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RECURRENT POINTS FOR ITERATED FUNCTION 
SYSTEMS

Yingcui Zhao1

In this paper, we introduce the definitions of ω-limit point, periodic
point, almost periodic point, chain recurrent point and non-wandering point
for iterated function systems. Then we mainly focus on the properties of the
above recurrent points, for example whether the recurrent point sets of the
above recurrent points are empty, invariable, iterable or not. We find that
some properties of continuous self-maps on the compact metric space still
hold for iterated function systems, and some don’t hold. Also, we present
the relationships between these various kinds of recurrent point sets.
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1. Introduction

Throughout this paper, let N = {0, 1, 2 · · · } and Z+ = {1, 2, · · · }. A
dynamical ststem is a pair (X, f), where X is a compact metric space with
metric d and f : X → X is a continuous map. The asymptotic properties
of orbits are the core content in the study of dynamical systems. And the
main task is to study the evolution of a single state in the dynamical systems.
Therefore, it is very valuable to study the recurrent points. Many research
about the recurrent points is referred to [4, 8, 12] and references therein.

Iterated function systems[2, 3] and ϕ-contractive parent-child possibly
infinite iterated function systems[7] are widely used for fractal structures, the
image compression, the image processing and dynamic systems. And iterated
function systems, due to their relatively simple structure and wide applica-
bility, have become foundational tools in the study of fractal geometry and
dynamical systems, making them easier to use for analyzing and promoting
fundamental theoretical research. Let f0, f1 be two continuous self-maps on
X. Then F = {X; f0, f1} is called an iterated function systems (IFS). The
topic of iterated function system is currently an intensely studied area of dy-
namical properties, with papers from many authors at this point. See [11, 13]
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for shadowing property, [5, 6] for sensitivity and transitivity, [1] for chaos and
[10] for attractor, etc..

For any subset Y of X, let

F(Y ) = f0(Y )
⋃

f1(Y ).

And for any k ∈ Z+, let

Fk = {X; fαk−1
◦ · · · ◦ fα1 ◦ fα0 |α0, α1, · · · , αk−1 ∈ {0, 1}}.

An orbit of x ∈ X under the iterated function system IFS F is a sequence
{fnα (x)}∞n=0, where

α = α0α1α2 · · · ∈ Σ:={s = s0s1s2 · · · |si ∈ {0, 1}},
and

fnα (x) = fαn ◦ · · · ◦ fα1 ◦ fα0(x), ∀n ∈ Z+,

f 0
α(x) = x. Set

orbα(x) = {fnα (x)}∞n=0,

orbα(x,Fn) = {fknα (x)}∞k=0,

orbα(f iα(x)) = {f i+nα (x)}∞n=0,

orbα(f iα(x),Fn) = {f i+knα (x)}∞k=0.

Inspired by this, we generalize the definitions of the sets of ω limit
points, periodic points, almost periodic points, chain recurrent points, recur-
rent points, non-wandering points and strong non-wandering points to our new
setting, and mainly study their properties whether the recurrent point sets of
the above recurrent points are empty, invariable, closed, iterable or not, in
the next section. Then we present the relationships between these kinds of
recurrent points set in Section 3. The results of this paper is numerous. A
summary of what we have investigated and why is given in the conclusion.

2. Preliminaries and Basic Concepts

Let (X, d) be a compact metric space and f0, f1 be two continuous maps
on X. The iterated function system IFS F is the action of the semi-group
generated by {f0, f1} on X.

2.1. ω limit point

Definition 2.1. Let α ∈ Σ. We say that y ∈ X is a ω-limit point of
x ∈ X under its orbit orbα(x), if there exists a sequence {ni} ⊂ N such that
lim
ni→∞

fni
α (x) = y. We use ω(x,F, orbα(x)) to denote the set of the ω-limit points

of x under its orbit orbα(x). And set

ω(x,F) =
⋃
α∈Σ

ω(x,F, orbα(x)).

Since X is compact, the following proposition is obvious.
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Proposition 2.1. Let x ∈ X and α ∈ Σ. Then ω(x,F, orbα(x)) 6= ∅ and
ω(x,F) 6= ∅.

Theorem 2.1. Let x ∈ X and α ∈ Σ. Then ω(x,F, orbα(x)) = ω(x,F, orbα(x)).

Proof. It is obvious that ω(x,F, orbα(x)) ⊂ ω(x,F, orbα(x)). Next we only
need to show that

ω(x,F, orbα(x)) ⊂ ω(x,F, orbα(x)).

Let y ∈ ω(x,F, orbα(x)). Then for any ε > 0 there exists y′ ∈ ω(x,F, orbα(x))
such that d(y, y′) < ε

2
. And there is a sequence {ni} ⊂ N such that lim

ni→∞
fni
α (x) =

y′. It results that lim
ni→∞

fni
α (x) = y. So, y ∈ ω(x,F, orbα(x)). That is,

ω(x,F, orbα(x)) ⊂ ω(x,F, orbα(x)).

�

Likewise, we can get the following result.

Theorem 2.2. Let x ∈ X. Then ω(x,F) = ω(x,F).

Theorem 2.3. Let x ∈ X. Then, F(ω(x,F)) = ω(x,F).

Proof. Firstly, we show that

F(ω(x,F)) ⊂ ω(x,F).

For any given z ∈ f0(ω(x,F)), there exists y ∈ ω(x,F) such that f0(y) = z.
Since y ∈ ω(x,F), there exist α ∈ Σ and a sequence {ni} ⊂ N such that

lim
ni→∞

fni
α (x) = y.

By the continuity of f0, we have

lim
ni→∞

f0(fni
α (x)) = f0( lim

ni→∞
fni
α (x)) = f0(y).

So, f0(y) ∈ ω(x,F). It is similar for z ∈ f1(ω(x,F)).
Next we show that

ω(x,F) ⊂ F(ω(x,F)).

Let z ∈ ω(x,F). Then there exist α ∈ Σ and a sequence {ni} ⊂ N such that

lim
ni→∞

fni
α (x) = z.

Let {f
nij
−1

α (x)}∞j=0 be a convergent subsequence of {fni−1
α (x)}∞i=0 with either

αnij
= 0, ∀j ≥ 0 or αnij

= 1,∀j ≥ 0. Without loss of generality, let

αnij
= 0,∀j ≥ 0.

Set lim
j→∞

f
nij
−1

α (x) = y. Then y ∈ ω(x,F). By the continuity of f0,

f0(y) = f0( lim
j→∞

f
nij
−1

α (x)) = lim
j→∞

f
nij
α (x) = lim

i→∞
fni
α (x) = z.
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Hence, z ∈ f0(ω(x,F)). �

By Definition 2.1, we can get the following theorem.

Theorem 2.4. Let x ∈ X and α ∈ Σ. Then for any i > 0,

ω(f iα(x),F, orbα(f iα(x))) ⊂ ω(x,F, orbα(x)).

Proof. Let i > 0 and let y ∈ ω(f iα(x),F, orbα(f iα(x))). Then there exists a
sequence {nj} of positive integers such that

lim
nj→∞

fnj+i
α (x) = lim

nj→∞
fnj
α (f iα(x)) = y.

Then y ∈ ω(x,F, orbα(x)). So, ω(f iα(x),F, orbα(f iα(x))) ⊂ ω(x,F, orbα(x)).
�

Theorem 2.5. Let x ∈ X and α ∈ Σ. Then for any n > 0,

ω(x,F, orbα(x)) =
n−1⋃
i=0

ω(f iα(x),Fn, orbα(f iα(x),Fn)).

Proof. Firstly, we show that ω(x,F, orbα(x)) ⊃
n−1⋃
i=0

ω(f iα(x),Fn, orbα(f iα(x),Fn)).

For any given y ∈
n−1⋃
i=0

ω(f iα(x),Fn, orbα(f iα(x),Fn)), there exists 0 ≤ i ≤ n− 1

such that
y ∈ ω(f iα(x),Fn, orbα(f iα(x),Fn)).

Then there exists a sequence {kj} of positive integers such that lim
kj→∞

f
i+kjn
α (x) =

y. So, y ∈ ω(x,F, orbα(x)).

Next we show that ω(x,F, orbα(x)) ⊂
n−1⋃
i=0

ω(f iα(x),Fn, orbα(f iα(x),Fn)).

For any given y ∈ ω(x,F, orbα(x)), there exists a sequence {nj} of positive
integers such that

lim
nj→∞

fnj
α (x) = y.

Then there exist a subsequence {njk} of {nj}, a sequence {qk} of positive
integers and 0 ≤ r < n such that njk = nqk + r. Thus,

lim
k→∞

fnqk+r
α (x) = lim

k→∞
f
njk
α (x) = y.

So, y ∈
n−1⋃
i=0

ω(f iα(x),Fn, orbα(f iα(x),Fn)). �

By Theorem 2.5, we can get the following theorem.

Theorem 2.6. Let x ∈ X and n > 0. Then

ω(x,F) =
⋃
α∈Σ

n−1⋃
i=0

ω(f iα(x),Fn, orbα(f iα(x),Fn)).
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2.2. Periodic point

Definition 2.2. We say that x ∈ X is a periodic point of IFS F if there
exsits α ∈ Σ and n ∈ N such that for any i ∈ N we have fn+i

α (x) = f iα(x). The
period of x is the smallest number n ∈ Z+ satisfying the above equality for all
integers i ∈ N. If n = 1, we say that x is a fixed point of IFS F. We use P (F)
and Fix(F) to denote the sets of the periodic points and fixed points of IFS F,
respectively.

The following example demonstrates that the property that fixed point
set and periodic point set are invariable for continuous self-maps doesn’t hold
for iterated function systems.

Example 2.1. Consider two continuous maps f0, f1 on Σ as follows:

f0(s0s1 · · · ) = 0s0s1 · · · , f1(s0s1 · · · ) = 1s0s1 · · · ,∀s0s1 · · · ∈ Σ.

We show that F(Fix(F)) * Fix(F) and F(P (F)) * P (F). For this,
select x = 0 · · · 0 · · · ∈ Σ. It is easy to show that f0(x) = x ∈ Fix(F) ⊂ P (F).
While, f1(x) * Fix(F). And for any α ∈ Σ and any n > 0, fnα (f1(x)) 6= f1(x).
So, f1(x) * P (F).

Now we show that the periodic point is retentive under iteration of IFS
F, but the fixed point is not.

Theorem 2.7. For any n > 0, P (F) = P (Fn).

Proof. Firstly, we prove that P (F) ⊂ P (Fn). For any given x ∈ P (F), there
exists α ∈ Σ such that there exists m ∈ N satisfying

fk+m
α (x) = fkα(x),∀k ∈ N.

Then, f
n(k+m)
α (x) = fnkα (x),∀k ∈ N. So, x ∈ P (Fn).

Next, we prove that P (F) ⊃ P (Fn). Let x ∈ P (Fn). Then there exist α ∈
Σ andm > 0 such that fmnα (x) = x. Select β = α0α1 · · ·αmnα0α1 · · ·αmnα0 · · · ,
then

fmn+i
β (x) = f iβ(x),∀i ≥ 0.

So, x ∈ P (F). �

For fixed point of IFS F, it is easy to show that the corresponding con-
clusion is different.

Theorem 2.8. For any n > 0, Fix(Fn) * Fix(F) and Fix(F) ⊂ Fix(Fn).

2.3. Almost periodic point

Definition 2.3. We say that x ∈ X is an almost periodic point of IFS F if
there exists α ∈ Σ and for any ε > 0 there exists N > 0 such that for any
q ≥ 0, there exists r ∈ N, q < r ≤ q +N satisfying

d(f r+iα (x), f iα(x)) < ε,∀i ∈ N.
We use AP (F) to denote the set of almost periodic points of IFS F.
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Firstly, we show that AP (F) is conditional invariable for IFS F.

Theorem 2.9. If f0 ◦ f1 = f1 ◦ f0, then F(AP (F)) ⊂ AP (F).

Proof. Let y ∈ F(AP (F)). Without loss of generality, suppose that y ∈
f0(AP (F)). Let ε > 0. Since f0 is continuous, there exists δ > 0 such that
for any x, y ∈ X, d(x, y) < δ implies d(f0(x), f0(y)) < ε. Then there exists
x ∈ AP (F) such that f0(x) = y. And there exist α ∈ Σ and N > 0 for any
q ≥ 0 there exists r, q < r ≤ q +N satisfying

d(f r+iα (x), f iα(x)) < δ,∀i ≥ 0.

By the continuity of f0, we have

d(f0 ◦ f r+iα (x), f0 ◦ f iα(x)) = d(f r+iα (f0(x)), f iα(f0(x))) < ε,∀i ≥ 0.

So, y ∈ AP (F). �

The Example 2.1 in which f0◦f1 6= f1◦f0 demonstrates that the condition
“f0 ◦ f1 = f1 ◦ f0” in Theorem 2.9 cannot be removed. For this, we select
x = 0 · · · 0 · · · ∈ AP (F). Next we use the proof by contradiction to show that
y = f1(x) /∈ AP (F).

Suppose that y ∈ AP (F). Then there exists α ∈ Σ for 1
3
, there is N1 > 0

such that for any k ≥ 1, there exists rk, (k − 1)N1 < rk ≤ kN1 satisfying
d(f rkα (y), y) < 1

3
. Hence,

αrk = 0 and αrk−1 = 1,∀k ≥ 1. (1)

What’s more, for 1
4N1

> 0, there exists N2 > 0 such that there is r,
0 < r ≤ N2 satisfying

d(f rα(y), y) <
1

4N1

.

Then r > 3N1 and αr = 1, α0 = α1 = · · · = αr−1 = 0, which is in contradiction
with (1). So, y /∈ AP (F)

The following result states that the almost periodic point is retentive
under iteration of IFS F.

Theorem 2.10. For any n > 0, AP (F) = AP (Fn).

Proof. Firstly, we prove that AP (F) ⊂ AP (Fn). For any given x ∈ AP (F)
there is α ∈ Σ such that for any ε > 0, there exists N1 > 0 such that for any
q ≥ 0, there is r, q < r ≤ q + N1 satisfying d(f r+iα (x), f iα(x)) < ε, ∀i ≥ 0.
Hence, for any n > 0, we have

d(fn(r+j)
α (x), f jnα (x)) < ε,∀j ≥ 0.

So, x ∈ AP (Fn).
Next, we show that AP (F) ⊃ AP (Fn). For any given x ∈ AP (Fn), there

is α ∈ Σ such that for any ε > 0, there exists N2 > 0 such that for any q ≥ 0,
there is r, q < r ≤ q +N2 satisfying

d(fk(r+i)
α (x), fkiα (x)) < δ,∀i ≥ 0,
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where δ satisfies that for any x, y ∈ X, d(x, y) < δ implies d(f sβ(x), f sβ(y)) < ε,
∀0 < s < k,∀β ∈ Σ. Set N = kN2. Then for any q ≥ 0, there exists l, 0 ≤ l < k
such that q− l = 0(mod k). Let q′ = q− l. Then q+N ≥ q+N− l = q′+kN2.

Therefore, there exists r, q′

k
< r ≤ q′

k
+N2 such that

d(fkr+kiα (x), fkiα (x)) < δ,∀i ≥ 0.

By the uniform continuity of f sβ,∀0 < s < k,∀β ∈ Σ, d(fkr+ki+sα (x), fki+sα (x)) <
ε, ∀i ≥ 0,∀0 < s < k. That is,

d(fkr+iα (x), f iα(x)) < ε,∀i ≥ 0.

Note that q < rk ≤ q +N . So, x ∈ AP (F). �

2.4. Chain recurrent point

Definition 2.4. We say that x ∈ X is a chain recurrent point of IFS F if for
any ε > 0, there exists a finite number of points x0, x1, · · · , xm ∈ X such that
x0 = xm = x and

inf
k=0,1

d(fk(xi), xi+1) < ε, i = 0,m− 1.

We use CR(F) to denote the set of the chain recurrent points of IFS F.

We mainly study that CR(F) is closed but not invariable for IFS F.

Theorem 2.11. CR(F) = CR(F), However, F(CR(F)) * CR(F).

Proof. Firstly we show that CR(F) = CR(F). For this, suppose that x is a
cluster point of CR(F). Then we only need to prove that x ∈ CR(F).

For any given ε > 0, since f0 and f1 are continuous, there exists 0 < δ < ε
2

such that for any z ∈ X with d(x, z) < δ, d(fk(x), fk(z)) < ε
2

, k = 0, 1. Since
x is a cluster point of CR(F), there exists y ∈ CR(F) with x 6= y such
that d(x, y) < δ. Since y ∈ CR(F), there exists a finite number of points
y0, y1, · · · , ym ∈ X such that y0 = ym = y and

inf
k=0,1

d(fk(yi), yi+1) = d(fni
(yi), yi+1) <

ε

2
, i = 0,m− 1.

Let x0 = x, x1 = y1, · · · , xm−1 = ym−1, xm = x, then d(fni
(xi), xi+1) <

ε, i = 0,m− 1. Therefore, inf
k=0,1

d(fk(xi), xi+1) < ε, i = 0,m− 1. Hence, x ∈

CR(F).
Next we illustrate that F(CR(F)) * CR(F).

Example 2.2. Consider two maps f0, f1 on Z+ as follows:

f0(1) = 1, f0(n) = n+ 1, n = 2, 3, · · · and f1(n) = n+ 1, n = 1, 2, · · · .

Since 1 is a fixed point of f0, 1 ∈ CR(F). But f1(1) = 2 /∈ CR(F). �

Interestingly, we can get the result that CR(F) is invariable for IFS F

by strengthening the condition.
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Theorem 2.12. Suppose that for any x ∈ CR(F) and any ε > 0, there exists
a finite number of points x0, x1, · · · , xm with x0 = xm = x such that

sup
k=0,1

d(fk(x0), x1) < ε and inf
k=0,1

d(fk(xi), xi+1) < ε, i = 1,m− 1.

Then, F(CR(F)) ⊂ CR(F).

Proof. For any y ∈ F(CR(F)), there exists x ∈ CR(F) such that φ(x) = y,
where φ ∈ {f0, f1}. For any ε > 0, let 0 < δ < ε

2
such that for any x, y ∈

X, d(x, y) < δ implies d(f0(x), f0(y)) < ε
2

and d(f1(x), f1(y)) < ε
2
. Since

x ∈ CR(F), there exists a finite number of points x0, x1, · · · , xm ∈ X with
x0 = xm = x such that

inf
k=0,1

d(fk(xi), xi+1) = d(fni
(xi), xi+1) < δ, i = 1,m− 1,

and sup
k=0,1

d(fk(x0), x1) < δ. Then, d(φ(x), x1) < δ. Let y0 = φ(x), y1 = x2,

y2 = x3, · · · , ym−1 = xm, ym = φ(x). Then,

inf
k=0,1

d(fk(y0), y1) ≤ inf
k=0,1
{d(fk ◦ φ(x), fn1(x1)) + d(fn1(x1), x2)} < ε,

inf
k=0,1

d(fk(yi), yi+1) ≤ inf
k=0,1

d(fk(xi+1), xi+2) < ε, i = 1,m− 2,

and
inf
k=0,1

d(fk(ym−1), ym) ≤ inf
k=0,1

d(fk(xm), φ(x)) = 0.

So, y ∈ CR(F). �

2.5. Recurrent point

Definition 2.5. We say that x ∈ X is a recurrent point of IFS F if there
exist α ∈ Σ and a sequence {ni} ⊂ N such that

lim
ni→∞

fni
α (x) = x.

We use R(F) to denote the set of the recurrent points of IFS F.

Firstly, we show that R(F) is conditional invariable for IFS F.

Theorem 2.13. If f0 ◦ f1 = f1 ◦ f0, then F(R(F)) ⊂ R(F).

Proof. We will show that f0(R(F)) ⊂ R(F). It is similar for f1(x). For any
given x ∈ R(F), there exist α ∈ Σ and a sequence {ni} of positive integers
such that

lim
ni→∞

fni
α (x) = x.

Since f0 is continuous,

f0( lim
ni→∞

fni
α (x)) = lim

ni→∞
f0(fni

α (x)) = f0(x).

So, f0(x) ∈ R(F). �
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The following example demonstrates that the condition “f0◦f1 = f1◦f0”
in Theorem 2.13 cann’t be removed.

Example 2.3. Consider two maps f0, f1 on {−1, 0, 1} as follows:

f0(−1) = −1, f0(0) = 1, f0(1) = −1

and
f1(−1) = −1, f1(0) = 0, f1(1) = −1.

We have that f1 ◦ f0(0) 6= f0 ◦ f1(0), f0 ◦ f1 6= f1 ◦ f0. And it is easy to
show that 0 ∈ R(F), but f0(0) /∈ R(F).

Now we show that the recurrent point is retentive under iteration of IFS
F.

Theorem 2.14. For any n > 0, R(F) = R(Fn).

Proof. Firstly, we prove R(F) ⊂ R(Fn). Let x ∈ R(F) and U0 be an open
neighborhood of x. Then there exist α ∈ Σ and a sequence {ni} of positive
integers such that lim

ni→∞
fni
α (x) = x. In addition, there exist a subsequence

{nij} of {ni} and an integer r, 0 ≤ r < n such that for each j there exists
qj ∈ N satisfying nij = nqj + r. Let mj = nij , then

lim
mj→∞

fmj
α (x) = x.

Thus, there exists mj1 such that f
mj1
α (x) ∈ U0. By the continuity of f

mj1
α , there

exists an open neighborhood U1 of x satisfying U1 ⊂ U0 and f
mj1
α (U1) ⊂ U0.

And there exists mj2 such that

f
mj2
α (x) ∈ U1,

· · · . By induction, we can get n open neighborhoods U0, U1, · · · , Un−1 of x and
n integers mj1 ,mj2 , · · · ,mjn satisfying
(1) Un−1 ⊂ Un−2 ⊂ · · · ⊂ U0,
(2) f

mjk
α (Uk) ⊂ Uk−1, k = 1, n− 1,

(3) f
mjk
α (x) ∈ Uk−1, k = 1, n− 1.

Therefore, f
mj1
α ◦ fmj2

α ◦ · · · ◦ fmjn
α (x) ∈ U0. Since mj1 + mj2 + · · · + mjn = 0(

mod n), x ∈ R(Fn).
Next, we prove that R(F) ⊃ R(Fn). For any given x ∈ R(Fn), x ∈

ω(x,Fn, orbα(x,Fn)). Then, it is easy to show that x ∈ ω(x,F, orbα(x)). So,
x ∈ R(F). �

2.6. Non-wandering point

Definition 2.6. We say that x ∈ X is a non-wandering point of IFS F if for
any ε > 0 there exist α ∈ Σ, y0 ∈ X and n > 0 such that

d(x, y0) < ε and d(fnα (y0), x) < ε.

We use Ω(F) to denote the set of the non-wandering points of IFS F.
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Firstly, we study if Ω(F) is a closed set.

Theorem 2.15. Ω(F) = Ω(F).

Proof. Let ε > 0 and let x be a cluster point of Ω(F). Then there exists
x′ ∈ Ω(F) such that d(x, x′) < ε

2
. Since x′ ∈ Ω(F), there exist y0 ∈ X, α ∈ Σ

and n > 0 such that

d(x′, y0) <
ε

2
and d(fnα (y0), x′) <

ε

2
.

Therefore,

d(x, y0) ≤ d(x, x′)+d(x′, y0) < ε and d(fnα (y0), x) ≤ d(fnα (y0), x′)+d(x′, x) < ε.

So, x ∈ Ω(F). �

Now we illustrate that Ω(F) is neither invariable nor iterable for IFS F,
respectively.

Example 2.4. Consider two maps f0, f1 same as in Example 2.3.

For any ε > 0, d(0, 0) = 0 and d(f1(0), 0) = d(0, 0) = 0. So, 0 ∈ Ω(F).
What’s more, there is only 1 ∈ {−1, 0, 1} satisfying d(f0(0), 1) < 1

2
. While

for any α ∈ Σ and any n > 0, fnα (f0(0)) = −1. So, f0(0) /∈ Ω(F). That is
F(Ω(F)) * Ω(F).

Example 2.5. Consider the constant map f0(x) = 1 and f1 defined as the
map f in Example 1.4.1 of [9].

For the sake of convenience, we write again the map f in Example 1.4.1
of [9] as follows. Let f be a continuous map on [0, 1] with

f(a) = c, f(b) = 1, f(c) = d, f(d) = c, f(1) = a,

where 0 < a < b < c < d < 1. What’s more, f is strictly monotonically
increasing on [0, b] and is linear on [b, c], [c, d], [c, 1]. Then a ∈ [0, 1] is a non-
wandering point of f . Thus, a ∈ Ω(F). However, for any small enough ε > 0
and any α ∈ Σ, f 2

α([a− ε, a + ε]) ⊂ [c, 1], and [c, 1] is an invaiable set for IFS
F2. So, a /∈ Ω(F2). That is Ω(F) * Ω(F2).

2.7. Strong non-wandering point

Definition 2.7. We say that x ∈ X is a strong non-wandering point of IFS
F if for any open neighborhood V of x there exist α ∈ Σ and y ∈ X such that

lim sup
N→∞

1

N
]{i|f iα(y) ∈ V, 0 ≤ i ≤ N − 1} > 0,

where ]A is the cardinal number of A. We use SΩ(F) to denote the set of the
strong non-wandering points of IFS F.

Now we show that SΩ(F) is an invariable closed set.

Theorem 2.16. (1) SΩ(F) = SΩ(F),
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(2) F(SΩ(F)) ⊂ SΩ(F).

Proof. (1) Let ε > 0 and let z be a cluster point of SΩ(F). Then there exists
x ∈ SΩ(F) such that d(x, z) < ε

2
. And there exist α ∈ Σ and y ∈ X such

that

lim sup
N→∞

1

N
]{i|d(f iα(y), x) <

ε

2
, 0 ≤ i ≤ N − 1} > 0.

Since for any i ≥ 0, d(f iα(y), z) ≤ d(f iα(y), x) + d(x, z),

lim sup
N→∞

1

N
]{i|d(f iα(y), z) < ε, 0 ≤ i ≤ N − 1} > 0.

So, z ∈ SΩ(F).
(2) Let y ∈ F(SΩ(F)), without the loss of generality, we can take y = f0(x),

where x ∈ SΩ(F). Let ε > 0 and let δ > 0 such that for any x, y ∈ X,
d(x, y) < δ implies d(f0(x), f0(y)) < ε. Since x ∈ SΩ(F), there exist
α ∈ Σ and z ∈ X such that

lim sup
N→∞

1

N
]{i|d(f iα(z), x) < δ, 0 ≤ i ≤ N − 1} > 0.

Furthermore, there exists β ∈ Σ such that

lim sup
N→∞

1

N
]{i|d(f iβ(z), y) < ε, 0 ≤ i ≤ N − 1} > 0.

So, y ∈ SΩ(F).
�

3. Relationships among various kinds of recurrent point

In this section we study the relationships between these various kinds of
recurrent point sets. Before this, we introduce the definitions of weakly almost
point and quasi-weakly almost periodic point for the IFS.

Definition 3.1. We say that x ∈ X is a weakly almost periodic point of the
IFS F if there exsits α ∈ Σ and for any ε > 0 there exists a positive integer
Nε such that

]{i|d(f i+jα (x), f jα(x)) < ε,∀j ∈ N, 0 ≤ i ≤ nNε} ≥ n,∀n > 0.

We use W (F) to denote the set of the weakly almost points of IFS F.

Definition 3.2. We say that x ∈ X is a quasi-weakly almost periodic point
of IFS F if there exsits α ∈ Σ for any ε > 0 there exist a positive integer Nε

and a sequence {nj} ⊂ N such that

]{i|d(f i+kα (x), fkα(x)) < ε,∀k ∈ N, 0 ≤ i < njNε} ≥ nj,∀j > 0.

We use QW (F) to denote the set of the quasi-weakly almost points of IFS F.

Theorem 3.1. Fix(F) ⊂ P (F) ⊂ AP (F) ⊂ W (F) ⊂ QW (F) ⊂ R(F) ⊂
Ω(F) ⊂ CR(F).
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Proof. It is easy to know that Fix(F) ⊂ P (F) ⊂ AP (F) ⊂ W (F) ⊂ QW (F) ⊂
R(F) by their definitions.

Now we show that Ω(F) ⊂ CR(F).
Let x ∈ Ω(F), ε > 0 and let δ > 0 such that for any x, y ∈ X, d(x, y) < δ

implies d(f0(x), f0(y)) < ε and d(f1(x), f1(y)) < ε. Then there exist α ∈ Σ,
y0 ∈ X and n > 0 such that

d(x, y0) < δ and d(fnα (y0), x) < δ.

Set x0 = x, x1 = f1(y0), x2 = f1(y1), · · · , xm−1 = f1(ym−2), where yi+1 =
f1(yi), 0 ≤ i ≤ n− 2 with x0 = xm = x. Then,

inf
k=0,1

d(fk(x0), x1) = inf
k=0,1

d(fk(x), f1(y0)) ≤ d(f1(x), f1(y0)) < ε,

inf
k=0,1

d(fk(xi), xi+1) = inf
k=0,1

d(fk(yi), f1(yi)) = 0 < ε, i = 1,m− 2,

inf
k=0,1

d(fk(xm−1), xm) = inf
k=0,1
{d(fk(ym−1), ym) + d(ym, x))} < ε.

So, x ∈ CR(F). �

It is easy to get the following relationship by their definitions.

Theorem 3.2. AP (F) ⊂ SΩ(F) ⊂ Ω(F).

Since (X, d) is compact, AP (F) 6= ∅. Then by Theorem 3.1 and Theorem
3.2 we can get the following corollary.

Corollary 3.1. All of AP (F), W (F), QW (F), R(F), Ω(F) and CR(F) are
not empty.

Theorem 3.3. P (F) ⊂ SΩ(F).

Proof. Let x ∈ P (F). Next we will start splitting in the following situation.
Case 1. x ∈ P (F). There exist α ∈ Σ and m > 0 such that f i+mα (x) = f iα(x),

∀i ≥ 0. Let ε > 0. Then,

1

n
]{i|d(x, f iα(x)) < ε, 0 ≤ i ≤ n− 1} = ([

n

m
] + 1)

1

n
.

Thus,

lim sup
n→∞

1

n
]{i|d(x, f iα(x)) < ε, 0 ≤ i ≤ n− 1} ≥ lim

n→∞

1

n
(
n

m
− 1) =

1

m
> 0.

So, x ∈ SΩ(F).

Case 2. x /∈ P (F). Let ε > 0. By x ∈ P (F), there exists y ∈ P (F) with x 6= y
such that d(x, y) < ε. And there exist α ∈ Σ and m > 0 such that
f i+mα (y) = f iα(y), ∀i ≥ 0. Thus,

1

n
]{i|d(x, f iα(y)) < ε, 0 ≤ i ≤ n− 1} = ([

n

m
] + 1)

1

n
.

Then, it is similar with Case 1 that x ∈ SΩ(F).
�
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4. Conclusion

The main properties of the sets of ω-limit points, periodic points, almost
periodic points, chain recurrent points and non-wandering points for iterated
function systems can be summarized in Table 1.

Table 1. The main conclusions about the various kinds of re-
current point sets.

Property ω(F) P (F) AP (F) CR(F) R(F) Ω(F) SΩ(F)

nonempty
√

—
√ √ √ √ √

invariable
√

×? SS

√
? SS

√
? SS

√
? ×?

√

closed
√

— —
√

—
√ √

iterable
√ √ √

—
√

× —

(1)“SS
√

” means that it doesn’t hold and it holds with some additional con-
ditions. (2)“?” menas it holds for continuous slef-maps.
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