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A NEW CONCEPT FOR NUMERICAL RADIUS:

THE SIGN-REAL NUMERICAL RADIUS

Mostafa Zangiabadi1, Hamid Reza Afshin2

We define and investigate a new type of numerical radius for real matri-

ces, the sign-real numerical radius, and derive some properties. We extend the

Perron-Frobenius theory for the numerical radius of nonnegative matrices to real

matrices.
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1. Introduction and preliminaries

By the Perron-Frobenius theory, if A is a square nonnegative matrix, then

its spectral radius ρ(A) is an eigenvalue of A and there is a corresponding non-

negative eigenvector. It has numerous applications, not only in many branches of

mathematics, such as Markov chains, graph theory, game theory and etc. [1], but

in various fields of science and technology, e.g. control theory [7, 12] and the popu-

lation dynamics [6]. In [11] a new quantity for real matrices, the sign-real spectral

radius, is defined. For A ∈ Mn(R), the real spectral radius of A is defined by

ρ0(A) = max {|λ| : λ a real eigenvalue of A}, where ρ0 (A) := 0 if A has no real

eigenvalues. A signature matrix is a diagonal matrix with diagonal entries +1 or

−1. Note that there are 2n signature matrices of dimension n. Let φ denote the set

of signature matrices. The sign-real spectral radius of a real matrix A is defined by

ρS0 (A) = max
S∈φ

ρ0(SA).

The sign-real spectral radius of a real matrix A has similar properties to the spectral

radius of a nonnegative matrix (cf. [11]). It has also been applied to engineering

problems (see, for example, [9, 8, 10] and the references therein).
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Let Mn(C) (Mn(R)) be the set of n × n complex (real) matrices. For A ∈
Mn(C), the numerical range of A is defined and denoted by

W (A) = {x∗Ax : x ∈ Cn, x∗x = 1} ,

which is a useful concept in studying matrices and operators (see, for example,

[3, Chapter 1]). The numerical radius of A is ω(A) = max {|z| : z ∈ W (A)} . The
Perron-Frobenius theory has been extended to the numerical range of a nonnegative

matrix by Issos in his unpublished Ph.D. thesis [4] and then completed in [5]. In

the course of proving results of Issos for real matrices, the sign-real numerical radius

occurs.

Definition 1.1. For A ∈ Mn(R) the sign-real numerical radius is defined and de-

noted by

ωS
0 (A) = max

S∈φ
ω0(SA),

where ω0 (A) = max{ |z| : z ∈ W (A) ∩ R }.

The sign-real numerical radius of a real matrix has similar properties to the

numerical radius of a nonnegative matrix. For example, in parallel to the Perron-

Frobenius theory, we show that there exists some S ∈ φ such that ωS
0 (A) ∈ W (SA)

(Theorem 2.1) and also there is a unit nonnegative vector x such that ωS
0 (A) =

xtS1AS2x for some S1, S2 ∈ φ (Corollary 2.1). In addition, the relation between

the sign-real numerical radius and the sign-real spectral radius is characterized in

Theorem 2.2.

We always use A = (ars) to denote an n × n complex matrix. The following

notations will be adopted:

Mn the set of all n× n complex matrices;

Rn
+ the nonnegative orthant of Rn;

W (A) the (classical) numerical range of A;

ω(A) the numerical radius of A;

ωS
0 (A) the sign-real numerical radius of real matrix A;

σ(A) the spectrum of A;

ρ(A) the spectral radius of A;

ρS0 (A) the sign-real spectral radius of real matrix A;

At the transpose of A;

A∗ the conjugate transpose of A;

H(A) the Hermitian part of A , i.e. (A+A∗)/2;

λmax(A) the largest eigenvalue of the Hermitian matrix A;

|A| the matrix (|ars|) for all r, s;
|x| the vector (|x1|, |x2|, · · · , |xn|)t ;

A ≤ B ars ≤ brs for all r, s.
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For a vector x ∈ Cn, we denote by ∥x∥ and ∥x∥1 the Euclidean norm and the

sum norm of x, respectively, i.e., ∥x∥ = (x∗x)1/2 , ∥x∥1 = |x1| + · · · + |xn|. For a

matrix A ∈ Mn, we denote by ∥A∥ and ∥A∥2 the operator norm and the spectral

norm of A, respectively, i.e., ∥A∥ = max∥x∥=1 ∥Ax∥, ∥A∥22 = ρ(A∗A), where ∥ · ∥ is

the vector norm.

2. Main results

In the following Lemma, we investigate some properties of the sign-real nu-

merical radius.

Lemma 2.1. Let A ∈ Mn(R), signature matrices S1, S2, T ∈ φ, a real diagonal

matrix D, a real orthogonal matrix U and a permutation matrix P be given. Then

(a) ωS
0 (A) = ωS

0 (S1AS1) = ωS
0 (S1AS2) = ωS

0 (A
t) = ωS

0 (P
tAP );

(b) ωS
0 (αA) = |α|ωS

0 (A), for all α ∈ R;
(c) ωS

0 (UD) = ωS
0 (DU);

(d) ωS
0 (A) ≤ ∥A∥;

(e) ρS0 (A) ≤ ωS
0 (A);

(f) ωS
0 (D) = ωS

0 (U
tDU);

(g) if A = At, and V is a real orthogonal matrix, then ωS
0 (A) = ωS

0 (V
tAV ).

Proof. (a) For every unitary matrix U1 ∈ Mn, we have

W (AU1) = W (U1(AU1)U
∗
1 ) = W (U1A). (1)

Therefore ω0(TA) = ω0(AT ), and then, for all S1 ∈ φ,

ω0 (S1AS1) = ω0(A). (2)

By using the equation (2), for all S1 ∈ φ and for some T1, T2 ∈ φ, we have

ωS
0 (S1AS1) = ω0 (T1S1AS1) = ω0 (S1T1AS1) = ω0 (T1A) (3)

≤ ωS
0 (A) = ω0 (T2A) = ω0 (T2S1AS1) ≤ ωS

0 (S1AS1).

Thus, ωS
0 (A) = ωS

0 (S1AS1), for all S1 ∈ φ. Again, by using the equation (2), for all

S1, S2 ∈ φ, we see that

ωS
0 (A) = max

T∈φ
ω0 (TA) = max

T∈φ
ω0 (S2(S1S1TA)S2)

= max
T1∈φ

ω0 (T1 (S1AS2)) = ωS
0 (S1AS2).

In view of (1), for every permutation matrix P, we have ω0(AP ) = ω0(PA). Since

PSP t is a signature matrix for every signature matrix S, and then by using the

same method in (3), we conclude that ωS
0 (A) = ωS

0 (P
tAP ). Also, ωS

0 (A
t) = ωS

0 (A),

since ω0(A
t) = ω0(A).

(b) It is trivial.



94 Mostafa Zangiabadi, Hamid Reza Afshin

(c) In view of (1), we have ω0(AU) = ω0(UA), and thus for some T1, T2 ∈ φ,

we see that

ωS
0 (DU) = ω0(T1DU) = ω0(DT1U) = ω0(T1UD) ≤ ωS

0 (UD)

= ω0(T2UD) = ω0(DT2U) = ω0(T2DU) ≤ ωS
0 (DU).

(d) For any nonzero vector x ∈ Cn, we have |x∗Ax| ≤ ∥Ax∥ ∥x∥ (Cauchy-

Schwarz inequality), and by Definition 1.1, we obtain ω0(A) ≤ ∥A∥ and hence

ωS
0 (A) ≤ ∥SA∥ = ∥A∥ for any S ∈ φ.

(e) By using the spectral containment property [3, Property 1.2.6], we con-

clude that, there exists some T1 ∈ φ such that ρS0 (A) = ρ0(T1A) ≤ ω0(T1A) ≤
ωS
0 (A).

(f) Again in view of (1) and for some T1 ∈ φ, we have

ωS
0 (D) = ω0(T1D) = ω0(D) = ω0(UU tD) = ω0(U

tDU) ≤ ωS
0 (U

tDU). (4)

By part (d), we have

ωS
0 (U

tDU) ≤ ∥U tDU∥2 = ∥D∥2 = ω0(D) ≤ ωS
0 (D). (5)

Then by (4) and (5), ωS
0 (U

tDU) = ωS
0 (D).

(g) By assumption, there is a real orthogonal matrix Q ∈ Mn(R) such that

A = QtΛQ, where Λ is a real diagonal matrix with elements λi ∈ σ(A) for all i =

1, 2, ..., n. Therefore, by part (f), ωS
0 (A) = ωS

0 (Q
tΛQ) = ωS

0 (Λ), and ωS
0 (V

tAV ) =

ωS
0 (V

tQtΛQV ) = ωS
0 (Λ). �

We want to emphasize that in the last part of Lemma 2.1 we are assuming

that A is a real Hermitian matrix. Our next example will show that this is not true

for all n× n real matrices.

Example 2.1. Consider the matrices

A =

 −1 −3 2

0 −1 2

0 0 3

 , U =
1√
2

 1 1 0

1 −1 0

0 0
√
2

 ,

where A is a real matrix and U is a real orthogonal matrix. Then ωS
0 (A) = 4.1861 ̸=

ωS
0 (U

tAU) = 4.4495.

In [4, Theorem 1], it is shown that if A ≥ 0, then ω(A) ∈ W (A). We obtain a

similar result for the sign-real numerical radius of real matrix A.

Theorem 2.1. If A ∈ Mn(R), then for all T ∈ φ, there exists some S ∈ φ and

0 ̸= x ∈ Rn such that x is nonnegative and
(

Tx
∥x∥

)t
(SA)

(
Tx
∥x∥

)
= λ ∈ W (SA) for

some 0 ≤ λ ∈ R.
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Proof. Let T ∈ φ be given. In the case ATx = 0 for some x ̸= 0, x ≥ 0, the proof is

trivial. Suppose ATx ̸= 0 for all nonzero x ≥ 0, we define f(x) := |ATx|
∥ATx∥1 . It is read-

ily seen that f(x) is a well-defined continuous function from the nonempty, compact

and convex set E = {x ∈ Rn : x ≥ 0, ∥x∥1 = 1} into itself. Due to Brouwer’s fixed

point theorem, there is some x ∈ E such that f(x) = x. For suitable S ∈ φ, we

have SATx = T |ATx|, and hence SATx = ∥ATx∥1 Tx = T |ATx| for all x ∈ E;

equivalently,

(Tx)t SA (Tx) = ∥ATx∥1 ∥Tx∥
2 = ∥ATx∥1 ∥x∥

2,

where
(

Tx
∥x∥

)t (
Tx
∥x∥

)
= 1. �

As a result from Theorem 2.1, we can conclude that for A ∈ Mn(R), there
exists some S ∈ φ such that ωS

0 (A) ∈ W (SA).

Corollary 2.1. If A ∈ Mn(R), then there exist S1, S2 ∈ φ, and a nonnegative unit

vector x such that ωS
0 (A) = xtS1AS2x.

Corollary 2.2. If A ∈ Mn(R), then r = ωS
0 (A) if and only if the matrix T =

rI −H(SA) is positive semi-definite for some S ∈ φ.

Proof. By Theorem 2.1, r = ωS
0 (A) if and only if rxtx ≥ xtSAx for every x ∈ Rn,

and for some S ∈ φ. It is clear that xtSAx = xtH(SA)x for all x ∈ Rn. Therefore

r = ωS
0 (A) if and only if xtTx ≥ 0 for all x ∈ Rn. �

Corollary 2.3. Let A ∈ Mn(R), and D = diag(λ1, · · · , λn) be congruent to the

matrix T = rI −H(SA) for some S ∈ φ. then r = ωS
0 (A) if and only if all the λi’s

are nonnegative and at least one of them vanishes.

Proof. By Corollary 2.2, r = ωS
0 (A) if and only if the eigenvalues of the symmetric

matrix T are nonnegative and at least one of them vanishes. By Sylvester’s law of

inertia (cf. [2, Theorem 4.5.8] ) the Corollary follows. �

It was shown in [11, Theorem 3.1] that ρ(A) = ρS0 (A) for any nonnegative

matrix A. Similarly, we have the following result.

Lemma 2.2. If A is a real matrix, then ωS
0 (A) ≤ ωS

0 (|A|) . Suppose, in addition,

that A is a nonnegative matrix, then

ω(A) = ωS
0 (A) = max { ztA z : z ∈ Rn

+, ∥z∥ = 1}.
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Proof. There exists some S ∈ φ such that

ωS
0 (A) = max { |x∗SAx| : (x∗SAx) ∈ R, x ∈ Cn, ∥x∥ = 1}

≤ max
{
|x|t |SA| |x| : (x∗SAx) ∈ R, x ∈ Cn, ∥x∥ = 1

}
= max

{
zt |A| z :

(
ztSAz

)
∈ R, z ∈ Rn

+, ∥z∥ = 1
}

= max
{
zt |A| z :, z ∈ Rn

+, ∥z∥ = 1
}

≤ max { |z∗|A| z| : (z∗ |A| z) ∈ R, z ∈ Cn, ∥z∥ = 1}

= ω0 (|A|) ≤ ωS
0 (|A|).

If A is a nonnegative matrix, then for any unit vector x ∈ Cn, |x∗Ax| ≤ |x|tA|x|;
hence ω(A) = max {|x∗Ax| : x ∈ Cn, ∥x∥ = 1} = max

{
ztAz : z ∈ Rn

+, ∥z∥ = 1
}
. So,

the above inequalities all become equalities and the proof is complete. �

Notice that in general for real matrices A,B such that A ≤ B, we do not have

ωS
0 (A) ≤ ωS

0 (B). However, it is true for nonnegative matrices A,B, because by the

above Lemma we have

ωS
0 (A) = max { ztA z : z ∈ Rn

+, ∥z∥ = 1}

≤ max { ztB z : z ∈ Rn
+, ∥z∥ = 1} = ωS

0 (B).

A relation between the sign-real numerical radius of A and the sign-real spec-

tral radius of H(S1AS2) for some S1, S2 ∈ φ, is observed in the following Theorem.

Theorem 2.2. If A ∈ Mn(R), then there exist some S1, S2 ∈ φ such that ωS
0 (A) =

ρS0 (H(S1AS2)) = λmax(H(S1AS2)). Moerover, if λmax(H(S1AS2)) is a simple eigen-

value of H(S1AS2), and x ≥ 0 is the unit vector of Corollary 2.1, then y is a unit

vector with y∗S1AS2y = ωS
0 (A) if and only if y = eiθx for some θ ∈ [0, 2π).

Proof. By Corollary 2.1, we can find a nonzero unit vector x ≥ 0 so that xt(S1AS2)x =

ωS
0 (A), and also xt(S1AS2)

tx = ωS
0 (A) for some S1, S2 ∈ φ. Adding the two equa-

tions, we obtain

xt
(
ωS
0 (A) I −H(S1AS2)

)
x = 0. (6)

Since H(S1AS2) is Hermitian matrix, therefore ∥H(S1AS2)∥2 = ρ0(H(S1AS2)) =

ω0(H(S1AS2)) ≤ ωS
0 (H(S1AS2)) ≤ ∥H(S1AS2)∥2, where the last inequality fol-

lows from Lemma 2.1. Therefore ∥H(S1AS2)∥2 = ωS
0 (H(S1AS2)). Also, we have

∥H(S1AS2)∥2 = ρS0 (H(S1AS2)) (cf. [11, Theorem 2.15]), which implies that

ωS
0 (H(S1AS2)) = ρS0 (H(S1AS2)). (7)

It follows from the property of ωS
0 (A) and [3, Property 1.2.7] that

ωS
0

(
A+At

)
≤ ωS

0 (A) + ωS
0

(
At

)
= 2ωS

0 (A). (8)

Thus by (7) and (8), ωS
0 (A) = ωS

0 (S1AS2) ≥ ωS
0 (H(S1AS2)) = ρS0 (H(S1AS2)) ≥

λmax(H(S1AS2)). In view of the above inequality and (6),
(
ωS
0 (A)I −H(S1AS2)

)
is
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positive semi-definite. It follows that (ωS
0 (A)I −H(S1AS2))x = 0, so x is an eigen-

vector of H(S1AS2) corresponding to ωS
0 (A). Hence the above inequalities all be-

come equalities, i.e., ωS
0 (A) = ρS0 (H(S1AS2)) = λmax(H(S1AS2)). Suppose now that

λmax(H(S1AS2)) is a simple eigenvalue ofH(S1AS2) and y ∈ Cn is a unit vector such

that y∗S1AS2y = ωS
0 (A). Similarly to the proof of the first part, ωS

0 (A) is an eigen-

vector of H(S1AS2) corresponding to λmax(H(S1AS2)). Thus, as λmax(H(S1AS2))

is simple, y = eiθx for some θ ∈ [0, 2π). �

Remark 2.1. It will be clear from the proof of Theorem 2.2 that, if A ∈ Mn(R),

then ωS
0 (A) = ρS0 (H(SA)) = λmax(H(SA)) for some S ∈ φ.

We illustrate Theorems 2.1 and 2.2 in the following Example.

Example 2.2. Consider the real matrix A of Example 2.1. Then there exist the sig-

nature matrices S1 = diag(+1,+1,+1), S2 = diag(−1,−1,+1), and a nonnegative

unit vector x = (0.4544, 0.4544, 0.7662)t such that ωS
0 (A) = 4.1861 = ω0(S2A) =

xtS1AS2x. Furthermore, for the signature matrix S3 = diag(+1,+1,−1) we have

the relation ωS
0 (A) = 4.1861 = ρS0 (H(S3A)) = λmax(H(S3A)).

In view of the proof of Theorem 2.2, we immediately obtain the following

corresponding result.

Corollary 2.4. If A ∈ Mn(R) and A = At, then ρ(Ak) = ρS0 (A
k) = ωS

0 (A
k) =

ω(Ak) for k = 1, 2, . . . .

3. Conclusions

In this paper, we presented an extension of Perron-Frobenius theory to the

numerical range of real matrices. This extension is interesting since it leads to

a relation between the sign-real spectral radius - which is used in engineering [9,

10] - and the sign-real numerical radius (Theorem 2.2 and Remark 2.1). Further

applications of the sign-real spectral radius will be given in a forthcoming paper [8].
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