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SEPARATION AND FUSION GRAPH NETWORKS FOR
SESSION-BASED RECOMMENDATION

Jingyuan HE*?, Bailong YANG®*, A. RUHAN?*, Jinjin ZHANG"®

Previous models of session-based recommendation simply concatenate
incoming graph and outgoing graph as a joint graph, and they model item
representation with the relationship of item graphs but ignore the item-self
information. Additionally, the incoming graph and outgoing graph indicate different
relational patterns, they should be modeled separately, and how to balance their
importance in a flexible and end-to-end manner could be crucial for performance
enhancement. This paper presents Separation and Fusion graph networks (SEFU) for
session-based recommendation. For each session, SEFU first represents the incoming
and outgoing graphs with two separate graph neural encoders and item-self
information to generate item representation, then leverages an attention-based gating
mechanism to selectively fuse representations of incoming graph and outgoing graph.
Extensive experiments present SEFU greatly outperforms other models, verifying
efficacy of our proposed method on session modeling.

Keywords: graph neural network; incoming graph; item-self information;
outgoing graph; session-based recommendation

1. Introduction

Recommender systems (RS) have evolved in modern society for helping
users to make choice from the large number of products and services. The main
core of current recommender systems, such as collaborative filtering RS, is
modeling the long-term static user preference. However, in these systems, the user’s
intent after a certain period of time may be easily submerged by his/her historical
behaviors, making the recommendations inopportune and/or inappropriate. To
address this, Session-based Recommendation (SR) models a transaction with
multiple purchased items in one shopping event as a session, and then recommends
next clicked item based on interaction of items, without using user identification
information [1]. As aresult, SR can better model user’s preference dynamically and
is applied to e-commerce and online-searching systems.
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Current SR approaches can be classified into three categories in terms of
how they model the session. One classical approach is the Markov Decision Process
(MDP) modeling. The MDP-based models introduce the Markov assumption
simplifies the recommendation model. To better model user interaction histories,
the second line of approaches model the session as sequences [1], [2]. Sequence
modeling methods always treat the step-backed items as new items without
characterizing the vacillation behaviors of users. To address this drawback, recent
methods consider sessions as graphs, and recommend items with the help of
prevailing Graph Neural Networks (GNN) [3], [4].

When we look more closely at the connections between items in each
session (see for example in Fig. 1), there are two kinds of connections: the incoming
connections from other items to each target item and the outgoing connections from
each target item to others. Although existing GNN-based methods have achieved
excellent performance, these methods simply combine the incoming connections
and the outgoing connections into a joint graph, neglecting their distinct effects in
item representation learning. In addition, previous methods ignore the information
of the item self when constructing the item representation. It indicates that item
vector which is built by GNN from previous methods lacks item-self information
and is incomplete.
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Fig. 1. A sketch of a session and its corresponding session graph

In this paper, we propose a Separation and Fusion graph networks (SEFU)
for SR. For each session, we consider the incoming connections and outgoing
connections as two separate graphs which are independently processed via two
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gated GNN-based encoders, and we integrate them with item-self information to
deliver two representations of the session. Then, a gating mechanism is developed
to fuse the two individual session representations by flexibly weighting their
influences on the prediction of different items.

2. Related work

Traditional SR methods. The traditional methods for SR are mainly based
on the idea of item-to-item or co-occurrences of the items. Rendle [5] combine
Matrix Factorization and MC to model sequential behaviors for the next basket
recommendation. However, these methods neglect the previous clicks and discard
the useful information in the sequence.

RNN-based SR methods. Recurrent neural network (RNN) has attracted
great concern since its capabilities in modeling sequential behavior. Li et al. [2]
designed NARM to build user’s main purpose by item-level attention mechanism
(AM). Pan et al. [6] consider importance of items to improve recommendation
performance.

GNN-based SR methods. GNN is increasingly used in SR recently. Li et
al. [7] proposed Disen-GNN for SR. [4] employ both GNN and the self-attention
mechanism to learn latent vectors for all nodes and long-range dependencies
between the distant items for recommendation. Some researchers incorporate
graph-structured data and target-aware attention module for SR. Xia et al. [8]
proposed SHT to enhance user representations and robustness of recommender
systems by exploring the global collaborative relationships in an explicit way.

Our work is related to SR with GNN (SR-GNN) [3]. Indeed, our work shares
the same backbone with SR-GNN. The major difference between SR-GNN and our
work is that we emphasize the different roles of the incoming and outgoing graphs
in session representation learning via two independent GNN encoders and flexibly
adjust their importance weights by using the attention mechanism. SR-GNN also
separates the incoming graph from the outgoing graph, but it simply concatenates
the corresponding adjacency matrices into a joint matrix column-wisely, where the
computation will degenerate to a naive GNN encoding with a directed adjacency
matrix. Additionally, we consider the role of item-self information in modeling item
representation, which further strengthens the accuracy of session representation.

3. Methods

InSR, V={v,v,,-v,} denotes the set of unique items. We use [v,,v,,---v,] t0
denote an interaction session, in which v, is the i-th interaction item during session.
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3.1. Framework

As shown in Fig. 2, SEFU consists of an incoming session encoder (ISE),
an outgoing session encoder (OSE), and a recommendation decoder. In ISE, item
embeddings and incoming adjacent matrix are converted into two high dimensional
representations with the help of the GNN and soft-attention mechanism: one is an
incoming local embedding and the other is an incoming global embedding. In OSE,
it converts item embeddings and outgoing adjacent matrix into two high
dimensional representations with help of another GNN and soft-attention
mechanism: one is an outgoing local embedding and the other is an outgoing global
embedding. Finally, outputs of ISE and OSE are fed into recommendation decoder.
The output of the framework is a recommendation score.
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Fig. 2. The framework of SEFU

3.2. Graph construction

Given an input session [v,,---,v,,---,v,], we firstly model this session as a direct
graph where v, is denoted as a node and each edge (v,,v,,,) represents the item V. is
clicked after item v, in this session. We can build individual incoming adjacent

matrix A" and outgoing adjacent matrix a* according to the connection edges. For
example, the corresponding graph and the adjacent matrices for the session
[V, V5., v,,v,] are shown in Fig. 1. Additionally, we embed each item v; into a space

v, eR". Then, incoming node vector v~ can be learnt by using a GNN with the help
of the incoming graph which contains all the item embeddings ,,v,,...v, and A"
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that is the i-th row of a" corresponding to item v;. Similarly, the outgoing node
vector v of item v; can be learnt by using another GNN with the help of the
outgoing graph which contains all the item embeddings v,v,,....v. and a>t that is i-
th row of A corresponding to item v;.

3.3. Incoming session encoder

For a session, we learn the latent vectors of nodes via gated GNN. [9]
proposed a gated GNN based on the vanilla GNN. Many researchers propose utilize
the gated GNN as encoders to learn node vectors in a session graph. The gated GNN
structure in ISE is shown like below:

a =A'V" VT H+b 1)
7 =o(Wal +U,v?) 2

' =o(Wa' +Uyv?) 3

v} = tanh(W,aj + U (' e ™) (4)
vi=(1-z)e v +zie U (5)

Where 7 is update gate, r' is reset gate. v is a candidate state.

W, U, W,U,W,, and U, are learnable parameters. e denotes element-wise
multiplication. o) is the sigmoid function. Additionally, [v'*,... vt is the list of the

node embedding. Equation (1) is used for information propagation between
different nodes with respect to A" .

For a session graph, the gated GNN handles the nodes at the same time.
More concretely, a' firstly extracts the latent vectors of the nodes which interact

with the i-th node and then they are fed as the network’s input. Then, update gate
and reset gate use sigmoid function to determine what information to be retained or
discarded, respectively. Thirdly, candidate state is constructed by current state, reset
gate, and previous state. Finally, previous state and candidate state are combined
with consideration of the update gate to construct the final state. We can obtain all
the node vectors v vinem ... vinemy after all the nodes in the session are processed

into the gated GNN with respect to the incoming graph. However, the node-self
information loss occur in gated GNN operations. Thus we add the node-self
information on the node vectors which are produced by gated GNN, which makes
the item vectors much more accurate. Then, the final node vectors with respect to
the incoming graph and item-self information are denoted as [v",v?,---v"], which is

computed as:
V" = WviT @ Wy, (6)
Since a session is directly composed by nodes which are ordered by
timestamp, we plan to generate local embedding and global embedding with
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consideration of node vectors. Then, we take local embedding and global
embedding to build session representation.

For modeling incoming local embedding, since there is a very strong
causality relationship between user’s last action and next interacted item, we use
node vector v of the last clicked item as incoming local embedding, namely
s"=v,.

For modeling the outgoing global embedding, we consider the whole
sequential behavior in the session. Since not all the items reflect equally for
modeling the global embedding, we use soft AM to extract global preference
specific items that are significant to the global embedding. Finally, the incoming
global embedding s is aggregated by the vectors of those informative items, which

is computed as:
=3l @)
i=1
Where v is node vector of the i-th item, weighting factor «" models
relationship between v" and previous clicked items v" by computing their
similarity, which can be defined as:
b =q (WY + WP +c") (8)
Where w" and wi transform v and v into a latent space, respectively.
s() Is the sigmoid function. g is a weight vector and q" denotes its transpose.
Then, we concatenate s" and s as the hybrid incoming session

representation s":
s"=[s" 157 9)

3.4. Outgoing session encoder

Similar to the incoming session encoder, we use another gated GNN to
compute the node vectors in a session with the help of item embedding [v,,v,,---,v,]

and outgoing adjacent matrix a*. After adding the item-self information on the
corresponding node vectors which with respect to outgoing graph, the final node
vectors are denoted as v, v, ... v].

For modeling the outgoing local embedding, we also use the node vector
vee of the last clicked item as outgoing local embedding, namely so — o

For modeling the outgoing global embedding, since every node contributes
different information to global embedding, the soft AM is also introduced to
generate outgoing global embedding s;". The process is similar to the process of
building the incoming global embedding. It is defined as:

o' =q o (W + WV +c) (10)

Sgut :Zn:a?utviout (11)
i=1
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Finally, the hybrid outgoing session representation s> is designed as:
Sou'[ :[Slout :Sgut] (12)

3.5. Recommendation decoder

Recommendation decoder is to fuse hybrid incoming and outgoing
representations of the session with an adaptive importance proportion, and compute
the probability of the next clicked item. Since incoming graph and outgoing graph
represent different information and have different roles for building session
representation, we build the final session representation s™ through an attention-
based fusion gating mechanism which controls the information flow from outputs
of ISE and OSE according to their importance:

sfinal — ftsin +(l— ft)sout (13)
where the fusion gate f, is determined by:
ft :O_(\Ninsin +W0utsoul) (14)

When the incoming graph plays a more important role in the session, f, is
adjusted to be larger adaptively, whereas (1- f,) decreases. Conversely, f, decreases
and (1-f,) increases when outgoing graph plays key role in modeling final session
representation.

Then, we calculate recommendation score ¥; for candidate item v; :

y, = softmax(v,Bs ™) (15)

Where s cr* transforms session representation into latent space Rr°.

In our model, loss is defined as:
(16)

vl
Loss = Zyi log(¥;) +(1-y;)log(1-¥;)
4. Experiments
4.1. Datasets and experiment settings

We conduct experiments on Yoochoose and Diginetica datasets from
RecSys Challenge2015 and CIKM Cup 2016, respectively. The statistics of them
are shown in Table 1.

Table 1
Statistics of datasets
Statistics Yoochoose 1/64 Yoochoose 1/4 Diginetica
# of training sessions 430,328 6,145,883 719,470
# of test sessions 55,464 55,861 60,858
# of items 37,484 37,484 43,098

We implement SEFU with Tensorflow and carry out experiments on a
Nvidia T4. Processing of dataset is followed by [3]. We firstly filter out the session
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whose length is 1 and where item occurrence is less than 5 in two datasets.
Following previous works [2], [3], the item embedding on each dataset is 100. We
use Adam to update parameters when training and initial learning rate is 0.001 and
will decay by 0.1 after every 3 epochs. Additionally, batch size is 100, and L2
penalty is 107 in our model. We use Recall@20 and MRR@20 to measure
prediction accuracy and order of recommendation ranking.

4.2. Model comparisons

Since our framework only uses information from current session, we
compare SEFU with some mainstream SR models which are based on the current
session. The performances of baseline methods and our proposed SEFU are shown
in Table 2.

Table 2
Results with different methods
Methods Yoochoose 1/64 Yoochoose 1/4 Diginetica
Recall@20 | MRR@20 | Recall@20 | MRR@20 | Recall@20 | MRR@20

FPMC 45.62 15.01 51.52 21.21 26.53 8.95
Item-KNN 51.60 21.44 52.34 21.69 28.75 9.36
GRUA4Rec 66.70 22.89 65.66 28.24 4456 14.32
NARM 68.32 28.34 69.10 29.13 48.32 16.29
GC-SAN 69.61 30.18 70.39 30.07 49.05 16.62
SR-GNN 69.17 30.12 69.37 29.47 51.03 17.07
Disen-GNN 71.46 31.36 - - 53.79 18.99
SEFU-10 71.28 31.31 70.68 30.28 51.38 17.19
SEFU 71.64 31.64 70.95 30.42 53.85 19.07

From Table 2, we can observe that:

In traditional methods, the result of FPMC [10] indicates consecutive items
have dependency relationships. Besides, the performance of Item-KNN [11] is
better than FPMC. It denotes the last clicked item very significant in
recommendation.

Since neural network methods have the ability to model the complex
contextual information, the RNN-based methods of GRU4Rec and NARM
excessively outperform the traditional methods. It indicates that modeling the
session representation considers the transitions between the consecutive items are
helpful for SR. Compared to the methods based on RNNs (GRU4Rec [12] and
NARM [2]), the models based on GNNs (SR-GNN [3], GC-SAN [4] and Disen-
GNN [7]) perform better. This may be because the graph-structured data is able to
capture more complex item transition patterns, and it verifies that GNN is friendly
to capture the information in a given session.

Data scale does not affect the performance. Compared with Disen-GNN,
SEFU gets improvement of 0.18 and 0.28, respectively for a small dataset like
Yoochoose 1/64, and gets improvement of 0.06 and 0.08, respectively for a dataset
like Diginetica. Especially, compared with SR-GNN which has a similar
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construction to us, SEFU-10 obviously gets large improvement on all datasets. We
suppose the reason is that the previous methods cannot distinguish roles of the
incoming graph and the outgoing graph to model the session representation.
Additionally, SEFU achieves the best performance. The results confirm our
proposed methodology of introducing item-self information in modeling item
representation, separating incoming graph and outgoing graph, and balancing their
importance in a flexible and end-to-end manner are reasonable and effective for the
GNN based methods.

4.3. Effect of different connections

To illustrate the effect of every encoder in our model, we compare SEFU
with two variants IC-SR and OC-SR. IC-SR denotes the final session representation
is directly generated only from the ISE. OC-SR refers that the final session
representation is built merely from the OSE. Fig. 3 shows the results of IC-SR, OC-
SR, and SEFU for SR.
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Fig. 3. Effect of the different connections for modeling the final session representation for SR
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From Fig. 3, we can observe that:

IC-SR and OC-SR both perform better than GRU4Rec and NARM. Their
differences are: IC-SR and OC-SR convert the session into a graph structure, and
the others directly use sequential information to build the session representation.
The results indicate that modeling session into a graph structure is friendly to
recommendation. Moreover, the incoming graph with item-self information or the
outgoing graph with item-self information can capture more information related to
the session.

For the same data source of Yoochoose, results of IC-SR are lightly higher
than those of OC-SR. It indicates the incoming graph very important in modeling
session representation for Yoochoose dataset, whereas the outgoing graph is more
effective than the incoming graph to improve the recommendation accuracy for
Diginetica. The results demonstrate that the incoming graph and the outgoing graph
play different role in modeling the session representation, and their performances
associate with the recommendation scenario.

Compared with the IC-SR and OC-SR, our model shows the best results for
recommendation. The results confirm the usefulness of adaptively selecting the
information from the different sources and the effectiveness of item-self
information for better recommendation.

4.4. Effect of different session embeddings

In this part, we construct two frameworks, SEFU-L and SEFU-G, to explore
the roles of local embedding and global embedding for modeling session
representation. SEFU-L models the session representation only with the incoming
and outgoing local embeddings in each encoder. SEFU-G models the session
representation only with the incoming and outgoing global embeddings in each
encoder. Their recommendation performances are shown in Fig. 4.
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Fig. 4. Effect of different session embeddings for SR
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From the Figs., the results of SEFU-L are higher than SEFU-G on
Yoochoose dataset, which means that the last clicked item has strong relation with
the next interactive item, and the local embedding is consistent with the user’s
preference. Conversely, SEFU-G shows better than SEFU-L on Diginetica dataset,
which shows that inherent dependency among previous clicked items. Therefore,
we suppose that when the last item is an unintentional or improvised click, only
using local embedding may obviously cause deviation, and introducing the global
embedding can correct the deviation. If one session consists of dispersed item
catalogs, only using global embedding may introduce noise to mislead the
prediction into a mistaken preference, and introducing the local embedding can
enhance the current preference.

SEFU improves the accuracy over SEFU-L and SEFU-G on all the datasets,
and the performances accord with the approaches which are not involved in item-
self information and separated incoming and outgoing graph with fusion gating
mechanism. The results indicate that SEFU improves the session representation
from the nature of the problem.

4.5. Effect of aggregation operations

We use different aggregation operations to build the final session
representation from the incoming session representation and the outgoing session
representation. The details are as follows.

Max pooling and average pooling respectively use maximum value and
average value of each dimension of the two session representations as the final
session representation, namely:

final

s — max(s", s*") (17)
Sfinal Z%(Sin+sout) (18)

For the concatenation, the final session representation is designed as:

SOut :[Sloul SSUI] (19)

From Table 3, we can see that fusion gating mechanism outperforms the

others. This demonstrates that fusion gating mechanism works better in modeling
session representation from ISE and OSE. Additionally, the results support the
thought of our work and indicate the incoming graph and outgoing graph play
different role in determining the representation of the session. In most cases, the
aggregation operation with max-pooling achieves better performance than the
aggregation operation with average-pooling or concatenation. This indicates that
max-pooling has an advantage over average-pooling and concatenation in modeling
the final session representation. We think the reason may be the average-pooling
and concatenation are not capable of selecting meaningful information from ISE
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and OSE, namely the effective information cannot be distinguished. And
introducing the noise information to meaningful information reduces the
effectiveness of meaningful information.

Table 3
Effect of different aggregation operations for incoming and outgoing session representation
Models Yoochoose 1/64 Yoochoose 1/4 Diginetica

Recall@20 | MRR@20 | Recall@20 | MRR@20 | Recall@20 | MRR@20
Max-pooling 70.49 30.63 70.71 30.22 51.42 17.29
Average-pooling 70.05 30.24 70.49 30.17 51.29 17.13
Concatenation 70.03 30.30 70.35 30.14 51.21 17.11
Fusion gating 71.44 31.64 70.95 30.42 51.56 17.37

4.6. Effect of session length

To explore the scalability of the recommendation performance with
different session lengths, there are Short and Long groups. For Short group and
Long group, the separation point of Yoochoose 1/64 and Diginetica are 5 and 4.
From Table 4, we can observe that: (1) compared with SR-GNN, OC-SR performs
better on Short group and IC-SR performs better on Long group. This indicates that
short session representations and long session representations relay on the incoming
graph and the outgoing graph heavily, respectively. For short sessions, the
possibility of user repeatedly browsing the same item is relatively smaller and the
interaction items show a progressive relationship. For long sessions, the user may
struggle for a fraction of items browsed repeatedly and the interaction items show
a comparison relationship. Therefore, incoming graph and outgoing graph play
different role in modeling session representation. (2) It demonstrates that separately
encoding the incoming graph with item-self information and the outgoing graph
with item-self information helps to learn a more precise node representation, and
adaptively selecting the different sources of the session representations promotes
the precise of the final session representation. (3) SEFU performs consistently
better than SR-GNN within both short and long sessions, which indicates
generation of our proposed main thought.

Table 4
Comparison of different session lengths

Models Yoochoose 1/64 Diginetica
Short Long Short Long
SR-GNN 27934 10927 21991 9102
IC-SR 28137 10936 22082 9014
OC-SR 28115 10959 21869 9176
SEFU 28427 11210 22117 9215
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5. Conclusions

We developed a novel framework SEFU to model different connections in
session graph for SR. We conduct thorough empirical experiments on the public
datasets to investigate SEFU. Specifically, the experimental results of the model
performance comparison, different connections for modeling the final session
representation for SR, different session embeddings for SR, different aggregation
operations for incoming and outgoing session representation, and the comparison
of different session lengths fully demonstrate the effectiveness of our model.
Experimental results show that our model outperforms existing methods on the
three public datasets. In addition, the ablation study validated the validity of each
component of our model. In addition, the ablation studies validate the validity of
each component of our model.
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