that
||tn+1 - S(tn+1)” < ||tn+1 - Sn+1(tn+1)” + ”Sn+1(tn+1) - Sn+1(tn)||
+ 8™ (tn) = St

n+1 n (45)
< ”tn-&-l -5 (tn-&-l)H + L2||tn+1 - th + LQHS (tn) - tn+1||
< ltnsr — Sn+1(tn+1)” +2Laltn+1 — tall + Lol|S™(tn) — tal|-
Meanwhile, from (9), we have
[tnt1 = tnll < [[tn1 — wnaall + [wnsr — wall + lwn — ta
1
< Mt — woga || + lwn — tall + ;H‘P(xn-ﬁ) = p(@n+1)|| (46)
L—n
+ T”‘P(xn-&-l) — p(an)ll-
On the basis of (29), (40), (44), (45) and (46), we deduce
Tim [t — S(t)] = 0.
This together with (39) implies that
nhan;o l[$n = S(sn)|l = 0. (47)
Since {sy} is bounded, choose be a subsequence {s,,} of {s,} such that
lim sup(h(p) — ¢ (p), sn — @(p)) = lim (h(p) — ¢(P), sn, — ¢(P))- (48)
n—0o00 1—00

Furthermore, by the boundedness of {zy,}, there exists a subsequence {zn, } of {zn,}
satisfying Tn, — Z € C. For convenience, we assume that z,, — z. It follows that
o(zn,) = ©(2) due to the weak continuity of ¢. Then, t,, — ¢(z) and s,, — ¢(z). From
Lemma 2.2 and (47), we obtain ¢(z) € Fiz(S). Next, we show that ¢(z) € Sol(C,g). Set

_Jg(x) + No(z), zeC,
Si(e) = {(7], r¢C.

It is clearly that S; is maximal monotone. Let (z',y") € G(S;). Owing to y! — g(aT) €
N¢(2') and t,, € C, we get

(@ —tn,y" = g(z)) > 0. (49)
According to (6), we obtain
(" —tp, tn, — (I = 7n,9)8n,) > 0.
It yields
(o = s 2 4 g50,)) 2 0 (50)

ez

Combining (49) and (50), we achieve

<$T - tm,yT> > <xT - tni,g(mT) —g(tn,)) + <xT —tn;, 9(tn,) — 9(sn,))
tni — Sn,

- <xT - tnm 7> (51)

Tn,;
tn,

— Sp.
> <"E1L - tni’g(tni) _g(sni)> - <‘r]L - tniv 17m>

Uz
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Since t,, — @©(2), |[tn, — Sn,|| = 0 and ||g(tn,) — g(sn,)|| = 0, it follows from (51) that
that <£ET ©(2),y") > 0. Therefore, p(z) € S7*(0) and ¢(2) € Sol(C,g). Next, we prove
z € Sol(C, f,p). Set

Sa(x) = {g(x) + Ne(@), z Zg,

It is known that Sy is maximal ¢-monotone. Take (zf,vT) € G(S2). In virtue of v — f(21) €
Ne¢(2) and @, € C, we have

(p(z") = o(@n,), 0" = f(z1) > 0. (52)
By (6), we receive
<SO(ZT) = YnisYn; — [P(Tn;) = B, f2n,)]) 2 0.
It follows that

() =g 22 e ) 20 (53

Combining (52) and (53), we deduce
<<p(ZT) - @(wni)ﬂﬂ) > <@(2T) - (p(:}?nl% f(ZT) - f(x’rh» + <90(ZT) - (p(‘rm)7 f(‘rm»
Yn;, — @(mnz)
- <90(ZT) — Yn;» T> - <90<ZT> - ymvf(wm» (54)
> (o) = s LA o) = S o)

Since [|@(zn,) — Yn, || = 0 and @(x,,) — ¢(z), we deduce that (p(z7) — ¢(z),v!) > 0 by
taking i — oo in (54). Thus, z € S5 *(0) by the maximal p-monotonicity of Sy. Hence,
z € Sol(C, f, ). Therefore, z € ¢~ (Fixz(S) N Sol(C,q)) N Sol(C, f,0) = A

By (10) and (48), we obtain

i sup(h(5) = ()50 — 9 () = Jim (h(5) — (), ) = ()
= (h(p) — (D), p(2) — #(p)) < 0.
Thanks to (9) and
Isn = e@* < (1 = an)?llyn — ¢B)|I* + 2000 (h(@n) = 2(B), 50 — #(P))
< (1= an)?l(@n) = @B)I* + 2an (h(zn) = (), sn — (P))

(11), we have

+ 2an(h(p) — (), sn — ©(P))
< (1= an)?le(zn) — ¢@)? + 2ank/0llp(@n) — 0B)llsn — 0 (B)l
+ 20 (h(p) = @(P), sn — (D))
< (1= an)?le(zn) = ¢@)? + anr/ole(an) — ¢ (B)|
+ank/olsn — @(B)I|* + 200 (h(B) — 0 (P), 50 — ¢ (B))-
It follows that

—Kk/o)ay, . a? _
Isn = eIP < 1= 200 o) — P + T llp(en) — I
b () ~ p(F), 50— (D))

1—apk/o
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Set M = sup, {[l¢(zn) — e(B)I* |lsn — @(D)[*}. Therefore,

() ~ @) < (- mllelen) — @I +nlL +8(ks — D]llsw — o)
— k/o)ay, . a? _
< |1 - MR o) - oI + = lplen) - e
2a,m

R e — an [ (h(p) — (P); sn — (P)) + 8nM (K, — 1) )

- [1- 2D o) — g + 2L
o, AM (ky, — 1) 1 o) s — o
et e ) - (i) o) -
By Lemma 2.3, (55) and (56), we conclude that ¢(z,) — ¢(p) and z,, — p.

For Case 2, setting ¢, = {||¢(z,) — @(p)|*}, we have ¢, < dno+1. Let {y,} be an
integer sequence defined by, for all n > ng,

y(n) =max{l € Njng <1 <n,¢; < d41}-

It is obvious that vy(n) is non-decreasing and there hold lim, .o v(n) = co and ¢, (,) <
®~y(n)+1 for all n > ng. Similarly, we have

lim sup((p) — @(p), 55(n) — ¢(P)) <0 (57)
and
201 =rw/o)ay(n)n 2(1 — K/o)ay(n)n
Primyt1 {1 T,/ | O T T a om0 (58)
ay(n) AM (ky(n) — 1) 1 _ _ i
{2(1 — KJ/O’)M (1 — Ii/O’)Oé,Y(n) 1 H/CT <h(p) - L)0(p)? Sy(n) — @(p»}

Since ¢y (n) < Py (n)+1, it follows from (58) that

ay(n) AM (kyn) — 1) 1 _ _ _
¢’y(n) < 2(1 — Ii/O')M + (1 — K/O')Oé,y( ) + 1 _ H/O’ <h(p) - <p(p), S'y(n) - 90(10)> (59)

According to (rl), (r5), (57) and (59), we derive limsup,, , ., ¢~(n) < 0 which yields
lim ¢, = 0. (60)

n—roo

Combining (57) and (58) to deduce that limsup,, ., ¢ m)+1 < limsup,,_, ., ¢(n). This
together with (60) implies that lim, o ¢y(n)+1 = 0. Applying Lemma 2.4, we obtain
0 < ¢n < max{dy(n), Py(n)+1}. Therefore, ¢, — 0. That is, p(z,) — ¢(p) and thus
r, — p. This completes the proof. O

Setting S = I in Algorithm 3.1 and Theorem 3.1, we have the following algorithm
and corollary.

Algorithm 3.2. Let 9 € C be a fixed point. Let {x,} be a sequence generated by the
following iterative format

sn = aph(zn) + (1 — an) Pelp(wn) — Buf(2n)],

tn = Pclsn — mag(sn)],

P(@ny1) = (1 —n)p(en) +ntn, n>0.
Corollary 3.1. Suppose that A1 := Sol(C, f,) (¢ 1(Sol(C,g)) # 0. Suppose that the
following restrictions hold:

(r1): limy ooy = 0 and >_07 | v, = 00;
(r2): 0 <k <o <2a and 0 < liminf,, o B, <limsup,,_, . Bn < 2a;
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2
(r3): Q>’}/L%+% and 0 < a1 <1, < ag < 2(in%Ll)foralanO.
Then the sequence {x,} generated by Algorithm 3.2 converges strongly to p1 € A1 which
solves the following VI

(h(p1) — ¢(p1), p(z) —@(p1)) <0, Val €A

Setting ¢ = I and f being a-inverse strongly monotone, from Algorithm 3.1 and
Theorem 3.1, we have the following algorithm and corollary.

Algorithm 3.3. Let o € C be a fized point. Let {x,} be a sequence generated by the
following iterative format

Sn = anh(mn) + (1 - an)PC[xn - an(l‘n)],

t, = PC[Sn - Tng(sn)]a

Wn = (1 - Q9n)tn + 19n5n[(1 - (n)tn + (nS"(tn)L

Tnt1 = (1 = n)2n + nwn, n > 0.
Corollary 3.2. Suppose that Ay := Sol(C, f)NSol(C, g)NFixz(S). Suppose that the following
restrictions hold:
(r1): limy ooy, = 0 and >_07 | v, = 00;
(r2): 0 < Kk <2« and 0 < liminf, , B, < limsup,,_, . Bn < 2¢;

2
(r3): Q>7L%+% and 0 < a1 <7, <as < %forallnzo;
1

(
(

. 1 .
rd): Lo >1and 0 < by <9, <by <, < TRy for alln > 0;

15): 1<k, <2, limy,_yoo #2212 =0 and 307 | (ky — 1) < +00.
Then the sequence {x,} generated by Algorithm 3.8 converges strongly to ps € Ay which
solves the following VI

(h(p2) = P2, 't =) <0, Val € Ao,
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