

**ON THE STABILITY OF HOMOMORPHISMS AND k -DERIVATIONS
ON Γ -BANACH ALGEBRAS**

Berna ARSLAN¹, Okan ARSLAN²

Let V be a Γ -Banach algebra over the complex field \mathbb{C} and let $D : V \rightarrow V$ and $k : \Gamma \rightarrow \Gamma$ be two linear mappings. If $D(aab) = D(a)ab + ak(\alpha)b + a\alpha D(b)$ for all $a, b \in V$, $\alpha \in \Gamma$, then D is called a k -derivation of V . In this paper, we prove the Hyers-Ulam-Rassias stability of algebra homomorphisms in Γ -Banach algebras with direct method. We also use the same method to study the stability and the superstability of k -derivations associated with the Cauchy functional equation and the mixed type additive and quadratic functional equation $f(x + 3y) + f(x - 3y) = f(x + y) + f(x - y) - 16f(y) + 8f(2y)$ in Γ -Banach algebras.

Keywords: Hyers-Ulam-Rassias stability, superstability, Γ -Banach algebra, k -derivation
MSC2010: 39B52, 39B82, 16W25, 16Y99

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of S.M. Ulam [18] in 1940, concerning the stability of group homomorphisms: *Let $(G_1, *)$ be a group and (G_2, \circ, d) be a metric group with the metric $d(., .)$. Given $\epsilon > 0$, does there exist a $\delta(\epsilon) > 0$ such that if a mapping $f : G_1 \rightarrow G_2$ satisfies the inequality $d(f(x * y), f(x) \circ f(y)) < \delta$, for all $x, y \in G_1$, then there exists a homomorphism $H : G_1 \rightarrow G_2$ with $d(f(x), H(x)) < \epsilon$ for all $x \in G_1$?*

In other words, under what conditions does there exist a homomorphism near an approximate homomorphism between a group and a metric group? When the answer is affirmative, we say that the homomorphisms from G_1 to G_2 are stable.

D.H. Hyers [8] gave a first affirmative answer to the question of Ulam for the case where G_1 and G_2 are assumed to be Banach spaces. In 1978, Th.M. Rassias [16] generalized the Hyers's stability theorem for linear mappings by considering an unbounded Cauchy difference. This phenomenon of stability proved by Th.M. Rassias [16] is called the *Hyers-Ulam-Rassias stability*. Since then several results concerning the Hyers-Ulam-Rassias stability of various functional equations with more general domains and ranges have been extensively investigated by a number of authors (see [6], [5], [7], [9], [13]).

Before giving our main results, we first present some preliminary definitions.

Let A be a real or complex algebra. A linear mapping $D : A \rightarrow A$ is said to be a *derivation* if $D(ab) = D(a)b + aD(b)$, for all $a, b \in A$. The stability of derivations between operator algebras was first obtained by P. Šemrl [17].

The concept of a Γ -ring was introduced by N. Nobusawa [14] and generalized by Barnes [1]. In recent years, many results of Γ -rings have been extended to Γ -algebras.

¹Asst. Prof., Department of Mathematics, Adnan Menderes University, Aydin, Turkey, e-mail: byorganci@adu.edu.tr

²Corresponding Author, Asst. Prof., Department of Mathematics, Adnan Menderes University, Aydin, Turkey, e-mail: oarslan@adu.edu.tr

Let V and Γ be two linear spaces over a field F . Then V is said to be a Γ -algebra (in the sense of Barnes [1]) over F if there exists a mapping $(a, \alpha, b) \mapsto a\alpha b$ of $V \times \Gamma \times V \rightarrow V$ satisfying the following conditions:

- (i) $(a\alpha b)\beta c = a\alpha(b\beta c)$,
- (ii) $\lambda(a\alpha b) = (\lambda a)\alpha b = a(\lambda\alpha)b = a\alpha(\lambda b)$,
- (iii) $a\alpha(b+c) = a\alpha b + a\alpha c$, $a(\alpha+\beta)b = a\alpha b + a\beta b$, $(a+b)\alpha c = a\alpha c + b\alpha c$

for all $a, b, c \in V$, $\alpha, \beta \in \Gamma$, $\lambda \in F$. The Γ -algebra V is denoted by (Γ, V) .

In addition, if there exists a mapping $(\alpha, a, \beta) \mapsto \alpha a \beta$ of $\Gamma \times V \times \Gamma \rightarrow \Gamma$ satisfying the following for all $a, b \in V$, $\alpha, \beta, \gamma \in \Gamma$ and $\lambda \in F$:

- (iv) $(a\alpha b)\beta c = a(\alpha b\beta)c = a\alpha(b\beta c)$,
- (v) $a\alpha b = 0$ for all $a, b \in V$ implies $\alpha = 0$,

then V is called a Γ_N -algebra and denoted by $(\Gamma, V)_N$.

If V and Γ are normed linear spaces over F , then Γ -algebra V is called a Γ -normed algebra if the condition

$$\|a\alpha b\| \leq \|a\| \cdot \|\alpha\| \cdot \|b\|$$

holds for all $a, b \in V$ and $\alpha \in \Gamma$.

Bhattacharya and Maity [2] gave the definition of a Γ -Banach algebra in their paper. A Γ -normed algebra V is called a Γ -Banach algebra if V is a Banach space. Any Banach algebra can be regarded as a Γ -Banach algebra by suitably choosing Γ . Similar definitions can be made for Γ_N -algebras.

Γ -Banach algebras are generalization of both the concepts of Banach algebras and Γ -rings. The set of all $m \times n$ rectangular matrices and the set of all bounded linear maps from an infinite dimensional normed linear space X into a Banach space Y are some examples of Γ -Banach algebras which are not general Banach algebras. Similarly an ordinary derivation can't be defined on Γ -Banach algebras since there is no natural way of introducing an algebraic multiplication into them. The notions of derivation of a Γ -ring has been introduced by F.J. Jing [11] in 1987, and later H. Kandamar [12] developed a new concept of derivation in Γ -rings known as k -derivation. We define a k -derivation in Γ -algebras as follows:

Let V be a Γ -algebra over a field F and let $d : V \rightarrow V$ and $k : \Gamma \rightarrow \Gamma$ be two linear mappings. If the condition

$$d(a\alpha b) = d(a)\alpha b + a\alpha d(b)$$

holds for all $a, b \in V$ and $\alpha \in \Gamma$, then d is called a k -derivation of V . If $d(a\alpha a) = d(a)\alpha a + a\alpha d(a)$ holds for all $a \in V$ and $\alpha \in \Gamma$, then d is called a Jordan k -derivation of V . It is clear that every k -derivation of a Γ -algebra V is a Jordan k -derivation of V . But, the converse is not true in general.

Let V_1 be a Γ_1 -algebra and V_2 be a Γ_2 -algebra over a same field F . An ordered pair (ψ, φ) of linear mappings $\psi : \Gamma_1 \rightarrow \Gamma_2$ and $\varphi : V_1 \rightarrow V_2$ is called an algebra homomorphism from (Γ_1, V_1) to (Γ_2, V_2) if the following condition holds:

$$\varphi(a\alpha b) = \varphi(a)\psi(\alpha)\varphi(b)$$

for all $a, b \in V_1$ and $\alpha \in \Gamma_1$.

In the proofs of our theorems, we shall use the following lemma which is proved in [15]:

Lemma 1.1. [15] *Let X and Y be linear spaces, $\mathbb{T} := \{\mu \in \mathbb{C} \mid |\mu| = 1\}$ and $f : X \rightarrow Y$ be an additive mapping such that $f(\mu x) = \mu f(x)$ for all $x \in X$ and all $\mu \in \mathbb{T}$. Then the mapping f is \mathbb{C} -linear.*

In this paper, using the direct method, we prove the Hyers-Ulam-Rassias stability and superstability of k -derivations associated with the Cauchy functional equation and the mixed type additive and quadratic functional equation

$$f(x + 3y) + f(x - 3y) = f(x + y) + f(x - y) - 16f(y) + 8f(2y)$$

in Γ -Banach algebras and Γ_N -Banach algebras, respectively.

2. Stability of homomorphisms and k -derivations

In this section, we first prove the Hyers-Ulam-Rassias stability of homomorphisms in Γ -Banach algebras, associated to the Cauchy functional equation.

Theorem 2.1. *Let V be a Γ -Banach algebra and V' be a Γ' -Banach algebra over the complex field \mathbb{C} . Suppose $f : V \rightarrow V'$ is a mapping with $f(0) = 0$ for which there exist a map $g : \Gamma \rightarrow \Gamma'$ with $g(0) = 0$ and functions $\phi_1 : V \times V \rightarrow [0, \infty)$, $\phi_2 : \Gamma \times \Gamma \rightarrow [0, \infty)$ such that*

$$\Phi(a, b) := \frac{1}{2} \sum_{n=0}^{\infty} 2^{-n} \phi_1(2^n a, 2^n b) < \infty, \quad (1)$$

$$\Psi(\alpha, \beta) := \frac{1}{2} \sum_{n=0}^{\infty} 2^{-n} \phi_2(2^n \alpha, 2^n \beta) < \infty, \quad (2)$$

$$\|f(\mu a + \mu b) - \mu f(a) - \mu f(b)\| \leq \phi_1(a, b), \quad (3)$$

$$\|g(\mu \alpha + \mu \beta) - \mu g(\alpha) - \mu g(\beta)\| \leq \phi_2(\alpha, \beta), \quad (4)$$

$$\|f(a\alpha b) - f(a)g(\alpha)f(b)\| \leq \phi_1(a, b), \mu \in \mathbb{T} := \{\mu \in \mathbb{C} \mid |\mu| = 1\}, a, b \in V, \alpha, \beta \in \Gamma. \quad (5)$$

for all Then there exists unique algebra homomorphism $(\psi, \varphi) : (\Gamma, V) \rightarrow (\Gamma', V')$ such that

$$\|g(\alpha) - \psi(\alpha)\| \leq \Psi(\alpha, \alpha)$$

and

$$\|f(a) - \varphi(a)\| \leq \Phi(a, a)$$

for all $a \in V, \alpha \in \Gamma$.

Proof. Putting $\mu = 1$ in (3), we have

$$\|f(a + b) - f(a) - f(b)\| \leq \phi_1(a, b) \quad (a, b \in V). \quad (6)$$

Now we replace b by a in (6) to get

$$\|f(2a) - 2f(a)\| \leq \phi_1(a, a). \quad (7)$$

One can use the induction to show that

$$\left\| \frac{f(2^n a)}{2^n} - \frac{f(2^m a)}{2^m} \right\| \leq \frac{1}{2} \sum_{k=m}^{n-1} 2^{-k} \phi_1(2^k a, 2^k a) \quad (8)$$

for all $a \in V$ and all non-negative integers m and n with $n > m$. It follows from (8) that the sequence $\left\{ \frac{f(2^n a)}{2^n} \right\}$ is a Cauchy sequence for all $a \in V$. Since (Γ', V') is complete the sequence $\left\{ \frac{f(2^n a)}{2^n} \right\}$ is convergent. Set

$$\varphi(a) := \lim_{n \rightarrow \infty} \frac{f(2^n a)}{2^n}.$$

Replacing a, b by $2^n a, 2^n b$, respectively, in (3), we get

$$\|f(2^n(\mu a + \mu b)) - \mu f(2^n a) - \mu f(2^n b)\| \leq \phi_1(2^n a, 2^n b) \quad (9)$$

Now we divide the both sides of the above inequality by 2^n and we have

$$\|2^{-n} f(2^n(\mu a + \mu b)) - 2^{-n} \mu f(2^n a) - 2^{-n} \mu f(2^n b)\| \leq 2^{-n} \phi_1(2^n a, 2^n b). \quad (10)$$

Passing to the limit as $n \rightarrow \infty$ we obtain $\varphi(\mu a + \mu b) = \mu\varphi(a) + \mu\varphi(b)$ for all $a, b \in V$ and all $\mu \in \mathbb{T}$. By Lemma 1.1, we see that φ is \mathbb{C} -linear.

If we put $m = 0$ in the inequality (8) and take the limit as $n \rightarrow \infty$, then we get $\|f(a) - \varphi(a)\| \leq \Phi(a, a)$ for all $a \in A$. It is known that additive mapping φ satisfying (3) is unique [6].

Similarly it can be shown that there exists unique linear mapping ψ defined by $\psi(\alpha) := \lim_{n \rightarrow \infty} 2^{-n}g(2^n\alpha)$ by using (4).

Replacing a, b and α in (5) by $2^n a, 2^n b$ and $2^n \alpha$, respectively, we have

$$\|f(8^n a\alpha b) - f(2^n a)g(2^n \alpha)f(2^n b)\| \leq \phi_1(2^n a, 2^n b).$$

If we divide both sides of the above inequality by 2^{3n} , then we obtain that

$$\|2^{-3n}f(2^{3n}a\alpha b) - 2^{-n}f(2^n a)2^{-n}g(2^n \alpha)2^{-n}f(2^n b)\| \leq 2^{-3n}\phi_1(2^n a, 2^n b)$$

for all $a, b \in V, \alpha \in \Gamma$. Thus we have

$$\varphi(a\alpha b) = \varphi(a)\psi(\alpha)\varphi(b).$$

Therefore, (ψ, φ) is an algebra homomorphism from (Γ, V) into (Γ', V') . \square

Corollary 2.1. *Let V be a Γ -Banach algebra and V' be a Γ' -Banach algebra over the complex field \mathbb{C} . Suppose $f : V \rightarrow V'$ is a mapping with $f(0) = 0$ for which there exists a map $g : \Gamma \rightarrow \Gamma'$ with $g(0) = 0$ and there exist $\theta_1, \theta_2 \geq 0$ and $p, t \in [0, 1)$ such that*

$$\|f(\mu a + \mu b) - \mu f(a) - \mu f(b)\| \leq \theta_1(\|a\|^p + \|b\|^p),$$

$$\|g(\mu\alpha + \mu\beta) - \mu g(\alpha) - \mu g(\beta)\| \leq \theta_2(\|\alpha\|^t + \|\beta\|^t),$$

$$\|f(a\alpha b) - f(a)g(\alpha)f(b)\| \leq \theta_1(\|a\|^p + \|b\|^p), \mu \in \mathbb{T} = \{\mu \in \mathbb{C} \mid |\mu| = 1\}, a, b \in V, \alpha, \beta \in \Gamma.$$

Then there exists unique algebra homomorphism (ψ, φ) from (Γ, V) to (Γ', V') satisfying

$$\|g(\alpha) - \psi(\alpha)\| \leq \frac{2\theta_2}{2 - 2^t} \|\alpha\|^t$$

and

$$\|f(a) - \varphi(a)\| \leq \frac{2\theta_1}{2 - 2^p} \|a\|^p$$

for all $a \in V, \alpha \in \Gamma$.

Proof. Putting $\phi_1(a, b) := \theta_1(\|a\|^p + \|b\|^p)$ and $\phi_2(\alpha, \beta) := \theta_2(\|\alpha\|^t + \|\beta\|^t)$ in Theorem 2.1, we get the desired result. \square

Now, we prove the following theorem for k -derivations of Γ -Banach algebras.

Theorem 2.2. *Let V be a Γ -Banach algebra over the complex field \mathbb{C} . Suppose $f : V \rightarrow V$ is a mapping with $f(0) = 0$ and $g : \Gamma \rightarrow \Gamma$ is a mapping with $g(0) = 0$ for which there exist functions $\varphi_1 : V \times V \times V \times V \rightarrow [0, \infty)$ and $\varphi_2 : \Gamma \times \Gamma \rightarrow [0, \infty)$ such that*

$$\Phi_1(a, b, c, d) := \frac{1}{2} \sum_{n=0}^{\infty} 2^{-n} \varphi_1(2^n a, 2^n b, 2^n c, 2^n d) < \infty, \quad (11)$$

$$\Phi_2(\alpha, \beta) := \frac{1}{2} \sum_{n=0}^{\infty} 2^{-n} \varphi_2(2^n \alpha, 2^n \beta) < \infty, \quad (12)$$

$$\|f(\mu a + \mu b + c\alpha d) - \mu f(a) - \mu f(b) - f(c)\alpha d - cg(\alpha)d - c\alpha f(d)\| \leq \varphi_1(a, b, c, d) \quad (13)$$

$$\|g(\mu\alpha + \mu\beta) - \mu g(\alpha) - \mu g(\beta)\| \leq \varphi_2(\alpha, \beta) \quad (14)$$

for all $\mu \in \mathbb{T}$ and all $a, b, c, d \in V$, $\alpha, \beta \in \Gamma$. Then there exists a unique linear map k from Γ to Γ satisfying $\|g(\alpha) - k(\alpha)\| \leq \Phi_2(\alpha, \alpha)$, and there exists a unique k -derivation $D : V \rightarrow V$ such that

$$\|f(a) - D(a)\| \leq \Phi_1(a, a, 0, 0) \quad (15)$$

for all $a \in V$, $\alpha \in \Gamma$.

Proof. Put $\mu = 1$ and $c = d = 0$ in (13) to obtain

$$\|f(a + b) - f(a) - f(b)\| \leq \varphi_1(a, b, 0, 0). \quad (16)$$

Now replace b by a in (16) to get

$$\|f(2a) - 2f(a)\| \leq \varphi_1(a, a, 0, 0). \quad (17)$$

One can use induction to show that

$$\left\| \frac{f(2^n a)}{2^n} - \frac{f(2^m a)}{2^m} \right\| \leq \frac{1}{2} \sum_{k=m}^{n-1} 2^{-k} \varphi_1(2^k a, 2^k a, 0, 0) \quad (18)$$

for all $a \in V$ and all $n > m \geq 0$. It follows from the convergence of series (11) that the sequence $\left\{ \frac{f(2^n a)}{2^n} \right\}$ is Cauchy. So it is convergent, since (Γ, V) is complete. Set

$$D(a) := \lim_{n \rightarrow \infty} \frac{f(2^n a)}{2^n} \quad (a \in V). \quad (19)$$

Putting $c = d = 0$ and replacing a, b by $2^n a, 2^n b$, respectively, in (13), we get

$$\|f(2^n(\mu a + \mu b)) - \mu f(2^n a) - \mu f(2^n b)\| \leq \varphi_1(2^n a, 2^n b, 0, 0).$$

Now we divide the both sides of the above inequality by 2^n and we have

$$\|2^{-n}f(2^n(\mu a + \mu b)) - 2^{-n}\mu f(2^n a) - 2^{-n}\mu f(2^n b)\| \leq 2^{-n}\varphi_1(2^n a, 2^n b, 0, 0). \quad (20)$$

Passing to the limit as $n \rightarrow \infty$ we obtain $D(\mu a + \mu b) = \mu D(a) + \mu D(b)$ for all $a, b \in V$ and all $\mu \in \mathbb{T}$. Therefore, by Lemma 1.1, we have that D is \mathbb{C} -linear.

It follows from (18) and (19) that

$$\|f(a) - D(a)\| \leq \Phi_1(a, a, 0, 0)$$

for all $a \in V$. Also it is known that additive mapping D satisfying (15) is unique (see [10]).

Similarly it can be shown that there exists unique linear mapping k defined by $k(\alpha) := \lim_{n \rightarrow \infty} 2^{-n}g(2^n \alpha)$ by using (14).

Putting $\mu = 1$, $a = b = 0$, and replacing c, d and α by $2^n c$, $2^n d$ and $2^n \alpha$, respectively, in (13), and divide both sides of the inequality by 2^{3n} we obtain

$$\begin{aligned} & \|2^{-3n}f(2^{3n}(c\alpha d)) - 2^{-n}f(2^n c)\alpha d - 2^{-n}cg(2^n \alpha)d - 2^{-n}c\alpha f(2^n d)\| \\ & \leq 2^{-3n}\varphi_1(0, 0, 2^n c, 2^n d) \end{aligned} \quad (21)$$

for all $c, d \in V$, $\alpha \in \Gamma$.

Then by using the convergence of series (11), we have

$$\begin{aligned} & \lim_{n \rightarrow \infty} \|2^{-3n}f(2^{3n}c\alpha d) - 2^{-n}f(2^n c)\alpha d - 2^{-n}cg(2^n \alpha)d - 2^{-n}c\alpha f(2^n d)\| \\ & \leq \lim_{n \rightarrow \infty} 2^{-3n}\varphi_1(0, 0, 2^n c, 2^n d) = 0. \end{aligned}$$

Thus we get

$$\begin{aligned} D(c\alpha d) &= \lim_{n \rightarrow \infty} \frac{f(2^{3n}c\alpha d)}{2^{3n}} \\ &= \lim_{n \rightarrow \infty} \frac{f(2^n c)\alpha d + cg(2^n \alpha)d + c\alpha f(2^n d)}{2^n} \\ &= D(c)\alpha d + ck(\alpha)d + c\alpha D(d), c, d \in V, \alpha \in \Gamma. \end{aligned}$$

Hence D is a k -derivation on (Γ, V) . \square

Corollary 2.2. *Let V be a Γ -Banach algebra over the complex field \mathbb{C} . Suppose $f : V \rightarrow V$ is a mapping with $f(0) = 0$ and $g : \Gamma \rightarrow \Gamma$ is a mapping with $g(0) = 0$ for which there exist $\theta_1, \theta_2 \geq 0$ and $p, t \in [0, 1)$ such that*

$$\begin{aligned} & \|f(\mu a + \mu b + c\alpha d) - \mu f(a) - \mu f(b) - f(c)\alpha d - cg(\alpha)d - c\alpha f(d)\| \\ & \leq \theta_1(\|a\|^p + \|b\|^p + \|c\|^p + \|d\|^p), \end{aligned}$$

$$\|g(\mu\alpha + \mu\beta) - \mu g(\alpha) - \mu g(\beta)\| \leq \theta_2(\|\alpha\|^t + \|\beta\|^t), \mu \in \mathbb{T}, a, b, c, d \in V, \alpha, \beta \in \Gamma.$$

Then there exists unique linear mapping k from Γ to Γ satisfying $\|g(\alpha) - k(\alpha)\| \leq \frac{2\theta_2}{2 - 2^t} \|\alpha\|^t$, and there exists a unique k -derivation $D : V \rightarrow V$ such that

$$\|f(a) - D(a)\| \leq \frac{2\theta_1}{2 - 2^p} \|a\|^p$$

for all $a \in V, \alpha \in \Gamma$.

Proof. Put $\varphi_1(a, b, c, d) := \theta_1(\|a\|^p + \|b\|^p + \|c\|^p + \|d\|^p)$ and $\varphi_2(\alpha, \beta) := \theta_2(\|\alpha\|^t + \|\beta\|^t)$ in Theorem 2.3. \square

Moreover, we have the following result for the superstability of k -derivations.

Corollary 2.3. *Suppose that V is a Γ -Banach algebra over the complex field \mathbb{C} . Let $p, q, r, s, t, l, \theta_1, \theta_2$ be non-negative real numbers with $0 < p + q + r + s \neq 1$, $0 < t + l \neq 1$ and let $f : V \rightarrow V$ and $g : \Gamma \rightarrow \Gamma$ be two mappings such that*

$$\|f(\mu a + \mu b + c\alpha d) - \mu f(a) - \mu f(b) - f(c)\alpha d - cg(\alpha)d - c\alpha f(d)\| \leq \theta_1(\|a\|^p \|b\|^q \|c\|^r \|d\|^s)$$

$$\|g(\mu\alpha + \mu\beta) - \mu g(\alpha) - \mu g(\beta)\| \leq \theta_2(\|\alpha\|^t \|\beta\|^l), \mu \in \mathbb{T}, a, b, c, d \in V, \alpha, \beta \in \Gamma. \quad (22)$$

Then f is a k -derivation on V , where $k : \Gamma \rightarrow \Gamma$ is a linear map.

Proof. Putting $a = b = c = d = 0$ and $\mu = 1$ in (22), we get $f(0) = 0$. Now, if we put $\beta = 0$, $\mu = 1$ in (22), then we have $g(0) = 0$. Again, putting $c = d = 0$, $a = b$ and $\mu = 1$ in (22), we conclude that $f(2a) = 2f(a)$ for all $a \in V$, and by induction we see that $f(a) = \frac{f(2^n a)}{2^n}$ for all $a \in V$ and $n \in \mathbb{N}$. Similarly, if we put $\alpha = \beta$ and $\mu = 1$ in (22), we have that $g(2\alpha) = 2g(\alpha)$ for all $\alpha \in \Gamma$, and using induction again we have that $g(\alpha) = \frac{g(2^n \alpha)}{2^n}$ for all $\alpha \in \Gamma$ and $n \in \mathbb{N}$. Therefore, we can obtain the desired result by Theorem 2.2 putting $\varphi_1(a, b, c, d) := \theta_1(\|a\|^p \|b\|^q \|c\|^r \|d\|^s)$ and $\varphi_2(\alpha, \beta) := \theta_2(\|\alpha\|^t \|\beta\|^l)$. \square

3. Stability of k -derivations associated with the mixed type additive and quadratic functional equation

In 2013, A. Bodaghi and S.O. Kim [3] obtained the general solution of the mixed type additive and quadratic functional equation

$$f(x + 3y) + f(x - 3y) = f(x + y) + f(x - y) - 16f(y) + 8f(2y), \quad (23)$$

and they investigated the Hyers-Ulam stability for these functional equations in non-Archimedean normed spaces.

Lemma 3.1. [3] *Let X and Y be linear spaces. If an odd mapping $f : X \rightarrow Y$ satisfies the functional equation (23), then f is additive.*

In this section, we consider the Hyers-Ulam-Rassias stability of k -derivations in Γ_N -Banach algebras with the functional equation (23).

Recall that a Γ_N -algebra V is called *prime* if, for any two elements a and b of V , $a\Gamma b = 0$ implies either $a = 0$ or $b = 0$. Also, V is said to be *2-torsion free* if $2a = 0$ implies $a = 0$ for all $a \in V$.

Theorem 3.1. *Let V be a 2-torsion free prime Γ_N -Banach algebra over \mathbb{C} . Let $f : V \rightarrow V$ be an odd mapping, $g : \Gamma \rightarrow \Gamma$ be a map with $g(0) = 0$ and $\varphi_1, \phi : V \times V \rightarrow [0, \infty)$, $\varphi_2 : \Gamma \times \Gamma \rightarrow [0, \infty)$ satisfy*

$$\|f(a\alpha b + b\alpha a) - f(a)\alpha b - f(b)\alpha a - ag(\alpha)b - bg(\alpha)a - a\alpha f(b) - b\alpha f(a)\| \leq \phi(a, b), \quad (24)$$

$$\|f(\mu(a + 3b)) + f(\mu(a - 3b)) - \mu(f(a + b) + f(a - b) + 16f(b) - 8f(2b))\| \leq \varphi_1(a, b), \quad (25)$$

$$\|g(\mu\alpha + \mu\beta) - \mu g(\alpha) - \mu g(\beta)\| \leq \varphi_2(\alpha, \beta) \quad (26)$$

for all $a, b \in V$, $\alpha, \beta \in \Gamma$ and $\mu \in \mathbb{T}$. Assume that

$$\Phi(a) := \sum_{n=0}^{\infty} 2^{-n} \varphi_1(0, 2^n a) < \infty, \quad (27)$$

$$\varphi(\alpha, \beta) := \frac{1}{2} \sum_{n=0}^{\infty} 2^{-n} \varphi_2(2^n \alpha, 2^n \beta) < \infty, \quad (28)$$

$$\liminf_{n \rightarrow \infty} 2^{-3n} \phi(2^n a, 2^n b) = 0, \quad (29)$$

$$\liminf_{n \rightarrow \infty} 2^{-n} \varphi_1(2^n a, 2^n b) = \liminf_{n \rightarrow \infty} 2^{-n} \varphi_1(2^n a, 0) = 0, a, b \in V, \alpha, \beta \in \Gamma. \quad (30)$$

Then there exists a unique linear map k from Γ to Γ satisfying $\|g(\alpha) - k(\alpha)\| \leq \varphi_2(\alpha, \alpha)$, and there exists a unique k -derivation $D : V \rightarrow V$ such that

$$\|f(a) - D(a)\| \leq \frac{1}{|2|^4} \Delta(a), a \in V, \quad (31)$$

where $\Delta(a) := \sup\{\varphi_1(0, 2^j a) / |2|^j \mid j \in \mathbb{N} \cup \{0\}\}$.

Proof. Putting $\mu = 1$ and $a = 0$ in (25), we have

$$\|2f(b) - f(2b)\| \leq \frac{1}{|2|^3} \varphi_1(0, b) \quad (32)$$

for all $b \in V$. Letting $b = 2^n a$ in (32) and then dividing by $|2|^{n+1}$, we get

$$\left\| \frac{1}{2^n} f(2^n a) - \frac{1}{2^{n+1}} f(2^{n+1} a) \right\| \leq \frac{1}{|2|^{n+4}} \varphi_1(0, 2^n a)$$

for all $a \in V$ and non-negative integer n . So we obtain

$$\left\| \frac{1}{2^n} f(2^n a) - \frac{1}{2^{n+j}} f(2^{n+j} a) \right\| \leq \frac{1}{|2|^3} \left[\frac{\varphi_1(0, 2^{n+1} a)}{2^{n+1}} + \dots + \frac{\varphi_1(0, 2^{n+j} a)}{2^{n+j}} \right].$$

This implies that $\left\{ \frac{f(2^n a)}{2^n} \right\}$ is a Cauchy sequence in V by (27). Hence, there exists a mapping D such that

$$D(a) := \lim_{n \rightarrow \infty} \frac{f(2^n a)}{2^n} \quad (a \in V). \quad (33)$$

One can use the inequality (26) to show that there exist unique linear mapping k defined by $k(\alpha) := \lim_{n \rightarrow \infty} \frac{g(2^n \alpha)}{2^n}$. On the other hand,

$$\begin{aligned} & \|D(a\alpha b + b\alpha a) - D(a)\alpha b - D(b)\alpha a - ak(\alpha)b - bk(\alpha)a - a\alpha D(b) - b\alpha D(a)\| \\ & \leq \lim_{n \rightarrow \infty} \left\| \frac{1}{8^n} [f(8^n(a\alpha b + b\alpha a)) - 4^n f(2^n a)\alpha b - 4^n f(2^n b)\alpha a - 4^n a g(2^n \alpha)b - 4^n b g(2^n \alpha)a - 4^n a \alpha f(2^n b) - 4^n b f(2^n a)] \right\| \\ & \leq \liminf_{n \rightarrow \infty} \frac{1}{8^n} \phi(2^n a, 2^n b) = 0. \end{aligned}$$

Thus

$$D(a\alpha b + b\alpha a) = D(a)\alpha b + D(b)\alpha a + ak(\alpha)b + bk(\alpha)a + a\alpha D(b) + b\alpha D(a) \quad (34)$$

for all $a, b \in V$, $\alpha \in \Gamma$. It follows from the definition of D that

$$\begin{aligned} & \|D(a + 3b) + D(a - 3b) - D(a + b) - D(a - b) - 16D(b) + 8D(2b)\| \\ & \leq \lim_{n \rightarrow \infty} \left\| \frac{1}{2^n} [f(2^n(a + 3b)) + f(2^n(a - 3b)) - f(2^n(a + b)) - f(2^n(a - b)) - 16f(2^n b) + 8f(2^n(2b))] \right\| \\ & \leq \liminf_{n \rightarrow \infty} \frac{1}{2^n} \varphi_1(2^n a, 2^n b) = 0 \end{aligned}$$

for all $a, b \in V$. Since D is an odd mapping, by Lemma 3.1 the mapping $D : V \rightarrow V$ is additive.

Letting $b = 0$ in (25), we have $\|2f(\mu a) - 2\mu f(a)\| \leq \varphi_1(a, 0)$ for all $a \in V$. Replacing a by $2^n a$, we get $\|f(2^n(\mu a)) - \mu f(2^n a)\| \leq \varphi_1(2^n a, 0)$.

Dividing the both sides of the above inequality by 2^n , we have $\|2^{-n}f(2^n(\mu a)) - 2^{-n}\mu f(2^n a)\| \leq 2^{-n}\varphi_1(2^n a, 0)$.

Passing to the limit as $n \rightarrow \infty$ we obtain $D(\mu a) = \mu D(a)$ for all $a \in V$ and all $\mu \in \mathbb{T}$. Therefore, by Lemma 1.1, D is \mathbb{C} -linear.

Since D is additive, we have

$$\begin{aligned} 2D(a\alpha a) &= D(a\alpha a) + D(a\alpha a) = D(a\alpha a + a\alpha a) \\ &= 2(D(a)\alpha a + ak(\alpha)a + a\alpha D(a)), \end{aligned}$$

and it follows from that

$$2(D(a\alpha a) - D(a)\alpha a - ak(\alpha)a - a\alpha D(a)) = 0$$

for all $a \in V$, $\alpha \in \Gamma$. By 2-torsion freeness of V , we have that D is a Jordan k -derivation. Applying the result, which asserts that every Jordan k -derivation of a 2-torsion free prime Γ_N -ring is a k -derivation (see [4]), we see that D is a k -derivation.

For each $a \in V$ and nonnegative integers n , we have

$$\begin{aligned} \left\| \frac{f(2^n a)}{2^n} - f(a) \right\| &= \left\| \sum_{j=0}^{k-1} \frac{f(2^{j+1} a)}{2^{j+1}} - \frac{f(2^j a)}{2^j} \right\| \quad (35) \\ &\leq \max \left\{ \left\| \frac{f(2^{j+1} a)}{2^{j+1}} - \frac{f(2^j a)}{2^j} \right\| \mid 0 \leq j < k \right\} \\ &\leq \frac{1}{|2|^4} \max \left\{ \frac{\varphi_1(0, 2^j a)}{|2|^j} \mid 0 \leq j < k \right\}. \end{aligned}$$

Taking that n tends to approach infinity in (35) and applying (33), we can see that inequality (31) holds.

It remains to show that D is uniquely defined. Let $d : V \rightarrow V$ be another k -derivation satisfying $d(a\alpha b) = d(a)\alpha b + \alpha d(a)b + a\alpha d(b)$ and $\|f(a) - d(a)\| \leq \frac{1}{|2|^4} \Delta(a)$.

Then for all $a \in V$, we have

$$\begin{aligned} \|D(a) - d(a)\| &= \frac{1}{2^n} \|D(2^n a) - d(2^n a)\| \leq \frac{1}{2^n} (\|D(2^n a) - f(2^n a)\| + \|f(2^n a) - d(2^n a)\|) \\ &\leq 2^{-n} \cdot \frac{1}{|2|^3} \Delta(2^n a) = \frac{1}{|2|^3} \sup \left\{ \frac{\varphi_1(0, 2^{k+n} a)}{|2|^{k+n}} \mid k \geq n, k \geq 0 \right\}. \end{aligned}$$

By letting $n \rightarrow \infty$ in the preceding inequality, we obtain $D(a) = d(a)$ for all $a \in V$. This completes the proof. \square

Corollary 3.1. *Suppose that V is a 2-torsion free prime Γ_N -Banach algebra over \mathbb{C} . Let $f : V \rightarrow V$ be an odd mapping, $g : \Gamma \rightarrow \Gamma$ be a map with $g(0) = 0$ for which there exist nonnegative real numbers $\theta, \theta_1, \theta_2$ and positive real numbers $p > 3, t < 1$ such that*

$$\begin{aligned} &\|f(a\alpha b + b\alpha a) - f(a)\alpha b - f(b)\alpha a - ag(\alpha)b - bg(\alpha)a - a\alpha f(b) - b\alpha f(a)\| \\ &\leq \theta(\|a\|^p + \|b\|^p), \end{aligned}$$

$$\|f(\mu(a + 3b)) + f(\mu(a - 3b)) - \mu(f(a + b) + f(a - b) + 16f(b) - 8f(2b))\| \leq \theta_1(\|a\|^p + \|b\|^p),$$

$$\|g(\mu\alpha + \mu\beta) - \mu g(\alpha) - \mu g(\beta)\| \leq \theta_2(\|\alpha\|^t + \|\beta\|^t), a, b \in V, \alpha, \beta \in \Gamma, \mu \in \mathbb{T}$$

Then there exists a unique linear mapping k from Γ to Γ satisfying $\|g(\alpha) - k(\alpha)\| \leq \frac{2\theta_2}{2 - 2^t} \|\alpha\|^t$, and there exists a unique k -derivation $D : V \rightarrow V$ such that

$$\|f(a) - D(a)\| \leq \sup \left\{ \frac{\theta_1 \|a\|^p}{|2|^{k(1-p)}} \mid k \in \mathbb{N} \cup \{0\} \right\}, a \in V$$

Proof. Let $\phi : V \times V \rightarrow [0, \infty)$, $\varphi_1 : V \times V \rightarrow [0, \infty)$ and $\varphi_2 : \Gamma \times \Gamma \rightarrow [0, \infty)$ be functions such that $\phi(a, b) := \theta(\|a\|^p + \|b\|^p)$, $\varphi_1(a, b) := \theta_1(\|a\|^p + \|b\|^p)$ and $\varphi_2(\alpha, \beta) := \theta_2(\|\alpha\|^t + \|\beta\|^t)$ for all $a, b \in V$, $\alpha, \beta \in \Gamma$ and $\mu \in \mathbb{T}$. Then we get the required result by applying Theorem 3.1. \square

The following result shows that under some conditions the superstability of k -derivations associated with the functional equation (23) is provided.

Corollary 3.2. *Suppose that V is a 2-torsion free prime Γ_N -Banach algebra over \mathbb{C} . Let $p, q, t, l, \theta, \theta_1, \theta_2$ be non-negative real numbers with $p+q > 3$, $0 < t+l \neq 1$ and let $f : V \rightarrow V$ be an odd mapping and $g : \Gamma \rightarrow \Gamma$ be a mapping such that*

$$\begin{aligned} &\|f(a\alpha b + b\alpha a) - f(a)\alpha b - f(b)\alpha a - ag(\alpha)b - bg(\alpha)a - a\alpha f(b) - b\alpha f(a)\| \\ &\leq \theta(\|a\|^p \|b\|^q), \end{aligned} \tag{36}$$

$$\|f(\mu(a + 3b)) + f(\mu(a - 3b)) - \mu(f(a + b) + f(a - b) + 16f(b) - 8f(2b))\| \tag{37}$$

$$\leq \theta_1(\|a\|^p \|b\|^q),$$

$$\|g(\mu\alpha + \mu\beta) - \mu g(\alpha) - \mu g(\beta)\| \leq \theta_2(\|\alpha\|^t \|\beta\|^l), a, b \in V, \alpha, \beta \in \Gamma, \mu \in \mathbb{T} \tag{38}$$

Then f is a k -derivation on V , where $k : \Gamma \rightarrow \Gamma$ is a linear map.

Proof. Putting $\beta = 0, \mu = 1$ in (38), we get $g(0) = 0$. If we put $a = 0, \mu = 1$ in (37), then we have $f(2b) = 2f(b)$ for all $b \in V$, and by induction we see that $f(b) = \frac{f(2^n b)}{2^n}$ for all $b \in V$ and $n \in \mathbb{N}$. Similarly, if we put $\beta = \alpha$ and $\mu = 1$ in (38), we have that $g(2\alpha) = 2g(\alpha)$ for all $\alpha \in \Gamma$, and by induction we conclude that $g(\alpha) = \frac{g(2^n \alpha)}{2^n}$ for all $\alpha \in \Gamma$ and $n \in \mathbb{N}$.

Now, if we put $\phi(a, b) := \theta(\|a\|^p \|b\|^q)$, $\varphi_1(a, b) := \theta_1(\|a\|^p \|b\|^q)$ and $\varphi_2(\alpha, \beta) := \theta_2(\|\alpha\|^t \|\beta\|^l)$ for all $a, b \in V$, $\alpha, \beta \in \Gamma$ and $\mu \in \mathbb{T}$, then we get the desired result by using Theorem 3.1. \square

Acknowledgement. The authors would like to thank the referees for the careful and detailed reading of the manuscript and valuable suggestions and comments.

REFERENCES

- [1] *W.E. Barnes*, On the Γ -rings of Nobusawa, *Pacific J. Math.*, **18(3)** (1966), 411–422.
- [2] *D.K. Bhattacharya, A.K. Maity*, Semilinear tensor product of Gamma Banach algebras, *Ganita*, **40** (1989), 78–80.
- [3] *A. Bodaghi, S.O. Kim*, Stability of a functional equation deriving from quadratic and additive functions in non-Archimedean normed spaces, *Abstract and Applied Analysis*, **Volume 2013**, Article ID 198018 (2013), 1–10.
- [4] *S. Chakrabarty, A.C. Paul*, On Jordan k -derivations of 2-torsion free prime Γ_N -rings, *Punjab Univ. J. Math.*, **40** (2008), 97–101.
- [5] *Z. Gajda*, On stability of additive mappings, *Internat. J. Math. Sci.*, **14** (1991), 431–434.
- [6] *P. Gavruta*, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, *J. Math. Anal. Appl.*, **184** (1994), 431–436.
- [7] *M.E. Gordji, A. Bodaghi*, On the stability of quadratic double centralizers on Banach algebras, *J. Comput. Anal. Appl.*, **13** (2011), 724–729.
- [8] *D.H. Hyers*, On the stability of the linear functional equation, *Proc. Nat. Acad. Sci. U.S.A.*, **27** (1941), 222–224.
- [9] *D.H. Hyers, G. Isac, Th.M. Rassias*, *Stability of Functional Equations in Several Variables*, Birkhäuser, Basel, 1998.
- [10] *A. Javadian, M.E. Gordji, M.B. Savadkouhi*, Approximately partial ternary quadratic derivations on Banach ternary algebras, *J. Nonlinear Sci. Appl.*, **4** (2011), 60–69.
- [11] *F.J. Jing*, On derivations of Γ -rings, *Qufu Shifan Daxue Xuebeo Ziran Kexue Ban*, **13(4)** (1987), 159–161.
- [12] *H. Kandamar*, The k -derivation of a Gamma ring, *Turk. J. Math.*, **24** (2000), 221–231.
- [13] *A. Najati, C. Park*, Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras associated to the Pexiderized Cauchy functional equation, *J. Math. Anal. Appl.*, **335** (2007), 763–778.
- [14] *N. Nobusawa*, On the generalization of the ring theory, *Osaka J. Math.*, **1** (1964), 81–89.
- [15] *C. Park*, Homomorphisms between Poisson JC^* -algebras, *Bull. Brazilian Math. Soc.*, **36(1)** (2005), 79–97.
- [16] *Th.M. Rassias*, On the stability of the linear mapping in Banach spaces, *Proc. Amer. Math. Soc.*, **72** (1978), 297–300.
- [17] *P. Šemrl*, The functional equation of multiplicative derivation is superstable on standard operator algebras, *Integr. Equat. Oper. Theory*, **18** (1994), 118–122.
- [18] *S.M. Ulam*, *Problems in Modern Mathematics*, Chapt. VI, Science edn. Wiley, New York, 1940.