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POLLEN CLASSIFICATION USING CLASSICAL ML
ALGORITHMS ON FLUORESCENCE AND SCATTERING
DATA

Mihai Boldeanu!, Corneliu Burileanu!, Horia Cucu!, Luminita Marmureanu?

Automatic pollen classification is a very new interdisciplinary
field. While most research is focused on using deep neural networks for
pollen classification, with promising results, the applicability of such algo-
rithms on large historical data bases of pollen measurements is difficult due
to the amount of computing required. This paper aims to address this prob-
lem by identifying classical ML algorithms capable of pollen classifications
with low computational requirements. We propose, a comprehensive com-
parative analysis, of multiple methods, using multiple methods for dimen-
stonality reduction. We apply a comprehensive hyper-parameter search to
find the best configuration for each method. Finally, model ensembling is
used to create more robust classifications. The performance of all classifiers
is tested using 4 pollen dataset both before and after the hyperparameter
tuning process.

Keywords: pollen classification, Rapid-E, Decision Trees, Discriminant
Analysis, Naive Bayes

1. Introduction

Pollen is one of the main causes of seasonal allergies in humans, accord-
ing to [1]. In recent years, the number of diagnosed allergies has been steadily
increasing, with the causes still a matter of debate. This has made the need
for better pollen monitoring a more pressing matter. Much progress has been
made in increasing the number of pollen monitoring stations without much
work into making the systems fully automatic. The current standard operat-
ing procedure includes Hirst traps [2], which are a human-centric method of
pollen monitoring. Requiring a lot of human interaction for sampling prepa-
rations, pollen counting, and further pollen grain species classification. This
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approach involves a waste of resources and cannot meet the need for more
pollen monitoring stations.

Much work has gone into developing machine-learning models capable of
classifying pollen in microscope images. This sort of approach requires a lot
of processing power with graphical processing units (GPUs) usually involved
to run effectively. In this work, we explore several classical machine learning
approaches used for classification to find a more suitable approach for low-
power /computational less intensive scenarios.

The constraint on the amount of processing done to classify pollen can
be assessed from two main perspectives. Firstly, the vast amount of data that
would have to be processed daily when classifying data from automatic parti-
cle analyzers, capable of capturing tens of thousands of samples per minute.
Secondly, the impact on the climate that is created by using algorithms and
methodologies that require power-hungry hardware such as GPUs.

These constraints limit the use of most computer vision models such as
Conv-nets and visual transformers but allows the use of more simple algorithms
generally used for classification.

In this work, we will focus on four types of algorithms that are very
popular in a multitude of regression and classification tasks. The common
thing for the selected algorithms is that they have been previously used for
pollen classification and that they are efficiently implemented in the sklearn
Python library [3]. The selected algorithms include Decision trees, Multi-
Layer Perceptron, Naive Bayes, and Discriminant Analysis. These algorithms
have varying degrees of complexity and require very different amounts of time
and processing to train. The research was carried out in three stages and
involved firstly, obtaining a baseline for these algorithms and, secondly, a
hyper-parameter search to find the best configuration for each algorithm on
the task of classification on data from an automatic particle analyzer, Rapid-E
(http://www.plair.ch/Rapid-E.html, accessed 01.04.2022). Finally, model en-
sembling was used to apply the best hyper-parameter configuration on multiple
models trained on sub-sets of data to give a final performance edge.

This paper is structured as follows. Section 2 describes the most popular
approaches for pollen classification that rely on lightweight algorithms designed
to run on CPU only. In Section 3, available data sets of pollen data from
Rapid-E devices are presented alongside a few feature extraction/engineering
steps required to use with our data. Section 4 presents the results of the best-
performing models and the improvements obtained by doing a hyperparameter
search and model ensembling. Finally, conclusions are drawn in Section 5 along
with a discussion on further research steps.

2. Related Work

Pollen classification using computers was first proposed as early as 1968
by [4]. While the field of automatic pollen monitoring initially developed
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slowly due to the limitation of the hardware of the era in recent years we have
seen a burst of methodologies applied to the task of pollen classification and
monitoring.

Some notable examples include [5] that used discriminant analysis among
other methods to do pollen classification. Bayesian classification methods were
used by [6]. Others such as [7] use decision trees and random forests. MLP
were used in [8], [5] and [9]. Finally, [6] used all of them to make similar
classifications.

These methods were applied to datasets created from microscope images
manually saved by trained personnel. While this type of approach gives the
best performance on the dataset, it is not a real-world scalable solution, be-
cause it involves humans in the preparation of the microscope slides and image
creation.

In this work we will focus on data obtained from an automatic particle
analyzer, Rapid-E in [10] and [11]. While this type of data is more difficult for
modern classification models to learn, have the advantage to be a fully auto-
mated data source. This type of data has been previously used for classification
using convolutional neural networks in [10] and [12]. While the obtained results
are very good, they rely on processing-heavy approaches and are not scalable
to a large number of devices working in the wild without powerful workstations
with GPUs.

This work plans to address this by applying smaller models that can be
run on CPU-only devices.

3. Materials and Methods

In this section are analyzed the available pollen datasets from Rapid-E
devices and the appropriate data processing techniques that can be utilized to
facilitate classification. This includes an overview of the possible dimensional-
ity reduction techniques that can be applied and also the algorithms used for
classification.

3.1. Datasets

Dataset Number Number | Minimum Number
Name of Classes | of Samples | Samples per Class
SAU-SRB ¢ 14 85 k 985
SAU-LI ¢ 11 399 k 16,114
SAU-CH ¢ 10 50 k 1,075
MARS *® 13 105 k 3,020

TABLE 1. Overview of available datasets from Rapid-E devices.
@ from [10]; ® from [11].
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Pollen Datasets from Rapid-E devices have been proposed in previous
studies such as [10] and [11]. These data sets are representative of four
countries from Europe: Serbia, Switzerland, Romania, and Lithuania. Data
overview is presented in Table 1. The datasets have a different number of
samples and classes. The classes present in each dataset are different because
they reflect the pollen most common in those geographic regions.
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FIGURE 1. From left to right: Scattering image, Fluorescence
Spectrum, Fluorescence Lifetime Signal.

All these datasets contain three types of features that describe aerosol
particles. The scattering image, Figure 1 a, captures information about the
size, shape, and morphology of the particle. The fluorescence spectrum pro-
vides information about the chemical makeup of the particle and the lifetime
signal gives information about the relative abundance of those chemicals. Fig-
ure 1 shows the raw data from the Rapid-E device. The complex unstructured
data has to be pre-processed before any classification attempt. While these
types of features can be used directly by CNNs, in the case of using simpler
models, data pre-processing has to be applied to be able to use such features.

3.2. Feature engineering steps

As seen in Figure 1 the complex and high dimensional data provided by
a Rapid-E device needs several pre-processing steps. The features have the
following dimensions 120 x 24, 32 x 8 and 4 x 64. Before any dimensionality
reduction, the data is flattened. After this, each of the 3 feature vectors is ran
through a dimensionality reduction algorithm and finally, the resulting vectors
are concatenated.

Dimensionality reduction (DR), as the name suggests, is reducing the
number of random variables using various mathematical methods from statis-
tics and machine learning. DR is often used to reduce the problem of managing
and manipulating large data sets. DR techniques generally use linear transfor-
mations in determining the intrinsic dimensionality of the manifold as well as
extracting its principal directions. In this work, some different dimensionality
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reduction methods were tried including Principal component analysis (PCA),
Independent component analysis (ICA), Gauss Random Projections (GRP),
and Sparse Random Projections (SRP). All of the methods were applied with
5 levels of granularity for the resulting number of components. This was done
to find the best representation for each of the algorithms used for classification.

PCA is a process for finding several orthogonal vectors bases, the prin-
cipal components, that are used to create a new representation of data in a
lower dimensional space while keeping as much of the variability of the original
data. PCA is generally used as an exploratory tool on unknown datasets or
as a tool for preprocessing high-dimensional data to better work with some
predictive or classification models.

ICA is another approach used for representing high dimensional data but
in this case, the goal is to decompose a multivariate signal into independent
non-Gaussian signals. The independent components are found by maximizing
the statistical independence of the estimated components. The two broadest
definitions of independence for ICA are minimization of mutual information
and maximization of non-Gaussianity.

Random projection is another dimensionality reduction technique. It is
a simple and computationally efficient way to reduce the dimensionality of
data by trading a controlled amount of error for faster processing and smaller
models. In this work we looked at two flavors of random projections:

GRP reduces the dimensionality by projecting the original input space on
a randomly generated matrix where components are drawn from a distribution.

SRP reduces the dimensionality by projecting the original input space
using a sparse random matrix. Sparse random matrices are an alternative
to dense Gaussian random projection matrices that guarantees similar em-
bedding quality while being much more memory efficient and allowing faster
computation of the projected data.

3.3. Selected algorithms

Because the main goal of this paper is to find the algorithms that perform
the best with limited computing resources we will investigate the algorithms
listed below.

Naive Bayes is a family of simple ”probabilistic classifiers” based on ap-
plying Bayes’ theorem with strong (naive) independence assumptions between
the features. They are among the simplest Bayesian network models but cou-
pled with kernel density estimation, they can achieve high accuracy levels.
Naive Bayes classifiers are highly scalable, requiring several parameters linear
in the number of variables (features/predictors) in a learning problem.

Discriminant analysis encompasses methods that can be used for both
classification and dimensionality reduction. Linear discriminant analysis (LDA)
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is particularly popular because it is both a classifier and a dimensionality re-
duction technique. Quadratic discriminant analysis (QDA) is a variant of LDA
that allows for the non-linear separation of data.

Decision tree learning or induction of decision trees is one of the predictive
modeling approaches used in statistics, data mining, and machine learning. It
uses a decision tree (as a predictive model) to go from observations about an
item (represented in the branches) to conclusions about the item’s target value
(represented in the leaves). Tree models where the target variable can take
a discrete set of values are called classification trees; in these tree structures,
leaves represent class labels and branches represent conjunctions of features
that lead to those class labels. Decision trees where the target variable can
take continuous values (typically real numbers) are called regression trees.

Multilayer Perceptron is a class of feedforward artificial neural network
(ANN). The term MLP is used ambiguously, sometimes loosely to mean any
feedforward ANN, sometimes strictly to refer to networks composed of multiple
layers of perceptrons (with threshold activation). Multilayer perceptrons are
sometimes colloquially referred to as basic neural networks, especially when
they have a single hidden layer. An MLP consists of at least three layers of
nodes: an input layer, a hidden layer, and an output layer. This work will not
use networks that rely on convolutions.

3.4. Hyper-parameter optimization

Hyper-parameters are algorithm parameters used to control the learning
process.

For each of the algorithms presented in the previous sub-section, a search
over the hyper-parameter space is done to find the best configuration for the
task of pollen classification. The search is done by making a 3-fold valida-
tion of each hyper-parameter value to avoid problems caused by differences in
datasets.

For the Gaussian Naive Bayes and Quadratic Discriminant Analysis present
in the sklearn library only 1 hyper-parameter is available for GNB we have
variable smoothing and for QDA we have the regularization parameter. This
means that the hyper-parameter search is simple as we only change one value
for each trial.

For the Decision Tree and MLP present in sklearn we have a rather large
number of possible hyper-parameters to optimize and this requires a different
approach. For DT we selected the following hp as a search space: the criterion
used to split a batch of samples can be either gini or entropy, the splitter
decision can be made using the best split or a random split, the maximum
allowed depth to which a tree can grow was selected from 5, 10, 15, 20, and
None, with None meaning the tree can grow as large as needed. Finally, the
minimum number of samples required to allow a split in the tree branches
allowed goes from the default value of 2 to 4 and 8.
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In the case of the MLP algorithm, the number of hyper-parameters in-
cludes: the number of hidden layers and their size, the activation function
used after each layer, the learning rate and a regularization parameter alpha
are used to prevent overfitting.

3.5. Model Ensembles

A very powerful method for improving the performance of weak classi-
fiers is the use of ensembling. This procedure works by using multiple weak
learners to train on small subsets of data and then at inference time, they are
used together to get a classification by averaging or polling all the separate
classifications.

In the case of the decision trees, we have a special class of ensemble in
the form of Random Forest which takes advantage of the way decision trees are
built to train large numbers of them on subsets of data and subsets of features
from the data. This decreases overfitting and increases overall performance.
The main advantage of Random Forrest is that all the trees in a forest can be
trained in parallel as they are independent classifiers.

For ensembling the other types of algorithms, more general approaches
have to be used such as Bagging Classifiers which train multiple instances of a
model on different subsets of data. This was applied to the GNB, QDA, and
MLP.

4. Results and Discussions

The Results and Discussions section is divided into three parts. In the
first part, the basic results for each of the DR methods, the number of com-
ponents, and the classification algorithms are presented. In the next part are
analyzed these results and the knowledge gained to perform a hyper-parametric
search for the most an efficient method of dimensional reduction, and the num-
ber of components for each algorithm.

In the last part, the best-performing models are used to create ensembles
that are further tested and compared.

4.1. Using Default Hyper-parameters as baseline

The baseline run was compiled by combining the results of 320 different
experiments over 4 datasets, 4 dimensionality reduction methods, 5 levels of
reduction, and 4 classification algorithms. The results of these experiments
are presented in Table 2.

The columns in Table 2 are the dimensionality reduction approach used
and the number of components, while the rows are the data sets and the
performance of each classification model type.

To have a better view of the impact of each of the variables in the baseline
run Figure 2 shows a breakdown of accuracy and time required for training
the different models split along different parameters. While in general cases a
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PCA GRP SRP

DS [ Algo 10 20 50 100 200 10 20 50 100 200 10 20 50 100 200 10 20 50 100
DT

200

34 36 35 36 34 34 33 31 32 29 27 31 32 34 34 29 29 31 32

57 60 61 59
32 29 27 27 25 |30 31 30 29 29 |27 26 26 27 26 | 25 24 28 28
41 42 43 43 41 | 41 42 43 43 41 |36 39 39 41 41 |36 38 39 41

34

27
41

46 47 46 46 46 44 43 44 43 40 39 43 43 45 46 42 43 45 45
SR

34 34 38 44 47 43 43 41 41 44 42 42 42

46

42

44 45 46 46 46 42 44 46 39 41 44 45

LI 32 35 33 30 30 39 39 |37 36 38 39

38 40 42 43 44 44 43 45 47 45 44 43

46

38
45

54 53 53 48 47 50 45 47 49 51

CH 47 45 46 46 | 46 44 43 47

55 52 53 55 52 53 52 52 50 50 50 52 50 50 50

52

45
53

TABLE 2. Baseline experiments split by dimensionality reduc-
tion method, number of components, and the algorithm used for
classification applied on all of the publicly available data-sets.

model once trained is just used for inference there is the option of continuously
training the model and in such scenarios a small train time is advantageous.

The initial baseline experiments indicate that PCA as dimensionality
reduction brings the best results. The number of components shows an increase
in accuracy with an increase in the number of components for DT and MLP
up to 100 components with a little gain after that but a major increase in
training time. For the simple algorithms such as QDA and GNB, we find the
best option for the number of components as 20 and 10 respectively, with the
algorithm struggling with dimensionality higher than that.

When comparing the algorithms over the entire range of experiments we
see that MLP has the best performance but with the highest train time asso-
ciated. While the DT and QDA have similar performance but with drastically
different times required for training. The GNB has the lowest train time but
also the lowest accuracy. This learner could be useful in ensembles but not on
its own.

The results of the baseline run can be used as a starting point for the
hyper-parameter search and allow us to have a good metric to compare against
to see that we are improving classification.

4.2. Using Best Hyper-parameters

When doing the hyper-parameter search we have to find the best per-
formance over all 4 datasets for a specific algorithm. This means that good
visualizations for the hyper-param search results have to be employed. In the
case of GNB and QDA where only one configurable parameter exists and the
training time is really fast, the search is quite easy. The entire search space
can be traversed and the optimum found can be seen in Figure 3 for GNB and
Figure 4 for QDA.

For GNB the value selected for variable smoothing does not appear to
matter that much after a certain threshold. The selected value was 0.01 be-
cause it was the region with good results on all datasets.
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The QDA model had an obvious peak in performance on all datasets. The
value selected for the regularization parameter was 0.35, as this was the value
that gave the best results on all datasets. The peak accuracy was obtained
at different values of the regularization parameter for each dataset, as can be
seen in Figure 4.

When investigating the results of the hyper-param search for DT multiple
graphics are required to get an overall picture of what parameters give the
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greatest increase. In Figure 5 we can see that the criterion used for selection
has a minimal effect on performance, and the minimum number of samples,
when making a split, has a moderate effect. The most powerful impact is made
by the maximum depth of the tree and the splitting policy. The depth of the
tree can cause overfitting when the tree becomes too large and can underfit
when it is too small. The splitting policy can add some overfitting but it
improves performance.
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FIGURE 5. Classification accuracy versus a) tree depth, b) data
split, ¢) criterion and d) data points per leaf for DT model.
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For the MLP the hyper-parameter search was the most difficult because
of the higher base train time of this type of model and a large number of hyper-
parameters available for tuning. We focused on just a handful of parameters
to have a similar number of experiments as for the other model types.

In Figure 6-a the impact of the activation function shows that the best
performing one is the Rectified Linear Unit; Figure 6-b gives us a range between
1E-3 and 1E-4 for the best performing learning rate; Figure 6-c¢ shows that the
regularization strength is not very important for this type of model/task;

Finally, we looked at the number of hidden layers and their size in 6-d.
We looked in 2 directions at the number of neurons per layer comparing the
result of 10, 50, and 100 neurons, and we found the best result on the 50-neuron
version, this allows us to make a smaller model than using the baseline 100-
neuron model. We also compared the number of layers with network with 1,
2, and 3 hidden layers all of size 10, here we found that increasing the number
of layers had a detrimental effect on classification.
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FIGURE 6. Classification accuracy versus a) activation func-
tions, b) learning rate, c) regularization strength and d) number
layer /number neurons for MLP model.

4.3. Using Model Ensembling with Best Hyper-parameters

A final performance boost that can be applied to classical machine learn-
ing algorithms is the use of ensembling. Because the training time for such
models is not too long, multiple models can be trained in parallel on different
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subsets of the data. This creates a collection of models that act as a more
powerful classifier.

The models used in the ensemble were all built using the insight gained
after the hyperparameter search. The case of ensembling the Decision Tree
was treated separately because there exists a method for building ensembles,
Random Forest, that relies on the trees being non-identical.

Algo | Config/Dataset | RO \ LI \ SRB \ CH ‘
Best Conf. 31 32 34 54
GNB Ensemble 31 32 35 54
Best Conf. 44 48 53 60
QDA Ensemble 44 48 53 61
Best Conf. 42 51 52 63
DT Ensemble 47 56 57 69
Rand. Forest 42 55 54 63
Best Conf. 63 71 67 73
MLP Ensemble 66 T4 70 7
CNNs | [12] 81 &4 80 87

TABLE 3. Classification accuracy for all models in best config-
uration and as an ensemble of models. Final row is SOTA using
convolutionary neural networks

In Table 3 the final results of the best models and best results of ensem-
bling are presented on all data sets. The The main takeaway is that while
some algorithms benefit from ensembling and hyper-parameter searches some
simple ones don’t get much improvement.

The Gaussian Naive Bayes and Quadratic Discriminant analysis did not
see any gain after ensembling. This might indicate that the models in the
ensemble, all learned the same thing even if trained on different subsets of the
data.

On the other hand, Decision trees had a significant improvement over
just one model in its best configuration.

5. Conclusions

In this work, we investigate the use of low computational power machine
learning models on the task of pollen classification using data from automatic
particle monitors.

We compare several machine learning models on the task of pollen classifi-
cation using data sets obtained on Rapid-E devices from 4 European countries.

We experiment with multiple dimensionality reduction approaches and
a different number of components, to find the best-performing combination.
This is used to create a baseline performance for all datasets. The classifica-
tion accuracy varies between datasets because they contain different classes or
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species of pollen. The types of pollen can have a different degree of similarity
between them. The average performance across all datasets is 35% for the NB,
42% for the DT, 44% for the DA, and 65% for the MLP.

For each of the models, we do an extensive hyper-parameter search to
find the best configuration. This gets us an improvement over the baseline
with the average classification accuracy across all datasets of 38% for the NB,
52% for the DT, 51% for the DA, and 69% for the MLP.

Finally, we use ensembles to get a final improvement in classification
accuracy. This final step gives a performance boost to some model types with
an average classification accuracy across datasets of 57% for the DT and 72%
for the MLP.

The accuracy results are lower than what can be obtained by using CNNs
as in [12], but with our best performer, the MLP ensemble, we obtain results
comparable to that of humans, in the task of pollen classification.

While this paper shows that classical ML approaches still hold an im-
portant place in the automatic pollen classification landscape future work is
required to create high performance and scalable pollen monitoring systems.
Future work will focus on finding better dimensionality reduction approaches
and better feature engineering that might yield significant improvements over
this baseline.
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