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A NEW CONCEPT FOR NUMERICAL RADIUS:
THE SIGN-REAL NUMERICAL RADIUS

Mostafa Zangiabadi!, Hamid Reza Afshin?

We define and investigate a new type of numerical radius for real matri-
ces, the sign-real numerical radius, and derive some properties. We extend the
Perron-Frobenius theory for the numerical radius of nonnegative matrices to real

matrices.
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1. Introduction and preliminaries

By the Perron-Frobenius theory, if A is a square nonnegative matrix, then
its spectral radius p(A) is an eigenvalue of A and there is a corresponding non-
negative eigenvector. It has numerous applications, not only in many branches of
mathematics, such as Markov chains, graph theory, game theory and etc. [1], but
in various fields of science and technology, e.g. control theory [7, 12] and the popu-
lation dynamics [6]. In [11] a new quantity for real matrices, the sign-real spectral
radius, is defined. For A € M,(R), the real spectral radius of A is defined by
po(A) = max {|A| : X a real eigenvalue of A}, where pg(A) := 0 if A has no real
eigenvalues. A signature matrix is a diagonal matrix with diagonal entries +1 or
—1. Note that there are 2" signature matrices of dimension n. Let ¢ denote the set
of signature matrices. The sign-real spectral radius of a real matrix A is defined by

i (A) = max po(SA).
The sign-real spectral radius of a real matrix A has similar properties to the spectral
radius of a nonnegative matrix (cf. [11]). It has also been applied to engineering
problems (see, for example, [9, 8, 10] and the references therein).
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Let M,(C) (M,(R)) be the set of n x n complex (real) matrices. For A €
M, (C), the numerical range of A is defined and denoted by

W(A) ={2"Az: € C", 2"z =1},

which is a useful concept in studying matrices and operators (see, for example,
[3, Chapter 1]). The numerical radius of A is w(A) = max{|z|: 2z € W(A)}. The
Perron-Frobenius theory has been extended to the numerical range of a nonnegative
matrix by Issos in his unpublished Ph.D. thesis [4] and then completed in [5]. In
the course of proving results of Issos for real matrices, the sign-real numerical radius

occurs.

Definition 1.1. For A € M, (R) the sign-real numerical radius is defined and de-
noted by
wy (A) = max wy(SA),
Sep
where wp (A) = max{|z| : z€ W(A)NR}.

The sign-real numerical radius of a real matrix has similar properties to the
numerical radius of a nonnegative matrix. For example, in parallel to the Perron-
Frobenius theory, we show that there exists some S € ¢ such that w3 (A) € W(SA)
(Theorem 2.1) and also there is a unit nonnegative vector x such that w§(A) =
2'S1ASyx for some S, 52 € ¢ (Corollary 2.1). In addition, the relation between
the sign-real numerical radius and the sign-real spectral radius is characterized in
Theorem 2.2.

We always use A = (a,s) to denote an n X n complex matrix. The following
notations will be adopted:

M,  the set of all n X n complex matrices;
R?  the nonnegative orthant of R";

W(A) the (classical) numerical range of A;
w the numerical radius of A;
w@g the sign-real numerical radius of real matrix A;

the spectrum of A;

)
)
) the spectral radius of A;
) the sign-real spectral radius of real matrix A;
¢ the transpose of A;
A*  the conjugate transpose of A;

H(A)  the Hermitian part of A | i.e. (A+ A*)/2;
Amax(A)  the largest eigenvalue of the Hermitian matrix A;
|A]  the matrix (|a,s|) for all r, s;

lz|  the vector (|z1],|xal, -, |za])’;
A< B ays <b forall r,s.
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For a vector = € C", we denote by ||z| and ||z||; the Euclidean norm and the

sum norm of z, respectively, i.e., ||z| = (x*x)l/Q

, |zllh = |z1| + -+ + |xn|. For a
matrix A € M,,, we denote by ||A|l and ||Al|2 the operator norm and the spectral
norm of A, respectively, i.e., |A]| = max,—; [|Az|, |A|3 = p(A*A), where || - || is

the vector norm.

2. Main results

In the following Lemma, we investigate some properties of the sign-real nu-
merical radius.

Lemma 2.1. Let A € M,(R), signature matrices S1,S2,T € ¢, a real diagonal
matriz D, a real orthogonal matrix U and a permutation matriz P be given. Then

(a) wg (A) = wf (S1481) = w§ (S145:) = wi (A") = wi (PTAP);

(b) w§ (aA) = \a|w0( ), for all a € R,

(c) wi(UD)=w§(DU);

(d) wi(4) < ||A||

(e) p5(A) < wj(A):

() w§ (D) =wg (U'DU);

(2) if A= A, and V is a real orthogonal matriz, then w3 (A) = w§ (VIAV).

Proof. (a) For every unitary matrix U; € M, we have
W(AU1) = W(UL(AU)UY) = W (UL A). (1)
Therefore wy(T'A) = wo(AT'), and then, for all S; € ¢,
wo (S14S51) = wo(A). (2)
By using the equation (2), for all S; € ¢ and for some T1,T5 € ¢, we have
wh (S1AS1) = wy (T1S1AS1) = wp (S1T1AS)) = wo (TLA) (3)
< wf (A) = wo (ThA) = wo (TS1AS1) < W (S1A4S1).

Thus, wy (A) = wy(S1AS7), for all S; € ¢. Again, by using the equation (2), for all
S1, 5% € ¢, we see that
wh (A) = max wo (TA) = max wp (S2(S151TA)Ss)
Tep Tep

= max wy (Tl (SlASQ)) = wOS(SlASQ).
Tiep

In view of (1), for every permutation matrix P, we have wo(AP) = wo(PA). Since
PSP! is a signature matrix for every signature matrix S, and then by using the
same method in (3), we conclude that wj (A) = wy (PtAP). Also, w§ (A) = w§ (A),
since wo(A?) = wp(A).

(b) It is trivial.
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(c¢) In view of (1), we have wo(AU) = wo(UA), and thus for some 11,75 € ¢,
we see that

(d) For any nonzero vector x € C", we have |z*Ax| < ||Az|| ||z| (Cauchy-
Schwarz inequality), and by Definition 1.1, we obtain w(A) < ||A|| and hence
wi (A) < [ISA]| = | A|| for any S € ¢.

(e) By using the spectral containment property [3, Property 1.2.6], we con-
clude that, there exists some Ty € ¢ such that p5(A) = po(T1A) < wo(T1A) <
ws (A).

(f) Again in view of (1) and for some T} € ¢, we have

W (D) = wo(Ti D) = wy(D) = wo(UU'D) = wo(U'DU) < wi (U'DU).  (4)
By part (d), we have
w5 (U'DU) < |U'DU||2 = || Dll2 = wo(D) < w (D). (5)

Then by (4) and (5), ws (U'DU) = w§ (D).

(g) By assumption, there is a real orthogonal matrix @ € M, (R) such that
A = Q'AQ, where A is a real diagonal matrix with elements \; € o(A) for all i =
1,2,...,n. Therefore, by part (f), w(A) = w§(Q'AQ) = w§ (A), and wy (VIAV) =
ws (VIQIAQV) = wy (A). O

We want to emphasize that in the last part of Lemma 2.1 we are assuming
that A is a real Hermitian matrix. Our next example will show that this is not true

for all n x n real matrices.

Example 2.1. Consider the matrices

-1 -3 2 ) 1 1 0
A= 0 -1 2 |, U:E 1 -1 0 |,
0O 0 3 0 0 V2

where A is a real matriz and U is a real orthogonal matriz. Then wg (A) = 4.1861 #
ws (UTAU) = 4.4495.

In [4, Theorem 1], it is shown that if A > 0, then w(A) € W(A). We obtain a

similar result for the sign-real numerical radius of real matrix A.

Theorem 2.1. If A € M,(R), then for all T € ¢, there exists some S € ¢ and

t
0 # x € R™ such that = is nonnegative and (ﬁ) (SA) (ﬁ;—:ﬂ) =\e W (SA) for
some 0 < X € R.
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Proof. Let T € ¢ be given. In the case ATz = 0 for some x # 0, x > 0, the proof is
trivial. Suppose ATz # 0 for all nonzero x > 0, we define f(z) := % It is read-
ily seen that f(x) is a well-defined continuous function from the nonempty, compact
and convex set £ = {x € R" : x>0, ||z|; = 1} into itself. Due to Brouwer’s fixed
point theorem, there is some x € E such that f(z) = x. For suitable S € ¢, we
have SATz = T|ATz|, and hence SATx = ||ATz|, Tz = T |ATx| for all x € E;

equivalently,

(Tz)' SA (Tz) = | ATz, |Tal* = || AT, [|l=],

where (Ey (ﬂ) =1. O

[E3] B3

As a result from Theorem 2.1, we can conclude that for A € M, (R), there
exists some S € ¢ such that wj (A) € W(SA).

Corollary 2.1. If A € M,,(R), then there exist S1,S2 € , and a nonnegative unit
vector x such that wg§(A) = 'S ASyx.

Corollary 2.2. If A € M,(R), then r = w§(A) if and only if the matriz T =
rI — H(SA) is positive semi-definite for some S € .

Proof. By Theorem 2.1, r = wj (A) if and only if ratz > 2'SAz for every x € R,
and for some S € . It is clear that 2!SAz = 2'H(SA)x for all z € R™. Therefore
r = wj (A) if and only if Tz > 0 for all x € R™. O

Corollary 2.3. Let A € M,(R), and D = diag(A1,--- ,A\n) be congruent to the
matriz T = rI — H(SA) for some S € p. then r = wy (A) if and only if all the \;’s
are nonnegative and at least one of them vanishes.

Proof. By Corollary 2.2, r = wf)g (A) if and only if the eigenvalues of the symmetric
matrix T are nonnegative and at least one of them vanishes. By Sylvester’s law of
inertia (cf. [2, Theorem 4.5.8] ) the Corollary follows. O

It was shown in [11, Theorem 3.1] that p(A) = p3(A) for any nonnegative
matrix A. Similarly, we have the following result.

Lemma 2.2. If A is a real matriz, then wy (A) < wy (|A]). Suppose, in addition,

that A is a nonnegative matriz, then

w(A) =wy (A) =max { 2'A z: 2 € R?, ||2| = 1}.
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Proof. There exists some S € ¢ such that

wy (A) = max { [z*SAz|: (z*SAz) € R, z € C", ||z| = 1}
< max { [z'|SA||z|: (+*SAz) € R, 2 € C", ||z =1}
=max { 2'|4] z: (2'SAz) €R, z € RY, [|]z]| =1}
= max { 2Al 2, 2z € RY, 2| = 1}
<max { [2*|A4] 2| : (2 |A]2) €R, 2 € C", ||| =1}

= wo (J4]) < w§ (|A]).

If A is a nonnegative matrix, then for any unit vector z € C*, |z*Az| < |z|'Alz|;
hence w(A) = max {|z*Az| : z € C", ||z| = 1} = max {z'Az: z € R, [|z]| = 1} . So,
the above inequalities all become equalities and the proof is complete. ]

Notice that in general for real matrices A, B such that A < B, we do not have
ws (A) < wf (B). However, it is true for nonnegative matrices A, B, because by the

above Lemma we have
wy(A) =max { Z!Az: 2z e R, ||z]| =1}
<max {2'Bz:zeR%, ||z]| =1} = wi(B).

A relation between the sign-real numerical radius of A and the sign-real spec-
tral radius of H(S;ASs) for some S1,S2 € ¢, is observed in the following Theorem.

Theorem 2.2. If A € M,(R), then there exist some S1,S2 € ¢ such that wy(A) =
p5 (H(S1AS2)) = Amax(H (S1AS2)). Moerover, if Amax(H(S1A4S2)) is a simple eigen-
value of H(S1AS2), and = > 0 is the unit vector of Corollary 2.1, then y is a unit
vector with y*S1 ASey = w5 (A) if and only if y = e?x for some 6 € [0, 2).

Proof. By Corollary 2.1, we can find a nonzero unit vector z > 0 so that z*(S; ASy)x =
ws (A), and also 2!(S1 AS)tz = wf(A) for some S1, 9 € . Adding the two equa-
tions, we obtain

z' (wf (A) I — H(S1AS5)) z = 0. (6)
Since H(S1AS>) is Hermitian matrix, therefore ||H(S1AS2)|l2 = po(H(S1AS2)) =
wo(H (S1482)) < w§(H(S1ASs)) < ||H(S1AS)|2, where the last inequality fol-
lows from Lemma 2.1. Therefore |[H(S1ASs)|l2 = wf (H(S1ASs)). Also, we have
| H(S1AS5)||2 = p5 (H(S1AS3)) (cf. [11, Theorem 2.15]), which implies that

wi (H(S1AS2)) = pj (H(S1AS5)). (7)

It follows from the property of w3 (A) and [3, Property 1.2.7] that
o (A A) <0 (4) b (4) = 25 (A). ®)
Thus by (7) and (8), w§(A) = w§(S1482) > wf (H(S1AS)) = p5(H(S1AS:)) >

Amaz(H (S1AS2)). In view of the above inequality and (6), (wg (A)I — H(S1AS2)) is
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positive semi-definite. It follows that (w5 (A)I — H(S1AS2))z = 0, so z is an eigen-
vector of H(S1ASs) corresponding to wj (A). Hence the above inequalities all be-
come equalities, i.e., wf (A) = p5 (H(S1A4S2)) = Amax(H(S14S3)). Suppose now that
Amax (H (S1AS2)) is a simple eigenvalue of H(S1AS2) and y € C™ is a unit vector such
that y*S1 ASoy = wj (A). Similarly to the proof of the first part, w3 (A) is an eigen-
vector of H(S1AS3) corresponding to Amax(H (S1A4S2)). Thus, as Apax(H(S1452))

is simple, y = ez for some 0 € [0, 27). O

Remark 2.1. [t will be clear from the proof of Theorem 2.2 that, if A € M,(R),
then wy (A) = pS (H(SA)) = Amax(H(SA)) for some S € .

We illustrate Theorems 2.1 and 2.2 in the following Example.

Example 2.2. Consider the real matriz A of Example 2.1. Then there exist the sig-
nature matrices S1 = diag(+1,+1,+1),Se = diag(—1,—1,+1), and a nonnegative
unit vector x = (0.4544,0.4544,0.7662)" such that w3 (A) = 4.1861 = wp(S24) =
2'S1ASox. Furthermore, for the signature matriz S = diag(+1,+1,—1) we have
the relation w§ (A) = 4.1861 = p5 (H(S34)) = Amax(H (S34)).

In view of the proof of Theorem 2.2, we immediately obtain the following

corresponding result.

Corollary 2.4. If A € M,(R) and A = A, then p(AF) = p5(AF) = w§(AF) =
wW(AF) fork=1,2,....

3. Conclusions

In this paper, we presented an extension of Perron-Frobenius theory to the
numerical range of real matrices. This extension is interesting since it leads to
a relation between the sign-real spectral radius - which is used in engineering [9,
10] - and the sign-real numerical radius (Theorem 2.2 and Remark 2.1). Further
applications of the sign-real spectral radius will be given in a forthcoming paper [§].
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