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A NOTE ON THE QUALITATIVE BEHAVIOUR OF AN ODE
MODEL RELATED TO ENDOTOXIN TOLERANCE
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The present paper analyses the qualitative behavior of a 2nd order differ-
ential equations system modeling the immune system response.
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1. Introduction

Endotoxin tolerance of the immune system has been a topic of major interest
for over one decade ([1], [6], [7]). Appropriate mathematical models have been
derived for studying the inflammation triggered by endotoxin release at different
concentration levels ([3], [5], [8]).

In this paper, we consider the following ODE model for the dynamics of the
endotoxin induced inflammatory response of the immune system:
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Here z1 is the concentration of TNF-«, xo represents the "brake effect” of
the anti-inflammatory cytokines production, while A(t) is the function standing for
the concentration of endotoxin. The experimental data shows that A(¢) > 1. The
coefficients Fq, Fy are the kinetic constants associated with the mass action rates
of reaction and Fj is the proportionality factor between the TNF-« and the break.
All these coefficients are naturally strictly positive, Ey, Fy € (0,1), Fy > 1.

The above system of differential equations is a typical enzymatic reaction
model, under the Michaelis-Menten hypothesis ([2]).
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In this paper, we focus on the ”brake effect” of the anti-inflammatory cytokines
production, showing that it leads to a unique, biologically consistent steady-state
point, under natural assumptions on the process coefficients. Furthermore, we dis-
cuss - based both on closed formulas and simulation results - how this effect influences
the steady-state concentration of the TNF-q.

In this note, we shall discuss the case n =2, m = 1.

2. The nature of the positive equilibrium

The Existence and Uniqueness Theorem can be applied to the Cauchy problem
associated to (1), since the system has rational coefficients.

Subsequently we will show that the system (1) has a unique positive equlibrium
point, which is asymptotically stable and a global attractor for the first quadrant.

We start by determining the positive equilibrium points for the ODE model (1).
Under the assumption A(t) is constant, A > 1, for a sufficiently large time horizon,
the equilibria of the system are given by:
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From the second equation in (2), we get

—x% —+ (A — 1).1?2 + AEQ =0.

0 = —xzo+

This quadratic equation has a unique positive solution,
Toe(A-1, A).
The first equation in (2) rewrites equivalently
—(FyZo + 1)a? + Ax? — (Fi@y + 1)z + AE? =0
Let f(x1) denote the left-hand side of the above equation. Then, its derivative, f’

is

F(x1) = =3(Fi@y + 1)2? 4 24z) — (Fiia +1). (3)
One can show that f'(z1) < 0, since &y € (A—1, A). Hence, f is strictly decreasing
and the first equation in (2) has a unique real solution Z;. Moreover, the equilibrium
point of the system (1) verifies

1 € (0,1), Tg € (A—l,A). (4)
With the considerations above, the next result follows.

Theorem 2.1. The system (1) has a unique equilibrium point in the first quadrant
Ri. This equilibrium point is an asymptotically stable, global attractor in Ri.
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Proof. The existence and uniqueness have been already proved. In order to study
the stability, let the vector field G : R? — R?,

n z? + B2 1
G(Il,xg): Gl(mhxﬂ) _ .’L‘l—‘rl Fixog+1
Gz(xl,xg) 22 + Eo
—xo+ —— A.
To + 1
Then its associated Jacobian matrix is defined by
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We now prove that, at the equilibrium point (Z1,Z2), the eigenvalues of the
Jacobian matrix - which are precisely its diagonal elements - are negative:

(Z2+1)2(Fiao+1)> (@2 + 1) (@ + D@ +1)2A>25(1-EH A

and

1—FEy 1—FEy
A<
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where we used Eq, Fs € (0,1), F; > 1, A > 1 and (4). Thus, according to standard
Lyapunov stability theory [4], (21, Z2) is an asymptotically stable equilibrium point.

<1,

It remains to show that (Z1,Z2) is also a global attractor in the positive quad-
rant. Analyzing the sign of the function G on the positive real axis, one can see
that G2 > 0 on (0, Z2), while Go < 0 on (Z2,00) . Hence Z is an attractor on Ry
(see, for instance, Chapter 1 in [4]).

By using the inequality f'(z1) < 0, where f has been introduced in (3), and
by invoking a similar argument as before by regarding now the sign of G (z x2), it
results that (Z1,Z2) is a global attractor on R2. O

The behavior described in Theorem is illustrated in Figure 1. The values
picked up for the simulation are A = 8; F1 = 0.7, F2 = 0.25; F1 = 5, yielding
the steady-state values emphasized in the graphic which stand for the equilibrium
point: £; = 0.1061, zo = 7.2749.

3. Conclusion

For the proposed model (1) we proved the existence and uniqueness of the
positive equilibrium and its stability - global attractor in Ri.

As a main conclusion, for a constant endotoxin level A(t) on a sufficiently
large interval, the dynamic interaction TNF-a — anti-inflammatory cytokines has
a single, biologically consistent, steady-state.

For a further research, one can consider other model parameters, such that
n =3 and/or m = 2.
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FiGURE 1. Time-domain evolution
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