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UNIQUE OPTIMAL FUNCTION

Virginia ATANASIU"

liniare, din perspectiva functiilor de variabile aleatoare.

Pentru a obtine rezultate superioare de credibilitate semi-liniara este
utilizata o functie optimd unicd de aproximare f, in loc sa consideram functii
prescrise de aproximare: fi, f>, ....fn.

Aceste performante includ cazul f, = f pentru tofi p in clasa celor mai
buni estimatori de credibilitate semi-liniard, cu utilitate in practicd.

This paper is an original approach of the semi-linear credibility theory,
from the perspective of the functions of the observable random variables.

In order to obtain better semi-linear credibility results, a unique
optimal approximating function f is used, instead of considering prescribed

approximating functions: f1,, f>,....fu-
These performances include the case f, = f for all p in the class of the
best semi-linear credibility estimators with usefulness in practice.

Key words: semi-linear credibility model, approximating functions, the structure
parameters.
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Introduction

This article is devoted to semi-linear credibility, where on examines
functions of the random variables, representing claim amounts, rather than the
claim amounts themselves.

So far, credibility estimators were linear functions of the observable
random variables.

Semi-linear credibility estimators are linear functions of transformed
observations.

The semi-linear credibility model involves the class of linear
combinations of given functions of the observable variables, for solving the
minimization problems of the type:
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n t 2
MinE{{fo(Xm)— cp,,f,,,(X,,)H
p=1 r=1
So the approximation to fo(X1) or to pg(0) = E[fy(X+1)|0] furnished in
the first section, is based on prescribed approximating functions: fj, f>,...,1,.
One may either assume the function fo, f,; are given in advance-as in
Section 1, or one may try to determine the best choice-as Section 2.
So in the second section we take f, = f for all p, and try to find the
optimal function f.

1. Semi-linear credibility model

Consider a finite sequence 0, Xj,...,X;1; of random variables. Assume
that for fixed 0, the variables Xi,..., X+ are conditionally independent and
identically distributed (conditionally i.i.d.). The variables Xj,..., X; are observable
and 0 is the structure variable. The variable X is considered as being not (yet)
observable.

We assume that f,(X,), p = O,_n, r= 1,¢+1 have finite variance. For fj,

we take the function of X we want to forecast.
We use the notation:

1p(6) = E[£,(X)]0] (1.1)
Pp=0,n,r=1¢+1)

This expression does not depend on r).

For this model we define the following structure parameters:

my, = E[uy(0)] = E{E[f,(X,)[0]} = E[fy(X)] (1.2)
apq = E{Cov[fy(Xy), fy(X,)[0]} (1.3)
bpq = Cov[pp(6), 1q(6)] (1.4)
Cpq = Cov[fp(Xo), f4(Xn)] (1.5)
dpg = Cov[£p(Xy), Hg(9)] (1.6)

for p,q= 0,7. These expressions do not depend onr= 1,7 +1.
The structure parameters are connected by the following relations:

Cpq = ApgTbypg (1.7)
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_dpq =bpq (1.8)
forp,q=0,n.

This follows from the covariance relations obtained in the probability
theory ,where they are very well-known.

Just as in the case of considering linear combinations of the observable
variables themselves, we can also obtain non-homogeneous credibility estimates,
taking as estimators the class of linear combinations of given functions of the
observable variables, as shown in the following theorem:

Theorem 1.1 (Optimal non-homogeneous linearized estimator)

The linear combination of 1 and the random variables f,(X;) (p= L n,
r= I,_t) closest to po(0) = E[fo(X:.1)[0] and to fp(X1) in the least squares sense
equals:

n ! 1 n

M=Zsz;fp(Xr)+m0—Zmep (1.9),
p=1 =1 p=1

where z,...,7, is a solution to the linear system of equations:

i[cpq +(t—1)d,,q]zp =td,, (q=1n) (1.10)

or to the equivalent linear system of equations:

n J—

Z(apq +tbpq p :tboq (q=1Ln) (1.1T)

p=1
2. Unique optimal approximating function

The estimator M for fo(X1) (or for po(0)) of Theorem 1.1, can be

displayed as: M = g(X;)+g(Xo)+...+g(Xy) (2.1,
1< 1 1<

where: g(x) = ;Zzp f,(x)+ o = ;Zmep (2.2)
p=1 p=1

Indeed, we have:

n ! 1 n 1 n !
M= ZZPZ;fP(X")—i—mO _ZZPmP :;ZZPZfP(Xr)+mO_ZmeP -
p=l =1 p=1 =1

p=l

:%pzn;zp[fp(Xl)Jrfp(X2)+...+fp(Xt)]+%m0t—%(Zn:zpmpjt=(1Zn:zp .

p=l
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()l mo-_zzm j+(—22f )l mo__zzm]

J{;Zzpfp( + m0 ZzpmpJ = g(X)t+gXo)+...+g(Xy), as was to be
p=1
proven.

Let us forget now about this structure of g and look for any function g such
that (2.1) is closest to fo(Xi+1) (or to po(0)).

If only functions g such that g(X;) has finite variance are considered, then
the optimal approximating function g results from the following theorem:

Theorem 2.1. (Optimal approximating function)

g(X)+g(Xo)+...+g(Xy) is closest to fp(Xi+1) (and to po(B)) in the least
squares sense, if and only if g is a solution to the equation:

gXD)Ht-DE[g(X2)[Xi]-E[fo(X2)[X1]= 0 (2.3)

Proof:
We have to solve the following minimization problem:

Min E{f, (X)) = 1(6,)= 1(0,) == S ()T | @4

Suppose that g denotes the solution to this problem, then we consider:
f(X) = g(X)+ah(X) (2.5)
with h(-) arbitrary, like in variational calculus.

Let:

¢(0) = E{[fO(Xt+1)'f(>2(l)'f(X2)'“"f(Xt)]z} = E{[fo(Xe+1)-g(X1)-g(Xa)-...-
g(Xp)-a-h(X1)-ah(Xy)-...- ah(X)]"} (2.6)

Clearly for g to be optimal, @ (0) =0, so for every choice of h:
E{[fo(Xe+1)-g(X1)-...-g(Xo) ] [h(X)+h(X2)+...+h(X)]} =0 2.7
must hold. This can be rewritten as:

E[tfo(X2)h(X1)-tg(X1)h(X)-t(t-1)g(X2)h(X1)] = 0, or:
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E[h(X1){-g(X1)-(t-DE[g(X2)|Xi HE[fo(X2)X1]}] = 0 (2.8)

Because this equation has to be satisfied for every choice of the
function h one obtains, the expression in brackets in (2.8) must be identical to
zero, which proves (2.3).

An application of Theorem 2.1:
If Xi,...,.X+1 can only take the values 0, 1, 2,..., n and py = P(Xi=q,

Xy=r) for q,n=0,n, then g(X;)+...+g(Xy) is closest to f3(Xi1) (and to pe(0) in the
least squares sense, if and only if for q = 0,n, g(q) is a solution of the linear
system:

2@ Y P, DY ()P, =Y ()P, 2.9)

Proof:
Theorem 2.1. affirms that:

“g(X)tg(Xo)t...+g(Xy) is closest to fo(Xi+1) (and to po(0) in the least squares
sense, if and only if g is a solution of the equation:

g(X)Ht-DE[g(X2)[X1]-E[fo(X2)[X1]=0" (2.10)
Here we have:
g(9) g(q) —

X4): = ,q=0, 2.11
&) (P[gm: g<q)ﬂ (Pon _ qﬂ 7=0 @1
and:

g(r) j ( g(r) j
X)) Xq]: = =
LX) [P[g(Xz)=g(V)|X1=q P(X,=r| X, =q)
g(r) -
=| P(X,=¢,X,=7) | r=0.n (2.12)
P(Xl = Q)
But:
P(Xi=q, X2 =1)=pgrq,r = 0,n (2.13)

and:
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n

P(Xi=q) =P(Xi=q, Q) =P[Xi=q, | J(X, =7)]= P[L"J(Xl =q,X, = r)}

r=0

:ZP(XI =9, X, :r)zzpqr;q:oﬂ_n
r=0 r=0

(see the hypothesis of the application).
The relations (2.13) and (2.14) imply:

g(r)

Py

[e(X)X1]:| = ,r=0,n

(see (2.12)).

So:

i g(rp,

< pqr r=
ElgX)Xi]= ) g(r)—— ==

r=0
2Py
r=0

Also, we have:

[fo(X2)[X]: (

= [P(Xl =f Oq(,r))(2 = r)}

P(Xl = Q)
(see (2.13) and (2.14)).

So:

fo(r) j:[
P(fo(Xz):fo(r)|X1:Q) P(

n

Z;, Por

r=0

folr) j

X2=V|X1=Q)

(2.14)

(2.15)

(2.16)

(2.17)
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> £,

ElR(X =Y £ ()L = - 2.18)

=0 Z:;pqr Z:(;pqr

Inserting (2.11), (2.16) and (2.18) in (2.10) one obtains:

Serp, Y50,
g(q)H(t-1) == -=

Z:;pqr Z:(;p,,,.

=0,Vg=0,n, or:

n

6@ p, + =D g, =X fo(r)p, Vg =0.n, as was to be proven (see
r=0 r=0 r=0
(2.9)).

Conclusions

An original paper which suggests a way of thought for semi-linear
credibility theory development, founded on analysis of the functions of the
observable random variables.

This line of thought fits perfectly within the framework of the greatest
accuracy credibility theory.

The point we want to emphasize is that the approximation to fo(X) or to
Lo(0) based on a unique optimal approximating function f is always better than the
one furnished in Section 1. based on prescribed approximating functions fi,..., fi.

The usefulness of the latter approximation is that it is easy to apply, since
it is sufficient to know estimates for the parameters a,q, bpq appearing in the
credibility factors z,.

In this article we try to demonstrate what kind of data is needed to apply
semi-linear credibility theory.

The purpose followed in this paper is to get better semi-linear credibility
results, using a unique optimal approximating function f, instead of considering
prescribed approximating functions fi,..., f,.

These performances lead to easily computable premiums and so, with
usefulness in practice.

We give a rather explicit description of the input data for the semi-linear
credibility model used, only to show that in practical situations, there will always
be enough data to apply semi-linear credibility theory to a real insurance portfolio.
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This paper shows that the mathematical theory is really a useful tool-
perhaps the only existing tool-for the study of semi-linear credibility models.

So the mathematical properties of conditional expectations and conditional
covariances become useful in the more complicated credibility models.

The fact that it is based on complicated mathematics involving variational
calculus, needs not bother the user more than it does when he applies statistical
tools like discriminatory analysis, scoring models, GLIM and SAS.

These techniques can be applied by anybody on his own field of endeavor,
be it economics, medicine, or insurance

REFERENCES

1. Atanasiu V., "Contributions to the credibility theory", doctoral dissertation, University of
Bucharest-Faculty of Mathematics, 2000.

2. Atanasiu V., "Un model de credibilitate", Sudii si Cercetari de Calcul Economic si Cibernetica
Economica; XXXII, nr. 3, 1998, 83-90.

3. Goovaerts M. J., Kaas R., Van Heerwaarden A., E., Bauwelincks T., "Insurance Series, Volume
3, Effective Actuarial Methods", Elsevier Science Publishers B.V.,1990, 187-211.

4. Pentikdinen T., Daykin C. D., Pesonen M., "Practical Risk Theory for Actuaries", Chapman &
Hall, 1993.

5. Sundt B., "An Introduction to Non-Life Insurance Mathematics", volume of the “Mannheim
Series”, 1984, 22-54.



