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THE DYNAMIC PROPERTY AND CHAOS CONTROL FOR A 

TWO-DEGREE-OF-FREEDOM VIBRO-IMPACT SYSTEM 

Guo FENG1, Pan JIAN-XUN1, Mu YONG1, Ji ZHEN-DONG1 

The dynamic behavior of a two-degree-of-freedom vibro-impact system is 

studied in this paper. It is shown that there exist Hopf bifurcations in the 

vibro-impact systems with two or more degrees of freedom under suitable 

parameters. A center manifold theorem technique is applied to reduce the Poincaré 

mapping of the vibro-impact system to a two-dimensional one, and then the theory of 

Hopf bifurcation of maps in R2 is applied to conclude the existence of Hopf 

bifurcation of the vibro-impact system. The quasi-periodic response of the system, 

which represented by invariant circles in the projected Poincaré section, is obtained 

by numerical simulations, and the routes of quasi-periodic impacts to chaos are 

stated briefly. In this paper, a control parameter is selected. Through the 

improvement of OGY control method and using the pole placement technique of the 

linear control theory, the chaotic motion of the vibro-impact system is controlled to 

an unstable period-1 or period-2 orbit. At the same time, the different choice of the 

regulator poles is analyzed. By numerical simulation, the effectiveness of the method 

is demonstrated. 
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1. Introduction 

Vibro-impact system is widely applied in the practical engineering fields 

[1-4]. Many engineers and scientists pay increasing attention to the complexity of 

the dynamics. For multi-degree-of-freedom vibro-impact system (a class of 

higher-dimensional strongly nonlinear dynamic systems), [5-9] studied a variety 

of bifurcation, symmetry and chaos of such systems by applying the center 

manifold theorem and numerical simulations. 

Chaos exists in mechanics, physics, chemistry, biology, geography and 

even the social sciences widely. How to use and control chaos has become one of 

the hottest fields of the basic research in natural sciences. At present, a lot of 

chaos control methods, such as the way of feedback control with external 

excitation or damping [10], have actually changed the dynamical properties of the 
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original system, because of a large control element added. 

In 1990, Ott, Grebogi and Yorke [11] proposed a method of chaos control 

which is called OGY method. The advantage of the method is only a very small 

control signal will control the dynamic behavior of the system to an unstable 

periodic orbit, or to obtain mutual transformation between different unstable 

periodic orbits in chaotic attractors. 

Since then, many scholars [12–17] presented many improvement methods 

according to different situations. The OGY method was obtained the further 

development. Ott, Grebogi, Romeiras and Dayawansa [20] improved the OGY 

method using the pole placement technique of the linear control system. About the 

improvement of the OGY method, the chaos control of the high period in chaotic 

attractors and the high dimensional systems is an important trend. 

As a class of typical nonlinear dynamical systems of the actual 

engineering, vibro-impact systems will appear chaos phenomena inevitably. Souza 

de et al has applied OGY chaos control method to a class of one-degree-of- 

freedom vibrato-impact system [21, 22]. Because the Poincaré impact mapping of 

one-degree-of-freedom of vibrato-impact system is a two-dimensional mapping, it 

is easy to apply the method to control the chaotic behavior of it. However, the 

multi-degree-of-freedom vibro-impact systems exist in the actual engineering 

fields frequently. How to study the multi-degree-of-freedom vibro-impact systems 

by the OGY chaos control method becomes very important and necessary. In this 

paper, through the improvement of OGY [20], we study the chaos control of a 

two-degree-of-freedom vibro-impact system [5]. By establishing linear mapping 

and using the pole placement technique of the linear control theory, we determine 

the controllable matrix and select the appropriate poles, which depends on the 

control parameter. The chaotic behavior of the system is controlled effectively. 

Because of the different selection of the pole values and the range size of the 

disturbance parameters, the average time of the control is analyzed. The result 

shows that OGY chaos control method can be applied to the multi-degree-of- 

freedom vibro-impact systems and high-dimensional systems. 

2. Mechanics Model and the Motion Equation of Vibro-impact System 

 
Fig. 1. A schematic of the two-degree-freedom impact oscillator    

The mechanical model for a two-degree-of-freedom vibrator with masses 
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M1 and M2 is shown in Fig. 1. The masses are connected to linear springs with 

stiffness K1 and K2. The excitations on both masses are harmonic with amplitudes 

P1 and P2. The mass M1 impacts against a rigid surface when its displacement X1 

equals the gap B. The impact is described by a coefficient of restitution R, and it is 

assumed that the duration of impact is negligible compared to the period of the 

force. It is assumed that the horizontal support surface is smooth.  

Between impacts, the differential equations of motion are 
2
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2
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The impact equation of mass M1 is 

1 1X RX                                 (2) 

Where 
1 1X RX    and X1- represent the impacting mass velocities of 

approach and departure respectively. For convenience, the equations of motion (1) 

are rewritten in non-dimensional form for x1 <B, as 
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Where the non-dimensional quantities 
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(4) 

3. The Period Motion Analysis of the System  

The equations of motion (3) are resolved by using the formal co-ordinate 

and modal matrix approach. The general solution of equation (3) takes the form 

      
2
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cos sin sin( )i ij j j j j j

j

x a t b t A t    


                    (5) 

     
2

1

sin cos cos( ) 1, 2i ij j j j j j j j

j

x a t b t A t i       


          (6) 

Where 
ij are elements of the canonical modal matrix  , 

jA
 
are the 

amplitude parameters and  2 2T

j j jA P    ,  2 21 ,P f f  , aj and bj are the 

constants of integration, which are determined by the initial conditions and modal 

parameters of the system. 

Under suitable system parameter conditions, the vibro-impact system 

given in Figure 1 can exhibit periodic behavior. The periodic behavior means that 

if the dimensionless time t is set to zero directly after an impact, it becomes 
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2t    just before the next impact.  

               1 1 1 1 2 2 2 20 , 2 , 0 0 , 0 2 , 0 2x b x b x Rx x x x x           
 
(7) 

The first and second equations express the instantaneous nature of each 

impact, the third equation is the impact law, and the fourth and fifth equations 

express the continuity of position and velocity of mass M2 at the instant of impact. 

Inserting the equation (7) into the equation (3), we can solve for the constants aj 

and bj of integration and the phase angle 
0 from equations (5) and (6) and 

express them as set out below.  

If b= 0, then let 0 0 
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Where  11 1 12 2=sin 2 , =cos 2 , , .i i i is d A A D         ｃ  

Otherwise, it is impossible for periodic impacts to exist. Substituting 

equations (8)–(10) into the general solutions of equation (3), we obtain the 

periodic solutions of the system shown in Figure 1, which correspond to one 

impact during one cycle of the forcing: 

     
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x a t b t A t t      

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j
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4. Poincaré Mapping and the Stability of Periodic Motion 

Take the collision surface 4R S    as the Poincaré section. 

Let   1 1 2 2, , , ,x x x x  4

1,R S x b   , let us consider the perturbed motion. 

For 
1x b , the solutions of the perturbed motion are written in the form 
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The integration constants
1 2 1 2, , ,a a b b . Dimensionless time after the 

collision is zero, and the next time of before the collision is  2 +t     . Let 
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Where 

  0cos sin sin( ),i i i i i it a t b t A t                   

  0sin cos cos( + ).i i i i i i ii
t a t b t A t               

The conditions under which there exist fixed points give 
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According to the implicit function theorem, the equation (15) can be solved as 
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We finally obtain the Poincaré mapping 
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(17) 

The Poincaré map (17) can be expressed as 

      ,X f X                             (18) 

In which 
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Linearizing the Poincare´ map at the fixed point results in the matrix 
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Let  
T
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denote  

T

1 2 3 4, , ,X x x x x      . By the implicit 

function theorem, it is easy to calculate the following derivatives in matrix 
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
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  
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i
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



   
   
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The eigenvalues of Df(v, 0) can be obtained in fixed point. If all 

eigenvalues of Df(v, 0) are inside the unit circle, then the periodic solution is 

stable; otherwise, it is unstable. When the eigenvalues of Df(v, 0) with the largest 

modules are on the unit circle, bifurcations occur in various ways according to 

their numbers and their positions on the unit circle, resulting in qualitative 

changes in the system dynamics. When the system is disturbed a little, the 

unstable fixed point of the map will become quasi-periodic solutions. Mapping 

indicates Hopf bifurcation in fixed point, even though the continuous bifurcation 

may lead to chaos.  

5. The Chaos Control of High-dimensional Systems by OGY Method 

The main idea of this method is that one of the unstable periodic orbits 

embedded in the attractors is chosen as a control target. When the chaotic motion 

wanders into the vicinity of the periodic motion, a certain parameter of the system 

is perturbed. The pole and the controllable matrix is determined correctly by the 
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pole placement technique of the linear control systems [23]. Then the chaotic 

motion will stabilize to the periodic motion. 

  Consider the following map: 

  2

1= , , ,i i ia a  Z F Z Z                     (21) 

F is sufficiently smooth, and the parameter a is the adjustable parameter 

which is restricted to lie in the small interval a a   . a  is a nominal value. 

There exists a chaotic attractor of the system as a a . The unstable periodic 

motion will be the control target now. The system parameter a  is perturbed 

timely, such that the chaotic motion converges to the expected periodic orbit in the 

attractor. Ergodic nature of the chaos dynamics ensures that the state trajectories 

eventually enter into the neighborhood of the stable periodic orbits. Once inside, 

then the stabilizing feedback control law is applied in order to control the 

trajectory to the desired periodic orbit.  

If  aZ  is an unstable fixed point of the map (21), then the mapping can 

be approximated by the linear map 

      1i ia a a a      AZ Z Z Z B
               

(22) 

The partial derivatives  , aA D
Z
F Z

 
and  ,a aDB F Z  are 

evaluated at 
 

 aZ Z
 
and a a . The time-dependence of the parameter a  

is a linear function of variable iZ
 
of the form 

  T= ia a a  K Z Z
                        

(23) 

Substituting (23) into (24)  

      T

1 =i ia a    AZ Z BK Z Z
                

(24) 

As (24) shows that, if the matrix A-BKT
 is asymptotically stable (i.e. the 

modulus of the eigenvalues is less than 1), then the fixed point will be stable. The 

key problem is to determine the feedback matrix KT, which satisfies the above 

condition. The literature [23] has given the method to calculate the pole placement. 

The pole placement problem has a unique solution if and only if the n n  matrix 
2 1= n  C A A AB B B B                     (25) 

The matrix’s rank is n . (
n nC is called the controllability matrix). The 

solution of the pole placement problem is given by 
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 T 1

1 1= , ,n na a     TK                    (26) 

Where T = CW , and 
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 
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 
 
 
 
 
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Here ai
 

(i=1,2…) are the coefficients of the characteristic polynomial of A,
 

1

1= ,n n

nI a a       A and 1, , n   are the coefficients of the desired 

characteristic polynomial of A-BKT

 

 T 1

1= .n n

nsI s s    A BΚ  

After KT is determined by a a  
 
and (23), we have 

  T

i a  K Z Z .
 

We select the appropriate parameters to achieve the purpose of control.  

6. Numerical Simulation 

6.1 The projection of the Poincaré map  

First, we take a set of parameters
22, 5, 0, 8, 1.5m k f R b      . 

When =0.65, the eigenvalues of the linearized matrix are within the unit circle. 

The stable periodic motion shows a stable fixed point in the Poincaré projection, 

as shown in Figure 2. When = 0.743, a pair of complex conjugate eigenvalues 

of the linearization matrix, whose modulus is greater than 1. The impact vibration 

system occurs Hopf bifurcations. The attracting invariant circles appear in the 

Poincaré projection, as shown in Figure 3. A single torus doubling begins to occur 

as the value of as the value of passes through 0.7521, as shown in Fig. 4. When 

the value of   increases further, the system will become chaotic motion, as 

shown in Fig. 5. Since there is a slight disturbance, the system appears chaotic, 

which reflecting the sensitivity of initial value and the uncertainty.  
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Fig. 2. The fixed points of the system shown in projected Poincaré sections 

         

 

Fig. 3.The invariant circles of the system shown in projected Poincaré sections 

      

 

Fig. 4. The torus doubling of the system shown in projected Poincaré sections 
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Fig.5.The chaotic motion of the system shown in projected Poincaré sections 

6.2 Chaos Control of the vibro-impact system 

Linearization of the Poincaré map, when 0.7896  , the motion of the 

system is chaotic.   is chosen as a control parameter. By computer the partial 

derivative. According to the method described above, based on the Poincaré map 

of a two-degree-of-freedom system, the mapping is linearized by the principles of 

linear approximation. The appropriate poles  , 1, 2,3, 4ik i  and the disturbance 

 are selected, and the controlled parameter of the system is perturbed 

continuously every moment. The unstable fixed point will move along the stable 

manifold after applying parameter perturbation. So again and again, the system is 

controlled to an unstable fixed point finally. The chaotic behavior of the 

two-degree-of-freedom vibro-impact system is controlled. The feasibility and the 

effectiveness of the theoretical analysis is verified by the numerical simulation. 

We select the poles 
1 2,k k

 
is 0 each, the other two poles 

3 4,k k  are 

eigenvalues of the linearization matrix whose modes are less than 1. Let the 

perturbation  be 0.02, after 5400 iteration times, the system is controlled on the 

fixed point (Periodic orbit), see Figure 6. 

Let the perturbation  be 0.03, after 1800 iteration times, the system is 

controlled on period-2, see Figure 7. 

  

1
x  2

x  

2
x
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Fig. 6. Controlling of the period-1 orbit, =0.02  

        

Fig. 7. Controlling of the period-2 orbit, =0.03  

 Let the perturbation   be 0.05, 0.1 respectively, the system is controlled 

on periodic-2 after 500 and 100 iteration times. This indicates that the time of the 

complete chaos control is influenced by the different values of the perturbation 

 greatly, see Fig. 8. 

n  

1
x  

n  

2
x  

n  

2
x  

n  

  

n  

1
x  

n  

2
x  



40                Guo Feng, Pan Jian-Xun, Mu Yong, Ji Zhen-Dong 

      
Fig. 8. Controlling of the period-2 orbit 

We select the poles 1 2, 
 
is 0.2, 0.1 each, the other two poles 3 4,   

are the same with above values. The unstable fixed point
 

   1 1 2, , , 2.94, 2.18, 0.79,37.17X x x x          . Let the perturbation  be 0.02, 
1x is 

controlled on a regional belt between -2.94 and -2.88 and 
2x  is controlled on a 

regional belt between -0.86 and 1.12 after 5400 iteration times. The system cannot 

be controlled on the unstable fixed point accurately, as shown in Fig. 9. 

      

 

 

Fig. 9. Controlling to a region which contains of the fixed points 

7. Conclusions 

This paper studies the dynamic behavior of the vibro-impact system. At 

first the Poincaré cross-section is determined and Poincaré mapping is established. 

When the excitation frequency is different, a Hopf bifurcation will exist, even the 
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system will exhibit chaos phenomenon. Through the improvement of OGY and 

using the pole placement technique of the linear control theory, the chaotic motion 

of the vibro-impact system is controlled. At the same time, the different choice of 

the regulator poles is analyzed. The time of the complete control is influenced by 

the different of the disturbance and poles. The research results show that the OGY 

Chaos control method can be implemented in two or more degrees of freedom 

vibration system. 
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