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»-n-APPROXIMATE WEAK AMENABILITY OF
ABSTRACT SEGAL ALGEBRAS

Zahra GHORBANI', Mahmood Lashkarizadeh BAMI >

In this paper, we investigate ¢ — N —approximately weakly amenability and

character inner amenability of abstract Segal algebra. Let B be an abstract Segal
algebra in a Banach algebra A with a central approximate identity which is

bounded in ||||A Suppose that ¢ € Hom(A) is such that ¢y (@ |g) is in
Hom(B) . We prove that for each n € N, if A is ¢ —n —weakly amenable, then
B is |z —approximately weakly amenable.
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1. Introduction

A Banach algebra A is called amenable if for each Banach A-module X,

every bounded derivation from A into a dual A-module X" is an inner
derivation. Recently, some authors have added a kind of twist to the amenability
definition. Given a continuous homomorphism ¢ from A into A, they defined

and studied ¢ -derivations and ¢ -amenability (see [3], [7], [18]and [21]).
Suppose that A is a Banach algebra and ¢ € Hom(A), consisting of all

continuous homomorphisms from A into A.
Let X be a Banach A-bimodule, a linear operator D: A— X is a ¢-

derivation if it satisfies D(ab)= D(a)p(b)+¢@(a)D(b) for all a,beA. A ¢-
derivation D is called a ¢-inner derivation if there is Xe X such that
D(a)=¢p(a)x—xp(a) for all aeA. Let Z(lp(A,X) denote the set of all
continuous ¢ -derivations and N L,(A,X) be the set of all ¢ -inner derivations
from A into X . The first cohomology group H;(A,X) is defined to be the

quotient space Z,(A, X)/N (A, X).
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A Banach algebra A is called ¢ -amenable if H;(A, X*)={0} forall A-
bimodules X and A is called ¢-weakly amenable if ’HL)(A, A")={0}. Note that
every derivation of a Banach algebra A into an A-bimodule X is an id,-
derivation, where id, is the identity operator on A. A ¢ -derivation D is called
approximate ¢-inner derivation if there is a net (X,) in X such that
D(a) =lim(¢(a).x, — X,.@(a)). A Banach algebra A is called ¢ -approximate

amenable if every ¢ -derivation is an approximate ¢ -inner derivation.

The aim of the present paper is to introduce and investigate
@ —n—approximately weakly amenability of abstract Segal algebra.

2. The results

We start this section by introducing the following:

Let A be a Banach algebra and X,Y be Banach A-bimodules, then A-
bimodule homomorphism from X to Y is a homomorphism ¢: X —Y with

pa-x)y=a-p(x), ex-a)=@e(xX)-a (aeA, xeX).

Definition 2.1 Let A be a Banach algebra with the norm |||,. Then a
Banach algebra B with the norm ||| is an abstract Segal algebra with respect to
Aif:

(i) B is a dense left ideal in A;

(i1) there exists M >0 such that ||b|| A<M ||b||B forall be B;

(iii) there exists C > 0 such that ||ab||B < C||a|| A||b||B forall a,beB.

Recall that a net (e,),., in A is central bounded approximate identity if
ae, =e,a(aeA ael) and (e,),., is a bounded approximate identity for A.

Let A be a Banach algebra, the duals A™ are Banach A-bimodule for
each ne N . We take A” = A and we denotes the restriction of ¢ to B by ¢j.

Theorem 2.2 Let B be an abstract Segal algebra in a Banach algebra A
with a central approximate identity which is bounded in ||, .Then for each neN,
and ¢@eHom(A), if A is ¢@-n-—weakly amenable, then B is
@ —n—approximately weakly amenable
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Proof. Let ne N and D:B — B™ be a continuous ¢ — derivation. Let X,
be the closed linear span of the set {py(a)-B™ -p,(b):a,be B}. Suppose that
(e,) is a central approximate identity for B . Since (e,) is central, it follows that

D(B)c X..
Consequently, (e,) is a multiplier-bounded, central approximate identity for X, .
In particular

lim @g (e;)-D(b)=D(b) (beB)
For each o define the map 7, : A— B by
7,(@)= p(a)e, (acA).
Let 8:B — A denote the inclusion map. Trivially, both 7, and @ are linear and
continuous left A-module morphisms and also continuous B -bimodule
morphisms. It is clear that 7 6(b)=¢@,(b)e, =€, p,(b) for all be B , so by
induction, for each ne N we have
(@.0)"(F) =9t (F)-e, =¢, ¢f"(F) (FeB®)
Define the continuous linear map D, : A— A™ by
b ()= {«9(”)[D(aea)—(p(a)- D(e,)] if n is even
“ r"[D(e, a)-D(e,)-p(a)] if n is odd
for all ae A. Thus for each b € B we have

*)

D (b) - {HE:I(D(b) -g(e,)) ?f n is even *%)
7. (pg(e,).D(b)) if n is odd
Since (e,) is central, it follows that D (bc) =g, (b)-D,(c)+ D, (b)-¢g(c) for all
b,ceB.
From the density of B in A, it follows that D, is a ¢ — derivation from
A into A™ . By assumption there exists F, € A™ such that
D,(a)=¢(a)F, ~F, p(a) (@cA).
In particular, by equation (**) for each even ne N we have
D(b)- 95 (€2) = (z,6)" (D(b)- 0y (€,))
= (z,)™ D, (b)
= (1) (2,)" (F,)~ ()" (F,)- pa b),

and for every odd ne N we have
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5 (€;)-D(b) = (7,0)" (¢5(&,)- D(D))
=(z,)"D,(b)
=(0)"D,(b)
= s (0)-(0)"(F,) = ()" (F,) p5(b),

for all be B. For each even n put G, = T;”)(Fa) and for every odd n put
G, =0"(F,) if n is odd. Trivially, G, € A™ forall «. By (*) we have
D(b) = lim@; (e}) - D(b) = lim ¢ (b)- G, —G,, - g (b) (b€ B).

That is, D is ¢, —approximately inner. O

Before we present our next result we recall from [14] that a linear
subspace S'(G) of the convolution group algebra L'(G) is said to be a Segal
algebra on G if it satisfies the following conditions.

(i)S'(G) is dense in L'(G).

(i) S'(G) is a Banach space under some norm ||||S and for each
f €S'(G)

1), <Isl
(iii) S'(G) is left translation invariant and the map X+ &, * f from G
into S'(G) is continuous.

(iv) ||5X * f||S =||f||S forall f €S'(G) and xeG.

That every Segal algebra is an abstract Segal algebra with respect to L' (G)
but not conversely; see [22].

Corollary 2.3 Let S(G) be a Segal algebra on a locally compact SIN
group G .Then for each neN and ¢ e Hom(L'(G)) with ¢o(S(G)) < S(G). If
L'(G) is ¢ —n—weakly amenable, then S(G) is approximately @5, —N— weakl-

y amenable
Proof. Since G is a SIN group, then by a result of [17], S(G) has a
central approximate identity which is bounded in |||| .- The result is now obvious

from Theorem 2.2. O
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Proposition 2.4 Suppose A is a commutative Banach algebra which is
generated by the idempotent elements in A and ¢ is in Hom(A); then A is

@—n—weak amenable.

Proof. Let P denote the set of all idempotent elements in A. Assume that
D:A— A" is a @—derivation. For any peP,D(p)=D(p’>)=D(p’) and
D(p*) =2¢(p)D(p), D(p*) =3¢(p*)D(p), so D(p)=0. Since peP is
arbitrary and A is generated by P, it follows that D(a)=0 for all ac A. So, A
is ¢ —n—weak amenable. O

We recall is called a character on A is a non-zero homomorphism from
A into the scalar field. The set of all characters on A the character space of A, is
denoted by ®,. The kernel of ¢e®,U{0} is denoted by M, . Let

pe®,U{0}. A linear functional d on A is called a point derivation at ¢ if

d(ab)=d(a)p(b)+@(a)d(b), (a,b e A).

Proposition 2.5 Let A be a Banach algebra , pe®, and @ be an
idempotent homomorphism on A. Let A be &—approximately weak amenable
and ImHﬂker(p=@. Then there are no non-zero, continuous point derivations
at ¢.

Proof. Let d be a continuous point derivation of A at ¢ € ®,. Then the
mapping D: A— A" given by D(a)=d(a)(@-0),(acA) is a &— derivation,
since

D(ab) = d(a)p(b)(¢°0) +p(a)d(b)(¢- )
=d(a)(pc0)-0(b)+06(a)-d(b)(p-0),(a,beA).

Since A is @ —approximately weak amenable, so D is € —approximately
inner. Thus, there exists a net (6,) = A" such that for every ae A,

D(a) =1im(6(a)-0, -6, -0(a)).

For every a e A we have

D(a)(@(a)) = 1im (0(3) -6, - 6, - 6(a))(0(a)) = im 6, ((a*) — O(a*)) = 0,
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since D(a)(a)=D(a)(#(a)) (ae A), D(a)(a)=0 and so d |NM¢= 0. Thus d =0.

O

Recently Jabbari et al. [11] have introduced the notation of ¢ -inner
amenability (p€®,). A Banach algebra A is said to be ¢-inner amenable if
there exists me A" satisfying m(p)=1 and m(f-a)=m(a:-f)(f e A",aecA).
Such m will sometimes be referred as a @ -inner mean, and A is said to be
character inner amenable if A is ¢ -inner amenable for every ¢ € @ ,. They also
gave several characterizations of ¢ -inner amenability. For instance, as in the case
of @ -amenability in [14, Theorem 1.4], they proved that a ¢ -inner mean is in fact
some W -cluster point of a bounded net (a,) € A satisfying ||aaa —aa, || — 0, for
all ae€ A and ¢(a,)=1 for all a; [15, Theorem 2.1]. In this section we
investigate character inner amenability of abstract Segal algebras.

Theorem 2.6 Let A be a Banach algebra and let B be an abstract Segal
algebra with respect to A. Suppose that there exists b, € B such that bb, =b,b

for every be B. Then A is ¢-inner amenable (pe®,) ifand only if B is ¢|;-
inner amenable

Proof. Suppose that A is ¢ -inner amenable. Then there is a bounded net
(a,) € A such that ||a0[<’:1—i';1<’:1a||A — 0, forall ae A and ¢(a,)=1 forall . We
may assume that ¢(b,)=1. For every o we put
b, =a,b, €B.
Since B is an abstract Segal algebra with respect to A, there exists C >0 such
that for each be B,

"bab - bba ||B - "(aab - baa )b0||B
< C”aab - baa "A”bO"B -0,
and
p(b,)=p(a,)=1.
Since (a,) is |||| , —bounded, it follows that (b,) is ||||B —bounded. Thus B is
@ |5 -inner amenable.
Conversely Suppose that B is ¢|;-inner amenable. Then there is a

bounded net (b,) € B such that |b,b—bb, ||B — 0, forall be B and ¢(b,)=1 for
all . We can assume that ¢(b,) =1. Define
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a,:=byb,
for all «. Since B is a dense left ideal in A, ab, =b,a for every ae A and so B

is an abstract Segal algebra with respect to A. Therefore there there exists M >0
such that for each be B,
||aaa —aa, "A = ||ba (ab,)—(aby)b, )"A
< M|, (ab,)—(ab,)b, )|, — 0,
and for every «
p(a,)=g¢ls (b,)=1.
Since |||| A<M ||| 5 » 1t follows that (a,) is |||| , —bounded. Therefor A is ¢ -inner

amenable. O

As a consequence of Theorem 2.6 we have the following result.

Corollary 2.7 Let B be an abstract Segal algebra with respect to a
character inner amenable Banach algebra A. If there exists b, € B such that

bb, =b,b for every b e B then for all p € @, B is ¢-inner amenable

Corollary 2.8 Let B be an abstract Segal algebra with respect to a
Banach algebra A with a central approximate identity. Then A is ¢-inner

amenable (p e ®,) ifand only if B is ¢ |;-inner amenable.

Proof. Suppose that (e,),., is a central approximate identity for B. Fix
a,el. Since (e,) is central, it follows that eaob = bea0 (beB). Now an

application of Theorem 2.6 completes the proof. O

Proposition 2.9 Let A be a Banach algebra and ¢ e ®,. If kerg has a
central approximate identity, then A is ¢ -inner amenable.

Proof. Choose a, € A such that ¢(a,)=1. Let (e,)
approximate identity for ker. Set a, =a,—a,e, . Then, for every b € ker ¢

be a central

acel

|la,b—ba,|=]ab-a,e,b—ba, +bage,|
<|ba, —ba,e, |+, |[o - be, | — o,
so for every a e A\ker¢p we have a,a—aa, € kerp and

|la,a-aa,|=|a,a—a,e,a—aa, +aaze,|
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=|(a,a—aa,)—(a,a—aa,)e,| — 0.
It follows that, ¢(a,) =1 and ||aaa - aaa|| — 0, forall a€ A. Thus A is ¢-inner

amenable. O

Let A be a Banach algebra. We recall from [6] that a left multiplier on A
is an element L in L(A) (linear maps on A) such that L(ab) = L(a)b, (a,be [1A)

and a right multiplier on A is an element R in L(A) such that R(ab) =aR(b). A
multiplier is a pair (L,R) where L and R are left and right multipliers on A,
respectively, and aL(b)=R(a)b (a,b e A).

Proposition 2.10 Let A be a character inner amenable Banach algebra. If
there exists b, € A such that R(b;)a=aR(b;) for every ac A and R is of closed

range, then for each ¢ € @, the Banach algebra R(A) is ¢ -inner amenable.

Proof. For arbitrary ¢ e ®p, we can choose @(R(0}))=1. Define the

linear functional @ on A by @(a):= ¢(aR(b;)) (a € A. Itis clear that ¢ defines

a non-zero multiplicative linear functional on A whose definition is independent
of b,. Thatis ¢ € ®,. As we mentioned in preliminaries, the ¢ — amenability of

A implies that there exist a net (U,),., in A such that ¢(u,)=1 forall ael,
and ||uaa—aua|| — 0 for each ae A. Now for each a e, set v, :=u_R(b;). So
we have ¢(v,)=1 and for each ae A

[v.R@—R@)v, | <[Reby)
This complete the proof. O

u,R@) - R(@u, | - 0.

A similar argument is also valid for a left multiplier L on A.

Corollary 2.11 Let A be a character amenable Banach algebra. If there
exists b, € A such that R(b;)a=aR(b;) for every ac A and R is of closed

range, then for each ¢ € @, the Banach algebra R(A) is ¢ -inner amenable.

Proof. Suppose that A is character amenable. Then A has a bounded
approximate identity and so by [7, Corollary 2.2] A is a character inner amenable.
By Proposition 2.10, R(A) is ¢ -inner amenable for each p € @, . O
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In the case where A is commutative, Proposition 2.10 given the following
result.

Corollary 2.12 Let A be a commutative character inner amenable Banach
algebra and suppose that R: A— A is of closed range. Then for each ¢ € @,

the Banach algebra R(A) is ¢ -inner amenable.
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