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TRAIN CONTROL PROBLEM

Gabriel POPA!, Constantin UDRISTE?, lonel TEVY?

This paper deals with the optimization of the railway transport system from
the traction point of view. Optimizing the traction segment in a railway company
means especially respecting the timetable and of course, the lowest fuel/electric
power consumption. Our aim is three-fold: (1) to review and detail the optimal
control theory of train movement compared with the presentations in the papers [1,
2 6 - 16]; (2) to determine the continuous transition from one phases to another for
a globally optimal strategy on a track; (3) to formulate and to solve the problem of
stochastic optimal control of train movement. It is reconfirmed that the optimal
driving strategy for a train takes the form of a power-speed hold-coast-brake
strategy, unless the track contains steep grades.

Keywords: optimal control involving ODEs, train optimal control, optimal
stochastic control, bang-bang control.

1. Mathematical and physical ingredients

The actual requirements of the dynamic market economy are forcing the
railway system to transform into a reliable alternative to the road and air traffic.
From this perspective, the railways have to fulfil two key elements: (1)
economical efficiency and reliability; (2) to offer what the potential customer
needs. In particular, the railway system has to fulfil the following specific
conditions: (1) freight service must be safe, cheap, fast and accessible (taking into
account the complete service pack to be offered to customers situated far from the
railway line); (2) long distance passengers service must be fast, highly
comfortable (representing a true alternative to the airways) and to allow
conditions for leisure, rest and entertainment; (3) short distance passenger service
(including the metropolitan railways) must ensure fast links from the centers of
the cities to the suburbs at low prices, compared to the bus services.

These are the main requirements demanded by the potential customers
desiring prompt, safe and affordable services. It is important to know that their
perception of the quality level of the transport service changes continuously.
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Railway operators have many analysis elements which might be influencing their
economic efficiency. One of the main elements is the respect of the timetables or
the decrease of the running times. The running time is the main referential,
especially when it is related to the fuel or power consumption. The optimization
of the running times and the fuel/electric power consumption is strictly related to
the safety and modern signalling system.

The specialists in the train control problems used the following data: T is
the time allowed for the journey, x is the distance between two stations, u(t) is the
accelerations applied to the train, v(t) is the speed of the train, and — r(v(t)) is the
resistive acceleration due to the friction. The movement of the train is governed
by the Newton law

#(0) = u(®) - r(v(®), (1)

where r(v), v €[0,) is strictly increasing and convex function and the acceleration

u(t) (control variable) is limited by the relation |u(t)|< 1. The theory (see energy
consumption) involves also the positive part of u(t), defined by

uy (8) = 2 () + [u(®)]) )

The increasing and convex function r(v) is exemplified by the formula
r(v) =a+ bv+ cv? v € [0,x), (3)

where a, b, ¢ are known real numbers subject to a > 0, b > 0, ¢ > 0. For
simulations, it is used

r(v) = 0.015 + 0.00003v + 0.000006v2 4)
2. Train control problem

The problem of finding the best way to drive to the next destination can be
formulated as an optimal control problem (local energy minimization principle).
That is, we wish to find the sequence of control settings that will get the train to
the next destination on time, and with minimal energy consumption.

Mathematical assumptions (i) U=L*([0,T]) is the set of measurable and
bounded functions on the interval [0,T], endowed with the norm

lulls = suplu(®)l, t €[0,T] (®)
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(i) v=C%%([0,T]) is the set of Lipschitz functions on the interval [0, T],
endowed with the norm

vl = llvlle + 191l (6)
A feasible pair (u,v)eF =U xV must satisfies ||ul[x<1 and v(0) = v(T) = 0.
In the following problem, x and v are state variables and u is the control

variable.
Deterministic Problem Minimize the mechanical energy consumption

J() = [ u (Ov(e)de (7)

subject to
(i) the ODE constraints

() =v(®), v(©) =ult) —r(w®), v(0)=v()=0, (8)

(i1) the isoperimetric constraint
T
Jy v(©dt = X, )
(iii) the control inequality constraint
lu(t)| < 1. (10)

Solution.We shall look to apply the Pontryagin maximum principle. For
that we use the Hamiltonian

H(x,u,v) = —uyv+pyv + po(u — r(v)), (11)

where p1= p1(t) and p2=p2(t) are the Lagrange multipliers. The Hamiltonian can
be rewritten as a piecewise function of degree at most one with respect to u,
namely

pou+pv—p,r(v), for—1<u<0

u(p, —v) +pv—pr(v), for0<u<i (12)

H(x,v,u) ={

The adjoint ODEs

6H

h=-2, p)=-2 (13)
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become piy (£) = 0 1 (t) = uy(t) — py + p2(t) 5= (1) (14)
Consequently, p1(t)=p:1 (constant). For p2(t), we have explicitly

Po(0) = ul®) —py +p (O3 () for 0<u<1 (15)

. 1)
p2(t) = —p1 + p2(£) 5 (8) for —1<u<0. (16)

If the Hamiltonian is linear in the control variables and the control
variables have simple bounds then the optimal control is a combination of bang-
bang control and singular arcs.

The Hamiltonian is piecewise linear (function of degree at most one) in the
control, the control variable have simple bounds, and the switching functions are
p2(t) and po(t)-v(t), respectively. Therefore the optimal control is a combination
of bang-bang control and singular arcs. The optimal control u*(t) is
discontinuous: it jumps from a minimum to a maximum and viceversa in response
to each change in the sign of switching function.

(i) The optimal control as determined by the switching function pa(t) is

0, for p,(t) > 0 bang — bang control
u*(t) = —1, for p,(t) < 0 bang — bang control (17)
undetermined, forp,(t) =0

Suppose t=ts is the switching time, i.e., a solution of the equation p2(t)=0.
Then the optimal control is rewritten.

eitherOor — 1, fort € [0,T]and — 1 for t € [t,, T]
u*(t) = 0, fort € [0,t;)and 0 for t € [t,, T] (18)
—1, fort € [0, t,)

The most interesting case is those of finite number (or countable set) of
switching times.

(if) The optimal control as determined by the switching function p2(t)—v(t)
IS

1, for p,(t) > v(t)bang — bang control
u*(t) = 0, for p,(t) < v(t)bang — bang control (19)
undetermined, for p,(t) = v(t)
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Suppose t=ts is the switching time, i.e., a solution of the equation
p2(t)=v(t). Then the optimal control is rewritten

either 1 or 0, fort € [0, T]
u*(t) = 1, fort € [0,t;) and O fort € [t T] (20)
0, fort €[0,t;) and 1fort € [t T]

The most interesting case is those of finite number (or countable set) of
switching times.

3. Maximum acceleration, coast and maximum brake

There are three cases which correspond respectively to maximum
acceleration, coast and maximum brake. These all occur in a typical optimal
control strategyof the train, but their presence is only piecewise, splitting the
interval [0,T] into subintervals, i.e., T=T1+...+Th.

Case 1 (phase 1: maximum acceleration):

p.(t) >v(t) = u*(t) = 1. (21)

The time t is in a first subinterval [0,T1] of the interval [0,T]. This case
include the optimal adjoint evolution

p1(0) = py, B2() =1 —ps + P (O (O (22)
and the optimal initial evolution
x(t) =v(0), v@®) =1-r(v@®). (23)

For details, we shall use the expression (1) for r(v). Then the second initial
ODE become

Y- _dv (24)

cv2+bv+a—1
Let A1=b?-4c(a-1) be the discriminant of the polynominal cv?+bv+a-1.
If 41>0, then we find the roots

a

z%ﬂ_gﬁz%ﬂ_{ (25)
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We remark that « <0 and f<0for ¢>1 ,and f>0 fora < 1. Inour
theory, we need S > 0 and ve [0,5) or ve [0,). Taking into consideration the
conditions v(0)=0, v(T)=0, we must work on the interval [0,5) only. Then we find

L
cla=p)  B-v
e for A, =0 (26)

cvZ+bvta—1 c(v-a)

for A; >0

2cv+b

uzTatan T for
—Aa1 A1

A, < 0.

Conclusions:
(i) For A;>0, the optimal evolution is

a+ﬁe C(DZ—B) (Cl_t)

t=0C — C(al_ﬁ) lng, v(t) = T ape (27)
x(t) = a(t — C;) +2In(e@ PG 4 1) 1 ¢, (28)
Imposing the condition v(0)=0, we find
€, =- (al_ S1n ‘7“ (29)
Similary, the condition x(0)=0 produces
C, =aC, — %ln(ec(“‘ﬁ)cl +1). (30)

Eliminating the parameter t, we obtain x=x(v). By parametric pilot, we
find v=v(x).

Let us consider the ODE v(t) = 1 — (cv2(t) + bv(t) + a). If a < 1, then
its equilibrium (critical) point is the positive solution B of the equation
0=1- (cv?+bv+a). The solution B is a supremum of the function v(t) since in its
left the function v(t) is increasing (limt—sVv(t)=4) and in the right is decreasing to
lim¢—wv(t)=a < 0. The train movement suppose Vv(t) is bounded and increasing.

(ii) For 41 <0, the ODE v(t) = 1 — (cv?(t) + bv(t) + a) shows that
thefunction v(t) is decreasing. Hence this case is not convenient for a strating
phase (acceleration).

Case 2 (phase 2: coast):

p.(t) <v(t) = u*(t) = 0. (31)
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The time t is in a second subinterval [T1,T] of the interval [0,T]. This case
include the optimal adjoint evolution

p1(t) = py, P2(8) = —py + () L (©) (32)
and the optimal initial evolution

x(t) =v(D), v(©) = —r(v(D). (33)

Obviously, the speed v(t)> 0 is decreasing (see the second ODE), as
requires the coast phase. Introducing the expression (1) for r(v), we obtain the
details.

Case 3 (phase 3: maximum brake):

p,(t) < 0= u*(t) = —1. (34)

The time t is in a third subinterval [T3,T4] of the interval [0,T]. This case
include the optimal adjoint evolution

p1(t) = 1, P2(t) = —p1 + P (D T (D) (35)
and the optimal initial evolution
x(t) =v(0), v(©) = -1 —r(v(t)). (36)

Obviously, the speed v(t)> 0 is decreasing (see the second ODE), as
requires the maximum brake phase. Introducing the expression (1) for r(v), we
obtain the details.

4. Singular control

If the switching function vanishes identically for some time interval, the
control u has no influence on the Hamiltonian function H, i.e., the maximum
principle fails. This is referred to singular control.

Case 1 (intermediary phase: velocity hold):

p.(t) =v(t) = u*(t) € [0,1]. (37)



160 Gabriel Popa, Constantin Udriste, Ionel Tevy

The time t is in a subinterval [T2,Ts] of the interval [0,T]. Since the
equality p2(t)=v(t) must be maintained on a non-trivial interval, it follows p,(t) =
v(t). From the evolution ODE and from the second adjoint ODE, we find the
conditions

= (rrw) =ps, (38)

Hence v(t)r(v(t))=pwv(t), i.e., r(v)=p: with the solution v(t)=V (velocity
hold) on our interval, since r(v) is strictly increasing and convex. The optimal
control is u”(t)=r(V). Hence v(t), (t) €[T1,T-] and the continuity of phases give the
condition V=v(T2). The function J(v)=vr(v) is strictly increasing and convex.

Now d&/dv(t)>r(0)=a and this situation can only occur if p1>a >0.

Case 2 (partial brake):

This case requires that pz(t)=0 is true on a non-trivial interval
[0,t0)0,T] and corresponds to partial braking. Since, u+ (t)=0, the second adjoint
equation implies 0=p1, and consequently on this interval the initial ODEs and the
adjoint ODEs are inactive. Hence H*=0. Since, v(0)=0, an optimal strategy can
only start with u”(t)=1, for p2(t) > v(t) > 0, and switch to u*(t)=0 at the moment
ty, for 0 < po(t) < v(t). Set 7(t)=p2(t)/v(t). Then 7(t1)=1. On the other hand, for
u"(t)=0, tefto,ti] [t1,T] the second initial ODE and the second adjoint ODE
become

V() = —r(v(D), P() = p(O) T (v(D). (39)
Consequently,

1 d

n(e) = ;55 7(v®) > 0. (40)

This gives n(t) > 1 for t > t1 wich contradicts the double inequality
0<n(t)< 1. Consequently, we cannot switch from u”(t)=1 to u“(t)=0 and this case
cannot occur (it rests p1=0).

5. Energy-efficient speed profile

The book [9] suggested that an energy-efficient speed profile should
contain at least three or four phases coupled by continuity: (i) maximum
acceleration, coast and maximum brake; (ii) maximum acceleration, hold speed,
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coast and maximum brake. All the experiments confirmed that these strategies are
indeed efficient.

Accelerate-brake strategy The set Z# is non-empty. Indeed the initial
condition problem

v(t) =1-r(v(@®), v(0)=0 (41)

has a unique solution v(t), t >0, and the final condition problem
() =-1-r(v(®), v(T)=0 (42)

has a unique solution va(t), t < T. Further there exists a unique point t=T1 where
v1(T1)=v2(T1) (the two phases are joined by continuity). The pair of piecewise
functions

(1 for t € (0,Ty)
u(®) ‘{—1 for te(T,T) (43)
_(va(t) for t € (0,Ty)
and  v(t) = {vz(t) for t € (T,,T) (44)

satisfies the conditions and represents an accelerate-brake strategy.

Accelerate- coast-brake strategy Let us look for more feasible pairs. We
choose T2 £[0,T1] and find the unique solution vs(t), t > T2 of the problem

v(t) = -r(v(®), v(T) = v, (To). (45)

In the condition v3(T) = 0, there exists a unique point T; € [Ty, T], with
v3(T3)=v2(T3) it follows that the pair

1 for t € (0,T,)
u(t) =<0 for t € [T,, Ts]
-1 for t € (T5,T)
(46)
vy (t) for t € (0,T,)
and  v(t) =1 vs(t) for t € [T, Ts] (47)

v, (t) for t € (T, T)
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represents an accelerate-coast-brake strategy.
Mathematical reasoning made above confirms again the theory, and they

can be summarized by

Theorem 1. An efficient speed profile consists in at least four steps

coupled by continuity:
(1) The condition v(0)=0 imposes that the first phase must be “maximum

acceleraion”, on the interval [0,T1], solution of the inequation pz(t)>v(t).
It follows v(T1)<B.

(2) Then, p2(t)=v(t) , for te[T1,T2],, when v(t)=v(T1) , i.e., hold speed.

(3) Further, 0 < p2(t) < v(t), for te[T2,T3), and p2(T3)=0 i.e., coast case.

(4) Finally, p2(t)<0, forte[Ts,T], and v(T)=0 i.e., total brake.

6. Numerical simulation

The numerical simulation scenarios in [9] reveals the optimal control of
the train movement. Our numerical simulations shows that the speed
(acceleration) profile for ,,accelerate-hold-cost-brake” strategy is represented by
the shape in the Fig. 1 ( Fig. 2).

Fig. 1. Speed profile

7. Discrete train control problem

The movement process of the train can be conceptualized also in discrete
time. This is perhaps the greatest source of confusion among practitioners, both in
terms of implementation and psyhical interpretation. In general, the train
movement occurs in continuous time but we observe it at fixed discrete-time
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intervals. Thus, continuous time in conceptually and theoretically appealing, but
In practice it is perhaps more intuitive to interpret movement in discrete intervals.

Fig. 2. Acceleration profile
Minimize the mechanical energy consumption
J(we () = Z¥ZT uppve
subject to
(i) The Ode constraints

X1 — Xk = Vg, Vgyr — Vg = U — T(Vg),
1<k<N-1Lv(0)=v(N)=0,

(i) The isoperimetric constraint
(iii) The control inequality constraint

|uk| <1

(48)

(49)

(50)

(51)
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Here x, Uk, are the state variables. The maximum principle of Pontryagin
shows that if we denote by px and gk the costate or adjoint variables, and denoting

Hk = —U4kVk + PrVk + qk(uk - T'(Vk)), (52)

SH SH
Thenpk—pkq:—g:» Qk_Qk—lz_W:' 2<k<sN-1 (53

and Hy; = max, Hy,, 1<k <N. (54)
8. Optimal stochastic movement of the train

Notably, the speed of movement in intrinsically linked in current
continuous-time random walk formulations, and this can have important
implications when interpreting train behavior (see [3-5]).

Let te[0,T]. Let x(t) be the stochastic position variable, v(t) be the
stochastic speed variable, (x(t),v(t)) be a stochastic or diffusion process, W(t) be a
Wiener process, o be a diffusion coefficient and u(t) be the random control
variable. The stochastic process (x(t),v(t)) is usually a Markov process.

Stochastic problem (train stochastic optimal control problem) Find

max, I(u(?)) = E{— fOT u+(t)v(t)dt} (55)

constrained by
dx(t) = v(t)dt, dv(t) = (u+(t) — r(v(t))) dt + cdW(t), (56)
x(0) =0, v(0) = 0.

Solution In our context, we use a control Hamiltonian stochastic 1-form
H(t,x,u,p) = (—upv +pyv + pa(uy —r(v)))de. (57)

and its pullback. The adjoint linear stochastic differential system

dp(t) = =5, dpy() = - (58)
s dp(© =0, dpp(® = (.~ py + PO (©) 59)

Consequently, p1(t)=p1 (constant). For pz(t), we can write explicitly
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dp, () = (u(t) S pz(t)j—:(t)> dt  for O<u<1  (60)

dp, () = (—p1 + pz(t)j—Z(t)) dt for  —1<u<0 (61)

9. Conclusions

Circumstances which make train control a pressing problem at the present
time are very well known. However, automatic control can not be done without
knowledge of the mathematical theory of optimal control. That is why, in our
paper we clarify the idea of cost functional, ODE constraints, isoperimetric
constraint, Pontryagin maximum principalefor a train control problem (see [1, 2,
6-16]).

This article is addressed not only to mathematicians wanting to know more
about mathematical issues associated with concrete applications, but also to
engineers already acquainted with classical techniques of optimal control, wishing
to get more familiar with the more modern approaches of geometric control and
other mathematical notions that have demonstrated significant enhancements in
classical train problem, or to discipline to nontrivial examples in transport
problems.

The article presents a scholarly research application, with mathematical
solutions for strategy development of optimization of energy consumption with
implications in the field of railway transportation. It is a first step to achieve an
intelligent railway vehicle. Control system of the vehicle drive regime for
optimization of energy consumption is an emerging technology for railway
traction. Optimization energies resource consumption is for railway system a high
priority both in terms of the efficiency of the system and in terms of protecting the
environment. Acceptance and usage of new technologies for drive regime of
traction railway vehicles will determine new technologie applications for railway
infrastructure and new strategies for vehicle driving and traffic management for a
high economic efficency of railway system.
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