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NEW FAST CONVERGENT SEQUENCES OF EULER-MASCHERONI
TYPE

Gabriel Bercu!

We introduce two new sequences of Fuler-Mascheroni type which have fast con-
vergence to the constant . Our results extend, improve and unify some ezisting results
in this direction.
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1. Introduction

One of the most known constant in mathematics is the Euler-Mascheroni constant

v = 0.57721566490153286 . .., which is defined as the limit of sequence
1 1 1 1 1 1
Tn = —|—2+3+-~-—|—n ogn. (1)

This sequence has diverse applications in many areas of mathematics, ranging from
classical or numerical analysis to number theory, special functions or theory of probability.

There is a huge literature about the sequence (v,),>1 and the constant . Please
refer to [3, 4, 5, 6, 7, 8] and all the references therein.

The speed of convergence to v of sequence (v,)n>1 is very slowly, if we take into
account that it converges like n~!. That is why many authors develop studies to improve
the speed of convergence of sequence (v, )n>1-

For example, Cesaro [1] proved that for every positive integer n > 1, there exists a
number ¢, € (0, 1) such that the following relation is true:

1 1 11 ) Cn
1+2+3+~--+n 2log(n +n) 7_6n(n+1)'

Recently, by changing the logarithmic term in (1), Chen and Li [2] introduced the
sequences

11 11 1
Pn:1+++-~-+—log<n2+n+)

23 n o 2 3
and
Qu=tt+isly i oL 2+ +12 !
nTiT9Ty n B\ Ty 45
and proved that the following inequalities hold:
1
- <~y—P, < ——,
180(n + 1)t =7 18004
and
# < Q _ < -
2835(n + 1)6 ~ " 7S 2835067
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for all integers n, n > 1.

In section 2, we introduce the sequence

1 1 1 1 ” —1
wn71+2+3+~~+n rlog(n +bn"7), (2)

where r and b are positive real constants.

Our aim is to find values for r and b which provide a faster convergence of the sequence
(wn)n>1 to the Euler-Mascheroni constant -.

In section section 3, we discuss on the faster convergence towards the constant v of
a sequence with logarithmic term involving the constant e. In this part, we make a link
between our study and the research work of Mortici [5].

2. A new fast convergent sequence to the constant ~y

An important tool for computing the speed of the convergence is Stolz lemma, the
case 0/0. Our study is based on a variant of this lemma.

Lemma 2.1. If (wy,)n>1 i convergent to zero and there exists the limit

lim nf(wp —wn) =1€R, k>1,

n— o0
then there exists the limit l
k—1

li n = ——.
e = 7

At first, we calculate the difference w1 — wy,. After some calculation, we find

1 -1 1 1 b+1 b
Wnt] — Wy = I 10g(1+)—[log<1++)—log<1+>}.
n+1 r n r n n

Then, we use a computer software to write the expression w,,+1 — w, as power series
of n=t. Thus

Wnil —Wnp=—f—"—5 +———5— + — =

2b—r 1 2r — 32 —-3b 1 +4b3+6b2+4b737’ 1 0 1 (3)
2r n2 3r n3 4r n4 ’

nd
The best speed of convergence of the sequence (wy,),>1 is obtained in case when first

coefficients of (3) vanish:
2b—r 0 2r—3b2—3b7

0.

2r ’ 3r
We find b = % and r = % In this case, the coefficient of n~* becomes %.
We can state the following

Theorem 2.1. The following statements hold true:
i) If 2b — r # 0, then the speed of convergence of sequence (wy)n>1 is ™1, since
2b—r r—2b

A —wn) = 5=, and . lim nn =) = 5= #

ii) If 2b — 7 = 0, and 2r — 3b®> — 3b # 0, that is b # %, then the speed of convergence
of the sequence (wy)n>1 is N2, since

2r — 3% — 3b -2 b +3b
lim n(wWng1 — wn) = 2r = 3b7 = 3b , and lim n*(w, —7) = Z2r A ShT 4 30 # 0.
n—00 3r n—00 6r

iii) If 2b — 7 = 0, and 2r — 3b% — 3b = 0, that is b = % and r = %, then the speed of
convergence of the sequence (wy)n>1 i ™3, since
1 1

nl;rrgo n4(wn+1 —wp) = T and nlgréo n3(wn —7) = 1
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Remark 2.1. For b= % and r = % the sequence introduced by us has the form
W=1ditiy, + = lo

If denote by v the digamma function, it is well known that

"1
1)=— —. 4
st =73 @
By the elegant article by Mortici and Chen [8], we obtain
1 1 1 1 , 1 1 1
———t - HN<———+—, Vz>0. 5
z  2z2 + 6x3 30z (z+1) < x 272 + 630 07 (5)

We will prove the following result.

Theorem 2.2. If (wQ) is defined as above, then the following relations hold:

0

— <y —wd) < ——
B +1)8 ~ TS s
for any integer n, n > 1.
Proof. First of all, we observe that
1 1 1
0
—W0 - ~ 4 Zlog | V/n2 .
VT TR T T L k Og( * ﬁ) 54n3
and, by (4),
1 3 1 1
—wd - —— =21 V/n2 — 1) — —. 6
7T T S zog( Y A A U v (6)
This enable us to consider the function
1
Fi(0,00) > R, Flo) = ylog (Va4 o) = vla+ 1) - o,
whose formula can be written in a more convenient form as
3 1
F :7(1 1) —log3 — =1 )— 1) — —.
(z) = 5 ( log(3z +1) —log3 5 logz Y(z+1) E1as

Now, after some calculation and using (5), we get
1
1824(3z + 1)

Therefore, the sequence (F(n)) is increasing, hence
F(n) <lim F(n) = 0.

F'(z) > >0, Vz>0.

From (6), it follows that

1
J— O —
T T s <0
To prove that
1
0
—w, — 0
T Wn 54(n +1)3 > O

we consider the function

G:[l,00) > R, G(z)= log< 3f)—1/)(m+1)—54(x1+1)3.

For calculation, we use a more convenient form of G as
1

3 1 3
G(z) = 3 log(3z +1) — Flogz — Slog3 — (e + 1) — zrr=g.
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Using the same technique as above, we find that G'(xz) < 0, Vz > 1. This means
that the sequence G(n) is decreasing, hence

G(n) > limG(n) =0,

and this completes the proof. (|

In the following we introduce the sequence (Ry,)n>1,

1 1 1
Ro=1+4 -+ +———log(n" +bn"* ) 7
+2+ +n rog(nJrn +en" %) (7)

r, b and ¢ being positive real constants.
Note that for ¢ = 0 we find the sequence (w,,), introduced in (2).
We also calculate the difference

1 -2 1 1 b+2 b 1 b
Ryt1—R, = . r log(14+—)—=|log |1+ i + ret — log 1+ 2+ 2|
n+1 r n r n n? n n?

Using a computer software to write the expression R, — R, as power series of n™1,
we obtain

_2-r 1 2r — 32 —3b+6¢ 1

B = fn = =5 =2 3 s
—3r — 12bc + 4b® + 66> + 4b — 12¢ 1
+ R
4r nt
+4r+2—5(b+2)(b+c+1)2+5bc2+5(b+2)3(b+c+1)—5b3c+b5—(b+2)5 1
5r nd

()

We vanish the first three coefficients, and find

2b—1r
2r =0
2r—3b2—3b+6c_0
3r
—3r — 12bc 4 4b — 12¢ + 4b® + 6b* 0
4r '

1
The solution of this system is b= 1, ¢ = 3 and r = 2.

1
We also have lim n®(R, 1—R,) = T and using Lemma 2.1, we obtain lim n*(R, —
n—o0 n—oo

1
) = 130" Therefore, by our method, we obtain that the sequence

1 1 1 1
=14+ -4 -4+ - —=1 2 -
R +2+ +n 2og(n +n+3>

has the speed of convergence n 4.

Remark 2.2. Note that the sequence (R,,),>1 is the sequence (P,),>1 introduced by Chen
and Li in [2]. Therefore, we proved that this one is the unique sequence of the form (7),

which has the speed of convergence n ™.
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3. A new fast convergent sequence with logarithmic term involving the
constant e

Our aim in this section is to discuss on the faster convergence towards the constant ~
of a sequence with logarithmic term involving the constant e. In this respect, we shall refer

as starting point the work of Mortici [5]. In this research article, he introduced and studied
the speed of convergence to v for sequences of the form

1 1
wr :1+§+§+~~+E+log(exp(a/(n+b))71) —loga.
Adapting our initial sequence (wy)p>1 for 7 = 2, we define a new sequence

1 1 1 1 e 24m)) -1
g byl L L (el ) 1Y
2 3 n 2 a

As above, we write

1

:n+1—;<log(1+;)+log(l+b:1)—log(l—i—Z))

+1 log (exp(a/(n +1)(n+b+1)) — 1) 3 llog (exp(a/(n(n +0))) — 1) _

Hn+1 — Un

2 (71+1)(7L+b+1) 2 n(na+b)

Now, we use a computer software to obtain the following representation in power
series:

Rt 1_3b2+3b+2_g 1
fnsd = Hn = To0s 6 2) 3
N _§+2b3+3b2+2b 3a  3ab) 1 8)
4 4 4 4 4
9+0° — (b+1)° 3 o a?\ 1 1
— = —aq——ab—ab" — —= | — .
+< 10 @ gabmabt =05 ) s O s
We cancel the first coefficients of (8),
32 +3b+2 a
b=1, 1-2""T=_ .
’ 6 2
Solving with respect to a and b, we find that the solution is a = —2 and b = 1. In

3
this case, the coefficient of n=* is also 0 and the coefficient of n=° is =3

ﬁ.
Therefore, we have proven this result.
Theorem 3.1. The following statements hold good:
i) If b # 1, then the speed of convergence of sequence (fin)n>1 is ™1, since

. b—1
lim nQ(,Un+1 — pn) = —5—

n— 00 2 7

1-0
and lim n(pu, —v) = —.

n— o0 2

i) Ifb=1 and a # _72, then the speed of convergence of sequence (n)n>1 is N2

)
since

ACHE

—%, then the speed of convergence of sequence (jun)n>1 is n™*

. 1 a . 1/a 1
nliﬂgo 0 (fina1 — fin) = 37y and nlggo n*(fy —7) = = ( ) .

iii) Ifb=1 and a =

M
since

: 5 _ 13 . 4 o 13
nll)nc}on (lun+1 - ,u"n.) - ﬁa and nh~>ngon (H’TL - "Y) = *%
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Remark 3.1. For b=1 and a = —%, the sequence (fn,)n>1 has the form
1 1 1 1 1—exp(—2/(3n(n+1)))
0
T T R |
Hp=145+5+ 44 log 2

We notice that the sequence (1) has the logarithm term involving the constant e.

Remark 3.2. The new sequence (10 converges to «y like n =%, while the sequence of Mortici
introduced in [5] converges to 7 like n 2. We deduce that the approximation v ~ ¥ is more
accurate than v >~ pr.

Using a similar technique as in the proof of Theorem 2.2, we find

Theorem 3.2. If (1) is defined as above, then the following relations hold:
13 0 13 13
Tsaont <M TS T5aopt T 270
for any integer n, n > 1.
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