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THE DYNAMIC PROPERTY AND CHAOS CONTROL FOR A
TWO-DEGREE-OF-FREEDOM VIBRO-IMPACT SYSTEM

Guo FENG?!, Pan JIAN-XUN?, Mu YONG!, Ji ZHEN-DONG!

The dynamic behavior of a two-degree-of-freedom vibro-impact system is
studied in this paper. It is shown that there exist Hopf bifurcations in the
vibro-impact systems with two or more degrees of freedom under suitable
parameters. A center manifold theorem technique is applied to reduce the Poincaré
mapping of the vibro-impact system to a two-dimensional one, and then the theory of
Hopf bifurcation of maps in R? is applied to conclude the existence of Hopf
bifurcation of the vibro-impact system. The quasi-periodic response of the system,
which represented by invariant circles in the projected Poincaré section, is obtained
by numerical simulations, and the routes of quasi-periodic impacts to chaos are
stated briefly. In this paper, a control parameter is selected. Through the
improvement of OGY control method and using the pole placement technique of the
linear control theory, the chaotic motion of the vibro-impact system is controlled to
an unstable period-1 or period-2 orbit. At the same time, the different choice of the
regulator poles is analyzed. By numerical simulation, the effectiveness of the method
is demonstrated.

Keywords: Vibro-impact system; Hopf bifurcation; OGY chaos control;
Pole placement

1. Introduction

Vibro-impact system is widely applied in the practical engineering fields
[1-4]. Many engineers and scientists pay increasing attention to the complexity of
the dynamics. For multi-degree-of-freedom vibro-impact system (a class of
higher-dimensional strongly nonlinear dynamic systems), [5-9] studied a variety
of bifurcation, symmetry and chaos of such systems by applying the center
manifold theorem and numerical simulations.

Chaos exists in mechanics, physics, chemistry, biology, geography and
even the social sciences widely. How to use and control chaos has become one of
the hottest fields of the basic research in natural sciences. At present, a lot of
chaos control methods, such as the way of feedback control with external
excitation or damping [10], have actually changed the dynamical properties of the
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original system, because of a large control element added.

In 1990, Ott, Grebogi and Yorke [11] proposed a method of chaos control
which is called OGY method. The advantage of the method is only a very small
control signal will control the dynamic behavior of the system to an unstable
periodic orbit, or to obtain mutual transformation between different unstable
periodic orbits in chaotic attractors.

Since then, many scholars [12—-17] presented many improvement methods
according to different situations. The OGY method was obtained the further
development. Ott, Grebogi, Romeiras and Dayawansa [20] improved the OGY
method using the pole placement technique of the linear control system. About the
improvement of the OGY method, the chaos control of the high period in chaotic
attractors and the high dimensional systems is an important trend.

As a class of typical nonlinear dynamical systems of the actual
engineering, vibro-impact systems will appear chaos phenomena inevitably. Souza
de et al has applied OGY chaos control method to a class of one-degree-of-
freedom vibrato-impact system [21, 22]. Because the Poincaré impact mapping of
one-degree-of-freedom of vibrato-impact system is a two-dimensional mapping, it
is easy to apply the method to control the chaotic behavior of it. However, the
multi-degree-of-freedom vibro-impact systems exist in the actual engineering
fields frequently. How to study the multi-degree-of-freedom vibro-impact systems
by the OGY chaos control method becomes very important and necessary. In this
paper, through the improvement of OGY [20], we study the chaos control of a
two-degree-of-freedom vibro-impact system [5]. By establishing linear mapping
and using the pole placement technique of the linear control theory, we determine
the controllable matrix and select the appropriate poles, which depends on the
control parameter. The chaotic behavior of the system is controlled effectively.
Because of the different selection of the pole values and the range size of the
disturbance parameters, the average time of the control is analyzed. The result
shows that OGY chaos control method can be applied to the multi-degree-of-
freedom vibro-impact systems and high-dimensional systems.

2. Mechanics Model and the Motion Equation of Vibro-impact System

Pysin (wt+1 Py sin(wf + 1)

K, K,

My WW—/ M > A

Fig. 1. A schematic of the two-degree-freedom impact oscillator
The mechanical model for a two-degree-of-freedom vibrator with masses
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M. and Mz is shown in Fig. 1. The masses are connected to linear springs with
stiffness Ky and K». The excitations on both masses are harmonic with amplitudes
P1 and P2. The mass My impacts against a rigid surface when its displacement X
equals the gap B. The impact is described by a coefficient of restitution R, and it is
assumed that the duration of impact is negligible compared to the period of the
force. It is assumed that the horizontal support surface is smooth.

Between impacts, the differential equations of motion are

M, 0 |d? [X, K, -K; X, Rl .
> + = sin(QT +7) 1)
0 M, |[dT" X, -K, K/ +K,|[X, P,
The impact equation of mass My is
X1+ = _RXL (2)

Where X, =-RX,_ and Xi- represent the impacting mass velocities of

approach and departure respectively. For convenience, the equations of motion (1)
are rewritten in non-dimensional form for x; <B, as

Lo mller [ sl im0
0 sty ] X% -1 1+ 1% f,

Where the non-dimensional quantities
ﬂm:&,ﬂK:&’fzz P2 ,a):Q %’t:T ﬁ,b: BK]‘ ’Xi: XiKl (4)
Ml Kl P1+P2 Kl Ml I:)l-I-F)Z P1+P2

3. The Period Motion Analysis of the System

The equations of motion (3) are resolved by using the formal co-ordinate
and modal matrix approach. The general solution of equation (3) takes the form

2
X = w; (@ cosmt+b;sinet+ A sin(wt+7)) (5)
=t

2
X = ley/ij (-0 sinet+bjw, cosat+ Awcos(et+7))  (i=12)  (6)
j=

Where y;are elements of the canonical modal matrix y, A, are the
amplitude parameters and A =y]P /(0! -’),P=(1-f,, f,), & and bj are the

constants of integration, which are determined by the initial conditions and modal
parameters of the system.

Under suitable system parameter conditions, the vibro-impact system
given in Figure 1 can exhibit periodic behavior. The periodic behavior means that
if the dimensionless time t is set to zero directly after an impact, it becomes
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t=27/w just before the next impact.

% (0) =b,  (27/w)=b, %, (0) = ~R%,_(0), ,(0) =, (27/), %, (0) = X, (27/w) (7)

The first and second equations express the instantaneous nature of each
impact, the third equation is the impact law, and the fourth and fifth equations
express the continuity of position and velocity of mass M at the instant of impact.
Inserting the equation (7) into the equation (3), we can solve for the constants a;
and b; of integration and the phase angle z,from equations (5) and (6) and

express them as set out below.

If b=0, thenlet 7,=7, :

7, = tan~? (W22W1151 (1—C2)602 —WLWnS, (1—Cl)w1)(1+ R)a) @®)

Dayw, (1_C1)(1—C2)(1—R)

btanz, +./(tan?7, +1)d? —b?
7, =C0s™" ° \/(2 0 ) )

(tan® 7, +1)d

1+R «
bl:d!//zz( + )aocosro’b2 =—%lwlbl,ai _ b.s, ,(i=l,2) (10)

Day, (1-R) V0, 1

Where s,=sin27w, /o, ¢,=c0s2zw, /o, d =—(y, A +y,A), D =y|.

Otherwise, it is impossible for periodic impacts to exist. Substituting
equations (8)—(10) into the general solutions of equation (3), we obtain the
periodic solutions of the system shown in Figure 1, which correspond to one
impact during one cycle of the forcing:

2
% = w;(a cosamt+b;sinot+Asin(et+z,)) (tmod2z/w)  (11)

=1

2
X = lel//ij (—ajo;sinojt+b,w; cosajt+ Awcos(at +1,))  (tmod2z/m) (12)
j=

4. Poincaré Mapping and the Stability of Periodic Motion

Take the collision surface ocR*xS as the Poincaré section.
Leto ={(x, %, X,, X,, 0) R xS, x, =b}, let us consider the perturbed motion.

For % <b, the solutions of the perturbed motion are written in the form
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2 ~
%= v (éj cosa;t+b; sinw;t+ A, sin(at +1, +Az‘)) (13)
=
. 2 ~
X =D v (—éjwj sinw;t +b,0, cosw;t + Ajocos(at + 7, +Az‘)) (14)
=1

The integration constants &,4,,b,,b, . Dimensionless time after the
collision is zero, and the next time of before the collision is t:(27r+A0)/w. Let

2
t,=(27+A0)/w, so that > w, & (t,)=b. Let
i=1

2 ~

g ( AXyg, Ay, Ay, AT,A0) =D & (t,)—D (15)

i=1
Where

& (t)=4 cosat +h sinamt+ A sin(wt +7, + A7),

gé(t)i = —&,,Sin wt +b.w cosmt + Awcos(wt +7,+AT),
The conditions under which there exist fixed points give
0 Mg, Ay, Ay, AT, A0) 55550 =0.
According to the implicit function theorem, the equation (15) can be solved as

A = AG( My, AXyy, Ay, A7), AG( 0,0,0,0)=0 (16)

We finally obtain the Poincaré mapping
def

AXy = ﬂ( AX g, AXpg, AXyg, AT,AH)—AXm = fl( AXgy AXyyy AXyg, Ar),

def

AXgy = fz( AXyy, AXyy, Ay, AT'AQ)_szo = fz( AXyg, AXyg, AXyg, AT)’

- def
Axgy = T, ( Ak, Aoy, Ay, AT, AQ) = Ay = T, ( Ay, Ay, Ay, AT),

def

AT = T, (AT+AO( Ay, Ay, ARy, AT)) = T, ( Ay, Ay, Ay, A7)

(17)
The Poincaré map (17) can be expressed as
AX' = f (o, AX) (18)
In which



34 Guo Feng, Pan Jian-Xun, Mu Yong, Ji Zhen-Dong

AX = (Mg, Aoy, Aoy, AT) ) AX' = ( AXy, AXpy, ARy, AT')
f(w,AX)=(f, f,, £, f,).

Linearizing the Poincare” map at the fixed point results in the matrix
[ of, of, of,  of
OAX, OAX, OA%, OAr
of, of, of, o,
OAX, OAX, OA%, OAT
of, of, of, o,
A%, OAX, OA%, OAT
of, of, of, o,
| OA%, O0AXy OAX, OAz

Df (a), 0) =

J(v,0,0,0,0)

Let AX = (A%, AXy, A%y, A7) denote AX =(Ax, Ax,, Ax, Ax,)". By the implicit

function theorem, it is easy to calculate the following derivatives in matrix

0N __0G |26 ;i 15ay) (19)
OAX,  0AX | 0AO

of  of of A6
+

OAX.  OAX,  OAO OAX. '

The eigenvalues of Df(v, 0) can be obtained in fixed point. If all
eigenvalues of Df(v, 0) are inside the unit circle, then the periodic solution is
stable; otherwise, it is unstable. When the eigenvalues of Df(v, 0) with the largest
modules are on the unit circle, bifurcations occur in various ways according to
their numbers and their positions on the unit circle, resulting in qualitative
changes in the system dynamics. When the system is disturbed a little, the
unstable fixed point of the map will become quasi-periodic solutions. Mapping
indicates Hopf bifurcation in fixed point, even though the continuous bifurcation

may lead to chaos.

(i=1,2,34) (20)

5. The Chaos Control of High-dimensional Systems by OGY Method

The main idea of this method is that one of the unstable periodic orbits
embedded in the attractors is chosen as a control target. When the chaotic motion
wanders into the vicinity of the periodic motion, a certain parameter of the system
is perturbed. The pole and the controllable matrix is determined correctly by the
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pole placement technique of the linear control systems [23]. Then the chaotic
motion will stabilize to the periodic motion.
Consider the following map:
Z.,=F(Z;,a),Z,el? aell (21)
F is sufficiently smooth, and the parameter a is the adjustable parameter
which is restricted to lie in the small intervalla—a|<&. @ is a nominal value.
There exists a chaotic attractor of the system asa=a. The unstable periodic
motion will be the control target now. The system parameter a is perturbed
timely, such that the chaotic motion converges to the expected periodic orbit in the
attractor. Ergodic nature of the chaos dynamics ensures that the state trajectories
eventually enter into the neighborhood of the stable periodic orbits. Once inside,
then the stabilizing feedback control law is applied in order to control the
trajectory to the desired periodic orbit.

If z.(a) isan unstable fixed point of the map (21), then the mapping can

be approximated by the linear map
Z.,.-2.(a)=A(Z,-2,(a))+B(a-a) (22)

i+1

The partial derivatives A=D,F(Z,a) and B=D_,F(Z,a) are
evaluated at Z=2Z7,(a) and a=a. The time-dependence of the parameter a

is a linear function of variable Z. of the form

a-a=-K'(z,-2,.(a)) (23)
Substituting (23) into (24)
Z,,-2.(a)=(A-BK")(z,-2.(7)) (24)

As (24) shows that, if the matrix A-BKT is asymptotically stable (i.e. the
modulus of the eigenvalues is less than 1), then the fixed point will be stable. The
key problem is to determine the feedback matrix KT, which satisfies the above
condition. The literature [23] has given the method to calculate the pole placement.
The pole placement problem has a unique solution if and only if the NXN matrix

C=[B AB A’B -+ A"'B] (25)

The matrix’s rank is n. (C,_ is called the controllability matrix). The

solution of the pole placement problem is given by



36 Guo Feng, Pan Jian-Xun, Mu Yong, Ji Zhen-Dong

K'=[a, -2, o, —a]T" (26)
Where T=CW, and
n—1 n—2 A 1
n-2 n-3 .10
a 1 .. 00
1 0O .. 00

Here a (i=1,2...) are the coefficients of the characteristic polynomial of A,
|Al-A|==2"+aA"" +--+a,,and a, -, are the coefficients of the desired
characteristic polynomial of A-BKT

‘sl —(A—BKT)‘=S” +a s et
After KT is determined by |a—a|<s and (23), we have
K™(2,-2.(a))<s.
We select the appropriate parameters to achieve the purpose of control.
6. Numerical Simulation

6.1 The projection of the Poincaré map

First, we take a set of parameters y, =2, 4 =5, f,=0,R=8,b=15.

When ® =0.65, the eigenvalues of the linearized matrix are within the unit circle.
The stable periodic motion shows a stable fixed point in the Poincaré projection,
as shown in Figure 2. When o= 0.743, a pair of complex conjugate eigenvalues
of the linearization matrix, whose modulus is greater than 1. The impact vibration
system occurs Hopf bifurcations. The attracting invariant circles appear in the
Poincaré projection, as shown in Figure 3. A single torus doubling begins to occur
as the value of as the value of  passes through 0.7521, as shown in Fig. 4. When
the value of @ increases further, the system will become chaotic motion, as
shown in Fig. 5. Since there is a slight disturbance, the system appears chaotic,
which reflecting the sensitivity of initial value and the uncertainty.
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Fig. 2. The fixed points of the system shown in projected Poincaré sections

Fig. 4. The torus doubling of the system shown in projected Poincaré sections
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T X,

Fig.5.The chaotic motion of the system shown in projected Poincaré sections

6.2 Chaos Control of the vibro-impact system

Linearization of the Poincaré map, when «=0.7896, the motion of the
system is chaotic. @ is chosen as a control parameter. By computer the partial
derivative. According to the method described above, based on the Poincaré map
of a two-degree-of-freedom system, the mapping is linearized by the principles of

linear approximation. The appropriate polesk;, (i=12,3,4) and the disturbance

o are selected, and the controlled parameter of the system is perturbed
continuously every moment. The unstable fixed point will move along the stable
manifold after applying parameter perturbation. So again and again, the system is
controlled to an unstable fixed point finally. The chaotic behavior of the
two-degree-of-freedom vibro-impact system is controlled. The feasibility and the
effectiveness of the theoretical analysis is verified by the numerical simulation.
We select the poles k;,k, is O each, the other two poles k,, k, are
eigenvalues of the linearization matrix whose modes are less than 1. Let the
perturbation 5 be 0.02, after 5400 iteration times, the system is controlled on the
fixed point (Periodic orbit), see Figure 6.
Let the perturbation 5 be 0.03, after 1800 iteration times, the system is

controlled on period-2, see Figure 7.
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Fig. 6. Controlling of the period-1 orbit, 5=0.02
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Fig. 7. Controlling of the period-2 orbit, 5=0.03

Let the perturbation & be 0.05, 0.1 respectively, the system is controlled
on periodic-2 after 500 and 100 iteration times. This indicates that the time of the
complete chaos control is influenced by the different values of the perturbation

o greatly, see Fig. 8.
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Fig. 8. Controlling of the period-2 orbit

We select the poles s, 1, is 0.2, 0.1 each, the other two poles g, 4,
are the same with above wvalues. The unstable fixed point
X" =(X,%,%,7")=(-294,-2.18,-0.79,37.17). Let the perturbations be 0.02, %,is
controlled on a regional belt between -2.94 and -2.88 and X, is controlled on a

regional belt between -0.86 and 1.12 after 5400 iteration times. The system cannot
be controlled on the unstable fixed point accurately, as shown in Fig. 9.

7000 7500 8000 8500 9000 9550 5000 5060 7000 8000 9000 10000

n n
region -2.943—-2.8865 region -2.943—-2.8865

Fig. 9. Controlling to a region which contains of the fixed points
7. Conclusions
This paper studies the dynamic behavior of the vibro-impact system. At

first the Poincaré cross-section is determined and Poincaré mapping is established.
When the excitation frequency is different, a Hopf bifurcation will exist, even the
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system will exhibit chaos phenomenon. Through the improvement of OGY and
using the pole placement technique of the linear control theory, the chaotic motion
of the vibro-impact system is controlled. At the same time, the different choice of
the regulator poles is analyzed. The time of the complete control is influenced by
the different of the disturbance and poles. The research results show that the OGY
Chaos control method can be implemented in two or more degrees of freedom
vibration system.
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