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UNIQUE OPTIMAL FUNCTION 
 

Virginia ATANASIU* 
 
 

Această lucrare este o abordare originală a teoriei credibilităţii semi-
liniare, din perspectiva functiilor de variabile aleatoare. 

Pentru a obţine rezultate superioare de credibilitate semi-liniară este 
utilizată o funcţie optimă unică de aproximare f, în loc să considerăm funcţii 
prescrise de aproximare: f1, f2,, ...,fn. 

Aceste performanţe includ cazul fp = f pentru toţi p în clasa celor mai 
buni estimatori de credibilitate semi-liniară, cu utilitate în practică. 

 
This paper is an original approach of the semi-linear credibility theory, 

from the perspective of the functions of the observable random variables. 
In order to obtain better semi-linear credibility results, a unique 

optimal approximating function f is used, instead of considering prescribed 
approximating functions: f1,, f2,,...,fn. 

These performances include the case fp = f for all p in the class of the 
best semi-linear credibility estimators with usefulness in practice. 

 
Key words: semi-linear credibility model, approximating functions, the structure 

parameters. 
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Introduction 
 

This article is devoted to semi-linear credibility, where on examines 
functions of the random variables, representing claim amounts, rather than the 
claim amounts themselves. 

So far, credibility estimators were linear functions of the observable 
random variables. 

Semi-linear credibility estimators are linear functions of transformed 
observations. 

The semi-linear credibility model involves the class of linear 
combinations of given functions of the observable variables, for solving the 
minimization problems of the type: 
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So the approximation to f0(Xt+1) or to μ0(θ) = E[f0(Xt+1)|θ] furnished in 
the first section, is based on prescribed approximating functions: f1, f2,…,fn. 

One may either assume the function f0, fpr are given in advance-as in 
Section 1, or one may try to determine the best choice-as Section 2. 

So in the second section we take fp = f for all p, and try to find the 
optimal function f. 

 
1. Semi-linear credibility model 
 
Consider a finite sequence θ, X1,...,Xt+1 of random variables. Assume 

that for fixed θ, the variables X1,..., Xt+1 are conditionally independent and 
identically distributed (conditionally i.i.d.). The variables X1,..., Xt are observable 
and θ is the structure variable. The variable Xt+1 is considered as being not (yet) 
observable. 

We assume that fp(Xr), p = n,0 , r = 1,1 +t  have finite variance. For f0, 
we take the function of Xt+1 we want to forecast. 

We use the notation: 
μp(θ) = E[fp(Xr)|θ]                                                                             (1.1) 
(p = n,0 , r = 1,1 +t ) 
This expression does not depend on r). 
For this model we define the following structure parameters: 
 
mp = E[μp(θ)] = E{E[fp(Xr)|θ]} = E[fp(Xr)]                                      (1.2) 
 
apq = E{Cov[fp(Xr), fq(Xr)|θ]}                                                           (1.3) 
 
bpq = Cov[μp(θ), μq(θ)]                                                                      (1.4) 
 
cpq = Cov[fp(Xr), fq(Xr)]                                                                    (1.5) 
 
dpq = Cov[fp(Xr), μq(θ)]                                                                     (1.6) 
 

for p,q = n,0 . These expressions do not depend on r = 1,1 +t . 
The structure parameters are connected by the following relations: 
 
cpq = apq+bpq                                                                                      (1.7) 
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dpq = bpq                                                                                             (1.8) 
for p,q = n,0 . 

This follows from the covariance relations obtained in the probability 
theory ,where they are very well-known. 

Just as in the case of considering linear combinations of the observable 
variables themselves, we can also obtain non-homogeneous credibility estimates, 
taking as estimators the class of linear combinations of given functions of the 
observable variables, as shown in the following theorem: 

 
Theorem 1.1 (Optimal non-homogeneous linearized estimator) 
The linear combination of 1 and the random variables fp(Xr) (p = n,1 ,  

r = t,1 ) closest to μ0(θ) = E[f0(Xt-1)|θ] and to f0(Xt+1) in the least squares sense 
equals: 
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where z1,...,zn is a solution to the linear system of equations: 
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 (q = n,1 )                                                             (1.10) 

 
or to the equivalent linear system of equations: 
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2. Unique optimal approximating function 

 
The estimator M for f0(Xt+1) (or for μ0(θ)) of Theorem 1.1, can be 

displayed as: M = g(X1)+g(X2)+...+g(Xt)                                                          (2.1), 

where: g(x) = p
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Indeed, we have: 
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111  g(X1)+g(X2)+...+g(Xt), as was to be 

proven. 
Let us forget now about this structure of g and look for any function g such 

that (2.1) is closest to f0(Xt+1) (or to μ0(θ)). 
If only functions g such that g(X1) has finite variance are considered, then 

the optimal approximating function g results from the following theorem: 
 
Theorem 2.1. (Optimal approximating function) 
g(X1)+g(X2)+...+g(Xt) is closest to f0(Xt+1) (and to μ0(θ)) in the least 

squares sense, if and only if g is a solution to the equation: 
 
g(X1)+(t-1)E[g(X2)|X1]-E[f0(X2)|X1] 0≡                                                 (2.3) 
 
Proof: 
We have to solve the following minimization problem: 
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Suppose that g denotes the solution to this problem, then we consider: 
 

f(X) = g(X)+αh(X)                                                                                              (2.5) 
 
with h(·) arbitrary, like in variational calculus. 
 

Let: 
 

φ(α) = E{[f0(Xt+1)-f(X1)-f(X2)-...-f(Xt)]2} = E{[f0(Xt+1)-g(X1)-g(X2)-...-
g(Xt)-α·h(X1)-αh(X2)-...- αh(Xt)]2}                                                                     (2.6) 

 
Clearly for g to be optimal, φ’(0) =0, so for every choice of h: 
 
E{[f0(Xt+1)-g(X1)-…-g(Xt)]·[h(X1)+h(X2)+…+h(Xt)]}=0                      (2.7) 
 

must hold. This can be rewritten as: 
 
E[tf0(X2)h(X1)-tg(X1)h(X1)-t(t-1)g(X2)h(X1)] = 0, or: 
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E[h(X1){-g(X1)-(t-1)E[g(X2)|X1]+E[f0(X2)|X1]}] = 0                                         (2.8) 
 

Because this equation has to be satisfied for every choice of the 
function h one obtains, the expression in brackets in (2.8) must be identical to 
zero, which proves (2.3). 

 
An application of Theorem 2.1: 

If X1,...,Xt+1 can only take the values 0, 1, 2,..., n and pqr = P(X1=q, 
X2=r) for q,n= n,0 , then g(X1)+...+g(Xt) is closest to f0(Xt+1) (and to μ0(θ) in the 
least squares sense, if and only if for q = n,0 , g(q) is a solution of the linear 
system: 
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Proof: 

Theorem 2.1. affirms that: 
 

“g(X1)+g(X2)+…+g(Xt) is closest to f0(Xt+1) (and to μ0(θ) in the least squares 
sense, if and only if g is a solution of the equation: 
 
g(X1)+(t-1)E[g(X2)|X1]-E[f0(X2)|X1]≡0”                                                         (2.10) 
 
Here we have: 
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and: 

[g(X2)|X1]:
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But: 
P(X1 = q, X2 = r)=pqr;q,r = n,0                                                                         (2.13) 
 
and: 
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(see the hypothesis of the application). 

The relations (2.13) and (2.14) imply: 
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(see (2.12)). 
 
So: 
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Also, we have: 
 

[f0(X2)|X1]:
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(see (2.13) and (2.14)). 
 
So: 
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Inserting (2.11), (2.16) and (2.18) in (2.10) one obtains: 
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, as was to be proven (see 

(2.9)). 
 

Conclusions 
 

An original paper which suggests a way of thought for semi-linear 
credibility theory development, founded on analysis of the functions of the 
observable random variables. 

This line of thought fits perfectly within the framework of the greatest 
accuracy credibility theory. 

The point we want to emphasize is that the approximation to f0(Xt+1) or to 
μ0(θ) based on a unique optimal approximating function f is always better than the 
one furnished in Section 1. based on prescribed approximating functions f1,…, fn. 

The usefulness of the latter approximation is that it is easy to apply, since 
it is sufficient to know estimates for the parameters apq, bpq appearing in the 
credibility factors zp. 

In this article we try to demonstrate what kind of data is needed to apply 
semi-linear credibility theory. 

The purpose followed in this paper is to get better semi-linear credibility 
results, using a unique optimal approximating function f, instead of considering 
prescribed approximating functions f1,…, fn. 

These performances lead to easily computable premiums and so, with 
usefulness in practice. 

We give a rather explicit description of the input data for the semi-linear 
credibility model used, only to show that in practical situations, there will always 
be enough data to apply semi-linear credibility theory to a real insurance portfolio. 



Virginia Atanasiu 60

This paper shows that the mathematical theory is really a useful tool-
perhaps the only existing tool-for the study of semi-linear credibility models. 

So the mathematical properties of conditional expectations and conditional 
covariances become useful in the more complicated credibility models. 

The fact that it is based on complicated mathematics involving variational 
calculus, needs not bother the user more than it does when he applies statistical 
tools like discriminatory analysis, scoring models, GLIM and SAS. 

These techniques can be applied by anybody on his own field of endeavor, 
be it economics, medicine, or insurance. 
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