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The present paper analyses the qualitative behavior of a 2nd order differ-

ential equations system modeling the immune system response.
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1. Introduction

Endotoxin tolerance of the immune system has been a topic of major interest

for over one decade ([1], [6], [7]). Appropriate mathematical models have been

derived for studying the inflammation triggered by endotoxin release at different

concentration levels ([3], [5], [8]).

In this paper, we consider the following ODE model for the dynamics of the

endotoxin induced inflammatory response of the immune system:

dx1
dt

= −x1 +
xn1 + En

1

xn1 + 1

1

F1x2 + 1
A(t)

(1)

dx2
dt

= −x2 +
xm2 + Em

2

xm2 + 1
A(t)

Here x1 is the concentration of TNF-α, x2 represents the ”brake effect” of

the anti-inflammatory cytokines production, while A(t) is the function standing for

the concentration of endotoxin. The experimental data shows that A(t) > 1. The

coefficients E1, E2 are the kinetic constants associated with the mass action rates

of reaction and F1 is the proportionality factor between the TNF-α and the break.

All these coefficients are naturally strictly positive, E1, E2 ∈ (0, 1), F1 ≥ 1.

The above system of differential equations is a typical enzymatic reaction

model, under the Michaelis-Menten hypothesis ([2]).
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In this paper, we focus on the ”brake effect” of the anti-inflammatory cytokines

production, showing that it leads to a unique, biologically consistent steady-state

point, under natural assumptions on the process coefficients. Furthermore, we dis-

cuss - based both on closed formulas and simulation results - how this effect influences

the steady-state concentration of the TNF-α.

In this note, we shall discuss the case n = 2, m = 1.

2. The nature of the positive equilibrium

The Existence and Uniqueness Theorem can be applied to the Cauchy problem

associated to (1), since the system has rational coefficients.

Subsequently we will show that the system (1) has a unique positive equlibrium

point, which is asymptotically stable and a global attractor for the first quadrant.

We start by determining the positive equilibrium points for the ODE model (1).

Under the assumption A(t) is constant, A > 1, for a sufficiently large time horizon,

the equilibria of the system are given by:

0 = −x1 +
x21 + E2

1

x21 + 1

1

F1x2 + 1
A

(2)

0 = −x2 +
x2 + E2

x2 + 1
A

From the second equation in (2), we get

−x22 + (A− 1)x2 +AE2 = 0.

This quadratic equation has a unique positive solution,

x̃2 ∈ (A− 1 , A).

The first equation in (2) rewrites equivalently

−(F1x̃2 + 1)x31 +Ax21 − (F1x̃2 + 1)x1 +AE2
1 = 0

Let f(x1) denote the left-hand side of the above equation. Then, its derivative, f
′

is

f
′
(x1) = −3(F1x̃2 + 1)x21 + 2Ax1 − (F1x̃2 + 1). (3)

One can show that f
′
(x1) < 0, since x̃2 ∈ (A−1 , A). Hence, f is strictly decreasing

and the first equation in (2) has a unique real solution x̃1. Moreover, the equilibrium

point of the system (1) verifies

x̃1 ∈ (0, 1) , x̃2 ∈ (A− 1, A). (4)

With the considerations above, the next result follows.

Theorem 2.1. The system (1) has a unique equilibrium point in the first quadrant

R2
+. This equilibrium point is an asymptotically stable, global attractor in R2

+.
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Proof. The existence and uniqueness have been already proved. In order to study

the stability, let the vector field G : R2 → R2,

G(x1, x2) =

[
G1(x1, x2)

G2(x1, x2)

]
=

−x1 +
x21 + E2

1

x21 + 1

1

F1x2 + 1
A

−x2 +
x2 + E2

x2 + 1
A.


Then its associated Jacobian matrix is defined by

JG(x1, x2) =

−1 +
2x1(1− E2

1)

(x21 + 1)2(F1x2 + 1)
A ∗

0 −1 +
1− E2

(x2 + 1)2
A.

 (5)

We now prove that, at the equilibrium point (x̃1, x̃2), the eigenvalues of the

Jacobian matrix - which are precisely its diagonal elements - are negative:

(x̃21 + 1)2(F1x̃2 + 1) > (x̃21 + 1)2(x̃2 + 1)(x̃21 + 1)2A > 2x̃1(1− E2
1)A

and
1− E2

(x̃2 + 1)2
A <

1− E2

A
< 1,

where we used E1, E2 ∈ (0, 1), F1 > 1, A > 1 and (4). Thus, according to standard

Lyapunov stability theory [4], (x̃1, x̃2) is an asymptotically stable equilibrium point.

It remains to show that (x̃1, x̃2) is also a global attractor in the positive quad-

rant. Analyzing the sign of the function G2 on the positive real axis, one can see

that G2 > 0 on (0, x̃2), while G2 < 0 on (x̃2,∞) . Hence x̃2 is an attractor on R+

(see, for instance, Chapter 1 in [4]).

By using the inequality f
′
(x1) < 0, where f has been introduced in (3), and

by invoking a similar argument as before by regarding now the sign of G1(x,x2), it

results that (x̃1, x̃2) is a global attractor on R2
+. �

The behavior described in Theorem is illustrated in Figure 1. The values

picked up for the simulation are A = 8; E1 = 0.7, E2 = 0.25; F1 = 5, yielding

the steady-state values emphasized in the graphic which stand for the equilibrium

point: x̃1 = 0.1061, x̃2 = 7.2749.

3. Conclusion

For the proposed model (1) we proved the existence and uniqueness of the

positive equilibrium and its stability - global attractor in R2
+.

As a main conclusion, for a constant endotoxin level A(t) on a sufficiently

large interval, the dynamic interaction TNF-α — anti-inflammatory cytokines has

a single, biologically consistent, steady-state.

For a further research, one can consider other model parameters, such that

n = 3 and/or m = 2.
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Figure 1. Time-domain evolution
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