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ENERGY-MOMENTUM DISTRIBUTION OF A GENERAL PLANE
SYMMETRIC SPACETIME IN METRIC f(R) GRAVITY

Morteza Yavari!

In this paper, the exact vacuum solution of a general plane symmetric
spacetime is investigated in metric f(R) gravity with the assumption of constant
Ricci scalar. For this solution, we have studied the generalized Landau-Lifshitz
energy-momentum complex in this theory to determine the energy distribution
expressions for some specific f(R) models. Also, we show that these models satisfy
the constant curvature condition.
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1. Introduction

The energy localization is still an unsolved problem in the framework of general
relativity. A considerable amount of work has been devoted to study of the en-
ergy localization. For solving this problem, Einstein [1] introduced the energy-
momentum pseudotensors. He formulated the energy-momentum conservation law
%@W = 0, where t, is called the gravitational field pseudotensor. Many
authors like Bergmann [2], Goldberg [3] and Weinberg [4] have studied the energy-
momentum complexes and covariant conservation laws. The most of these studies
were restricted in Cartesian coordinates. Mgller [5] was the first who describe the
energy-momentum complexe in any coordinate system. Landau-Lifshitz [6] pre-
sented the energy-momentum complex in the geodesic coordinate system. Chang
et al. [7] showed that any energy-momentum complex is connected with a Hamil-
tonian boundary term. This shows that we can consider the energy-momentum as
quasi-local. The quasi-local energy were investigated by several authors (see e.g. [8]).
Cooperstock and Sarracino [9] proved that the localization of energy in the spherical
systems is the necessary condition for the localizable in any system. Aguirregabiria
et al. [10] proved that the different energy-momentum complexes could give the
same energy distribution for any Kerr-Schild spacetime. Recently, a number of au-
thors have tried to solve the problem of energy localization via the modified theories

as

of gravity.
Different data from the recent astrophysical observations such as Super-Nova
Ia [11], Cosmic Microwave Background Radiations [12] and Wilkinson Microwave

! Kashan Branch, Islamic Azad University, Kashan, Iran, E-mail: yavari@iaukashan.ac.ir

99



100 Morteza Yavari

Anisotropy Probe (WMAP) [13] have indicated that the expansion of universe is
currently accelerating. The standard general theory of relativity can not describe
the accelerated expansion. Based on these data, physicists now believe that the
most part of universe contains dark energy with negative pressure, in which this
energy constrain the cosmic expansion [14]. One of the seriously approaches which
may help to explain the origin of dark energy is to modify the general theory of
relativity. The modified theories of gravity, such as f(R) gravity, have gained a
lot of interest in recent years. In these theories, the geometrical part of Einstein-
Hilbert action is modified by adding the higher-order curvature invariants. Stelle
[15] showed that the higher-order actions are renormalizable. Hence, modifying of
Einstein-Hilbert action is a possible approach to make a renormalized theory of
gravity. Among the modified theories, the f(R) gravity seems to be an attractive
model which is relatively simple but has many applications in gravity, cosmology
and high energy physics. In this theory, a general function of Ricci scalar as f(R) is
replaced instead of R in the Einstein-Hilbert action, first discussed by Buchdahl [16].
Nojiri and Odintsov [17,18] showed that the modified theories of gravity provide a
natural gravitational alternative way for dark energy. Nojiri and Odintsov [17,18]
and Faraoni [19] have shown that the some f(R) theories can pass the Solar System
tests.

Multaméki et al. [20] studied the energy-momentum complexes in metric f(R)
gravity. They generalized the energy-momentum complexe in metric f(R) gravity
for constant curvature solutions. Sharif and Shamir [21] found the energy densities
for some static plane symmetric solutions by using the generalized Landau-Lifshitz
energy-momentum complex. In the present paper, we would like to extend this
analysis for a general plane symmetric spacetime.

This paper is organized as follows: In section 2, the field equations in metric
f(R) gravity are discussed. In section 3, the vacuum solutions of a general plane
symmetric spacetime for constant curvature are found. In section 4, we firstly give a
brief introduction about the generalized Landau-Lifshitz energy-momentum complex
in the framework of f(R) gravity. Then, the energy distribution for the obtained
solutions in section 3 are computed for a number of commonly considered f(R)
theories. In the last section, we conclude the results.

2. Field equations in f(R) gravity

In this section, we give a brief review of the modified field equations in metric
f(R) gravity. There are two formalisms which are applied to obtain the field equa-
tions in f(R) gravity. One is the metric formalism while the another approach is
Palatini formalism. The modified field equations obtained by these two formalisms
are not the same in general. The metric formation of this theory has been studied
by a number of authors (see e.g. [18]). The metric and Palatini f(R) gravities have
recently been reviewed in detail by Capozziello and Francaviglia [22], Sotiriou and
Faraoni [23]. Olmo [24] has reviewed the recent literature on modified theories of
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gravity in Palatini approach.
The action for f(R) gravity coupled with matter is given by!

S— % /d%\/fgf(R) + S, (2.1)

where f(R) is a general function of Ricci scalar and S,, represents the action asso-

ciated with the matter fields. The field equations are reached by varying the above

action with respect to the metric tensor g,,,, then they are given by
1 1,5

RW—§gWR:TEV+87TGF(R),

(2.2)

in which T}, is the geometric energy-momentum tensor and it defines as’

1 1 o
Th = g { 3w (10~ FUDR) + VT F () oyt~ bt |+ (29
: _ d(R) m :
with F(R) = iR and T, is the standard matter stress-energy tensor derived
from the matter action. For the vacuum solutions, the field equations become

3 H(R)g, — ViV (R) + g, OF (R) =0, (24)

where [J = V#V, is the d’Alembertian. Next, contracting the field equations, gives
the following relation between f(R) and its derivative

F(R)R — 2f(R) + 30F(R) = 0, (2.5)

F(R)R,, —

which will be used later to simplify the field equations and to determine the function
of Ricci scalar. For constant curvature solutions (R = Ry), this equation reduces to

F(Ro)Ro — 2f(Ro) = 0. (2.6)

This condition is very important for checking the acceptability of f(R) models.

3. The plane symmetric vacuum solutions

The study of plane symmetric solutions in Einstein theory has a long history.
The general vacuum solution of the plane symmetric model was first considered by
Taub more than 60 years ago. A generalization of this spacetime with cosmological
constant was first obtained by Novotny and Horsky [25]. In recent years, the plane
symmetric spacetimes have been discussed extensively in general relativity by many
authors. Sharif and Shamir [26] studied the constant curvature vacuum solutions
of plane symmetric spacetime in metric f(R) gravity. Yavari [27] investigated a
complete set of the exact vacuum solutions of the plane symmetric spacetime for
two cases R = constant and R # constant in metric f(R) gravity. In this section,
we find the exact solutions of vacuum field equations for a general plane symmetric

IThe gravitational units with c=G=1 are used.
2V,L is the covariant derivative associated with the Levi-Civita connection of the metric.
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spacetime in metric f(R) gravity. We consider the line element of plane symmetric
spacetime in Cartesian coordinates given by

ds? = —adt® + b(da? + dy?) + cdz?, (3.1)

where a, b and ¢ are unknown functions of z. The corresponding Ricci scalar is

1 a B! a 2 Y 2 ad b a b o
= —<{2—+4— - — — | — 22— = —— —2—— 2
R 20{ « % <a> <b>+ ab ac bc}’ (32)

here prime denotes derivative with respect to z. Next, by applying the equation
(2.5), the vacuum field equations take the following form

UF — RF

VHVZ/F - FR[,LZ/ = A v

(3.3)

since the metric only depends on the coordinate z, this equation is a set of differential

equations for functions a(z), b(z) and c(z). In this case both sides are diagonal and

so, we have four equations. From the equation (3.3) it is clear that the combination

M, = VeVuF=FRu
# &up

have M,, = M, for all p and v, [28]. From the last consequence, two following

with fixed indices) is independent of the index p and so, we

independent field equations are obtained

a/ b/ a// b// a/ 2 a/ b/ a/ c/ b/ C/
o LT p % o7 (L) 42 T P p g (34
(a b> {a b (a)+ab ac+bc} » (34)

/ / % % 2 adtv b
o — (L4 C Y () 22 2y, :
<a+c b b ab bec 0 (3:5)

Therefore, there are only two field equations containing four unknowns, i.e. the
metric coefficients and F(z). Thus, any set of functions a(z), b(z), ¢(z) and F(z)
satisfying the above two equations would be a solution of the modified field equations.
It is obvious that the solution of these equations could not be found easily. On the
other hand, we know that some of the constant curvature solutions in f(R) gravity
are equal to the solutions in Einstein theory. Hence, in the next section, we will
study the simple (but important) case of solutions with constant curvature.

3.1. Constant curvature solutions

For the constant curvature solutions, R = Ry = constant, we have F'(Ry) =
F"(Rp) = 0. By applying these conditions, equations (3.4), (3.5) and (3.2) respec-
tively are changed to

" B! I\ 2 "y o b o
a <a> LAV dd Ve (3.1.1)

b// b/ 2 a/ b/ b/ C/
2y~ <b) Wb e (3.12)

" ! I\ 2 by 2 1y o b o
20 447 <a> - () 422 L8 97 % 9Rye=0. (3.1.3)
a
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It is not an easy task to find the general solutions for these equations. Firstly, by
eliminating the variable a from the equations (3.1.1) and (3.1.2), we lead to the
following differential equation

by b ' % 2 J 2 % 10 J

In continuation, calculations show that the following expression

Z;/ - —4";)5 tan (/ nedz + 5> : (3.1.5)

can be a general solution of the equation (3.1.4), while n and § are constants of
integration. Moreover, combining this result with the equation (3.1.2) yields

@ 477?\’5 {3008602 </nﬁdz + 5) — tan (/ nedz + 5> } (3.1.6)

a

By substituting the equations (3.1.5) and (3.1.6) into equation (3.1.3), after a rather
tedious calculation and simplifying, one obtains®

¢ —mey/csin?2 </ nvedz + 5) =0, (3.1.7)

where m = 4%) + %’7. By differentiating of this equation, we find that
2¢d’ — 3(<)? — dne/m2ct — (¢)2e = 0. (3.1.8)

Unfortunately only an integral expression as z = z(c) can be obtained from the
solution of this differential equation as

de
V812(e — )3 Inc + (m? — 4n2e?)c3

=tz (3.1.9)

where ¢ is an arbitrary constant. This integral equation can be solved exactly only
for e = 1. In this case, the existence of the real solutions for Ry = 0 are impossible

and also we must have % > % or %) < —%. However, the solution of integral
equation (3.1.9) for special case € = 1 becomes
4
C= —5——5—5. 3.1.10
(m? ~ 172)2? 110

After substituting this expression into equation (3.1.5) and integrating, it is found
that

b= cos%(2n9), (3.1.11)

Inz
where § = ———— and we also have taken the constant ¢ to be zero without

m?2 — 4n?
any loss of generality. In order to determine the another metric coefficient, we look

3Most of the calculations were done using Maple software.
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at the equation (3.1.6). It is difficult to solve this equation. But, we can use the
equation (3.1.2) which looks simpler. Therefore, after some work, it is given by

a = sin3 (250) tan3 (2n0). (3.1.12)

By introducing the new variable Z = g — 26, one can rewrite the metric (3.1) as
follows

ds? = — cos?(nZ) sin™ 3 (n2)d® + sin3 (n2) (da? + dy?) + d32, (3.1.13)

in which n has to be a real odd integer number. This metric has the same general
2
form as Novotny-Horsky solution with cosmological constant A = 4%, [29].

4. Energy distribution of Novotny-Horsky solution

In this section, we calculate the energy distribution of constant curvature
solution (3.1.13). For doing this, the generalized Landau-Lifshitz energy-momentum
complex will be used. We note that this energy-momentum complex is used only
for the constant curvature solutions. The calculations show that we are unable to
formulate a general expression for the energy-momentum complex which valid for all
metrics and theories. The generalized Landau-Lifshitz energy-momentum complex
for a general f(R) theory is given by, [20]:

1

T =77 f'(Ro) + B (f/(R0>RO - f(Ro)) aaxé <g“”3z7‘S — g“ax”) , (4.1)

where 717 is the Landau-Lifshitz energy-momentum complex evaluated in the frame-
work of general relativity with the following form

= (—g) (¢f, + T, (4.2)
and the energy-momentum pseudotensor ¢/ is defined via the following expression
167Gt = (""" — g8 ) (2075105 — T15T5, — T2, T

g™ (T4sTh, + T Ths — T%00 5 — Thsls)
g7y (DTS, + T Ths = ThTh, — T,T0,)
4 goBgTd <ngrgg _ rgﬁr%) , (4.3)

where I'),, are the usual Christoffel symbols constructed from g,,. The equation
(4.1) is a generalized formula of the Landau-Lifshitz energy-momentum complex
which valid for any f(R) model with constant curvature solutions. We see that the
generalized Landau-Lifshitz energy-momentum complex in f(R) theory coincides
with the Landau-Lifshitz energy-momentum complex in general relativity only if
f(Ro) =0 and f'(Rp) = 1. Next, the 00-component of the relation (4.1) is given by

00 _ 00 41 1 / o, 8%
T =71p0f (Ro) + R (f'(Ro)Ro — f(Ro)) (3g t o T > . (4.4)
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Furthermore, we know that energy of the gravitational field is obtained by the
integrated 7° over the 3-dimensional space integral, [20]:

E = /// 70det da?da?, (4.5)

which is an important quantity of the physical system.

In continuation, for determining the 00-component of t’zlz, we need to determine the

nonzero Christoffel symbols of metric (3.1.13). The calculations show that
2
Iy, = ?77(2 cos’z — 3) cscz,

2
Iy =T% = ?ncotz

I3, = %(2 cos®z — 3) coszsin™3 z,
2
3, =Is, = —?77 coszsind z, (4.6)
in which z = nz. In addition, the corresponding Ricci scalar is Ry = —% = —4A.

By substituting the above Christoffel symbols into equation (4.3), after a rather
tedious calculation, one obtains

1
t%OL T g { goorggrgo + 48211@31?1 + gSS(F83)2 - 6g33(1“}3)2 } . (47)

After simplifying, this relation takes the simple form

5A
0 = “ounC sin~3 z, (4.8)
and it yields
5A
™ = YrE cos? zsin3 z. (4.9)
After inserting this value into equation (4.4), we finally get
5A 1
00 / /
=— Ro)Z1 + ——=(f (Ro)Ro — f(Ro))Z 4.10
sine | o) 21+ = (f (Ro) Ro — f(Ro)) 22, (4.10)
in which Z; = cos? z sin? z and Zy = —3sec’z sini z—z %(8602 zsins z). This relation

is valid for any f(R) theory which has the Novotny-Horsky metric as a vacuum
solution. Below, we will calculate this energy density for some well known f(R)
models with the constant curvature condition.

4.1. First model

At first, we discussed an important f(R) model as follows, [17,18]:

f(R)=R— ‘5—032, (4.1.1)

where 1 and o are real numbers. This model with ¢ = 0 is the first dark energy model
introduced in f(R) gravity, called the Carroll-Duvuri-Tordden-Turnner model. It is
mentioned here that this f(R) model satisfy the constant curvature condition, i.e.
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f'(Ro)Ro — 2f(Rg) = 0, which implies that p* = %. By applying this result, the
00-component of the corresponding generalized Landau-Lifshitz energy-momentum
complex is given by

00 _ 14+60A

Zs +57Z1)A. 4.1.2
187G (Z2+521) ( )
After integrating, the energy distribution function per unit surface is calculated as
14+ 60A)VA
E(z) = —M Zsin’ z, (4.1.3)
9vV37G

where Z is defined as follows 1
7 = —zsec’z — 3 tanz(15sin®z + 1)

7 15 11
+ 10 hypergeom <2, 5 sin? z) sin z. (4.1.4)

4.2. Second model

Nojiri and Odintsov [17] suggested a new model of modified gravity which
contains the positive and negative powers of curvature as follows
-1 @ -1
FR)=R—(-1)"" 5 + (-1)"7 BR, (4.2.1)
where n and p are positive integers and «, § are any real numbers. They proved
that the terms with positive powers of curvature provide the inflationary epoch
while the terms with negative powers serves as an alternative for dark energy which
is responsible for the cosmic acceleration. This model must satisfy the constant
curvature condition, and this condition yields

(n+2)a+ (p — 2)B(4M)" 1P = (4A)" 1. (4.2.2)
For the particular case p = 2 or 5 = 0, we get
(4A)n+1
= —2. 4.2.3
o=y (1.23)
In this case, we have f(Ry) = %RO and f'(Ry) = Qn"—j; The equation (4.2.3)

satisfies the constant curvature condition which is necessary for the acceptability
of the model (4.2.1). After imposing this condition, the energy function takes the
following form

(n+ 1)VA

2
- Zsindz. 4.2.4
6v3 (n+2)7G (4.24)

E(z) =

4.3. Third model

One of the another cosmologically interesting f(R) model is given by, [30]:

f(R)=R—oln <|l:) + (=1)""I¢R™, (4.3.1)

where its parameters are related to the cosmological constant. The f(R) modified
theories with the In R term often conduct to a consistent modified gravity which



Energy-momentum distribution of a general plane symmetric spacetime in metric f(R) gravity 107

may pass the Solar System tests, [30,31]. The constant scalar curvature condition
gives

4A

0—4A —2pIn <k:> +(n—=2)C(4A)" = 0. (4.3.2)

For the case n = 2 or ( = 0, this condition reduces to
4A

=——| 4.3.3

¢ 1 2m(%) (4.3.3)

which satisfies the constant curvature condition necessary for acceptability of the

4A

model (4.3.1). By inserting the value f'(Rp) = % into equation (4.10), we
obtain *
Zy + (4 (2, + 52

so0 __ 22+ () (2 +521) (4.3.4)

127G (21n(%2) — 1)
Finally, the energy distribution function for the model (4.3.1) is obtained as follows

B Zln(%) —zsec’z — 2tanz + %hypergeom (%, %, %; sin? z) sin z sin% VA

6v37G (2In(%}) — 1)

E(z) =
(4.3.5)

5. Conclusions

In this work, the exact solutions of a general plane symmetric spacetime have
been investigated in the framework of metric f(R) gravity. Firstly, it is found that
the vacuum solutions with constant curvature are exactly similar to the Novotny-
Horsky solution with a parameter which is identified as the cosmological constant.
For this solution, the energy distribution functions have been calculated for some
important f(R) models by using the generalized Landau-Lifshitz energy-momentum
complex. It was also found that the constant curvature condition is satisfied for
these models.
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