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ON SOME OPTIMAL INEQUALITIES FOR STATISTICAL

SUBMANIFOLDS OF STATISTICAL SPACE FORMS

Crina Daniela Neacşu1

      In [J. Nonlin. Sc. Appl. 10(2019)], Lee et al. proved some optimal inequalities involving 
the normalized scalar curvature and normalized δ-Casorati curvatures of submanifolds in 
a statistical manifold of constant curvature, later generalized by Bansal et al in [Balk. J. 
Geom. Appl. 24(2019)] to the case of generalized normalized δ-Casorati curvatures. In this 
paper, we will improve all these inequalities, by considering a more natural curvature 
tensor field in statistical setting, called the statistical curvature tensor, originally 
introduced by Opozda in [Ann. Glob. Anal. Geom. 48(2015)]. We also investigate the 
equality cases of the derived inequalities and give an example.
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1. Introduction

In 1890, in his seminal work [5], Casorati introduced the concept of Casorati curvature
for surfaces in 3-dimensional Euclidean space as an alternative to the classical Gaussian
curvature. Casorati’s main motivation was that the new concept corresponds better to
human intuition on the notion of curvature, because the Gaussian curvature vanishes for
surfaces that intuitively did not look flat. The notion was later extended for hypersurfaces
and then for submanifolds of the Riemann manifolds [13]. The Casorati curvature - an
extrinsic invariant, extends the concept of principal direction of a hypersurface of a Riemann
manifold in case of submanifolds of Riemannian manifolds. In [8], S. Decu, S. Haesen and L.
Verstraelen introduced the δ–Casorati normalized curvatures and established some optimal
inequalities for these new curvature invariants. These kind of inequalities use both extrinsic
notions (such as δ-Casorati curvatures) and intrinsic notions (like scalar curvature). Recent
results on this topic were obtained in [2, 14, 15, 16, 21, 25, 27].

On the other hand, in 1985, the notion of statistical manifold arises for the first
time in Amari’s paper [1] from the need of generalizing the concept of statistical model to
statistical manifold. From now on, numerous and valuable studies that adapt the general
theory of geometric structures on manifolds to statistical manifolds have been written (see,
e.g., [3, 7, 9, 11, 18, 22, 24, 26]). In the spirit of Casorati inequalities established in [8],
Lee et. al prove in [17] some similar results in case of statistical manifolds, showing that
the normalized scalar curvature is bounded by the Casorati curvatures of submanifolds in a
statistical manifold of constant curvature.

In this paper we improve the inequalities established in [17], by considering a curva-
ture tensor which is more natural in a statistical context, namely the statistical curvature
tensor introduced by Opozda in [19]. This new tensor was introduced because it has all the
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symmetries that are necessary to a curvature tensor of type (0, 4), unlike the classical Rie-
mannian curvature tensor, which in a statistical setting no longer has all these symmetries
[19].

The article is divided in four sections, as follows. After the present Introduction, in
Section 2 we recall notations, basic definitions and results used throughout the paper. In
Section 3 we establish the main results, respectively two optimal inequalities for δ-Casorati
normalized curvature of statistical submanifolds in statistical manifolds of constant curva-
ture, known under the name of statistical space forms. In the last section, we will present
an example to demonstrate that the equality case can be achieved and we will obtain a
characterization of those submanifolds for which the equality case is reached.

2. Preliminary Facts

Let us briefly recall some basic facts about terminology in the setting of statistical
manifolds (cf. [9, 10, 20]).

Let (M, ḡ) be an m-dimensional Riemann manifold with an affine connection ∇. Let
T̄ be the torsion tensor field of type (1, 2) of ∇̄.

Definition 2.1. A pair (∇, ḡ) is called a statistical structure on M̄ if
(1) (∇X ḡ)(Y,Z)− (∇Y ḡ)(X,Z) = ḡ(T̄ (X,Y ), Z), for all vector fields X,Y and Z on M̄ ;
(2) T̄ = 0.

Definition 2.2. A statistical manifold (M, ḡ,∇) is a Riemannian manifold, endowed with
a pair of torsion free affine connections ∇̄ and ∇̄∗ such that

Zḡ(X,Y ) = ḡ(∇ZX,Y ) + g(X,∇∗ZY ),∀X,Y, Z ∈ Γ(TM).

The connections ∇ and ∇∗ are called dual (conjugate) connections.

Remark 2.1. It is known that:

(1)
(
∇∗
)∗

= ∇.

(2) If (∇, g) is a statistical structure, then(∇∗, g) is also a statistical structure.

(3) In terms of the Levi-Civita connection ∇◦, the affine connection ∇ has always a dual

connection ∇∗ satisfying

∇+∇∗ = 2∇◦. (1)

Let R and R
∗

be the curvature tensor fields of ∇, respectively ∇∗.

Definition 2.3. A statistical structure (∇, g) is said to be of constant curvature c ∈ R if

R(X,Y )Z = c{g(Y,Z)X − g(X,Z)Y },∀X,Y, Z ∈ Γ(TM).

Remark 2.2. By a simple computation we deduce that

g
(
R
∗
(X,Y )Z,W

)
= −g

(
Z,R(X,Y )Z,W

)
.

Using the above equation, we deduce that if (∇, g) is of constant curvature c, then so is

(∇∗, g).

Definition 2.4. With the notations above, we define S ∈ Γ(TM) be the statistical curvature
tensor as:

S(X,Y )Z =
1

2
{R(X,Y )Z +R∗(X,Y )Z}.

Moreover, (M, ḡ,∇) is said to be a statistical space form if S has the following ex-
pression:

S(X,Y )Z = c{ḡ(Y, Z)X − ḡ(X,Z)Y },



On some optimal inequalities for statistical submanifolds of statistical space forms 109

for all vector fields X,Y, Z on M , where c is a real constant. Such a space is denoted by
M(c).

Definition 2.5. Suppose Mn is a statistical submanifold of dimension n of a statistical
manifold Nm of dimension m. Let {e1, e2, . . . , en} be an orthonormal basis of tangent space
TpM , where p ∈ M , and let {en+1, en+2, . . . , em} be an orthonormal basis of the normal
space T⊥p M . Then the scalar curvature τ at p is given by:

τ(p) =
∑

1≤i<j≤n

g(S(ei, ej)ej , ei).

It is known that
g(S(X,Y )W,Z) = g(S(Z,W )Y,X)

and the Gauss equation is

2g(S(X,Y )Z,W ) = 2g(S(X,Y )Z,W )

+g(h(X,Z), h∗(Y,W )) + g(h∗(X,Z)− h(Y,W ))

−g(h∗(X,W ), h(Y,Z))− g(h(X,W ), h∗(Y,Z))

with X,Y, Z,W ∈ Γ(TM), where h and h∗ stand for the imbedding curvature tensors with
respect to the dual connections (see, e.g., [6]). On the other hand, we have the normalized
scalar curvature ρ defined by

ρ =
2τ

n(n− 1)
.

Let H and H∗ be the mean curvature vector fields:

H =
1

n

n∑
i=1

h(ei, ei), H
∗ =

1

n

n∑
i=1

h∗(ei, ei).

From equation (1) we deduce that:

2H◦ = H +H∗,

where H◦ denotes the mean curvature field of M defined through the second fundamental
form h◦ with respect to the Levi-Civita connection∇◦ on M . If h◦ = 0, then the submanifold
is called totally geodesic.

On the other hand, it is well-known that the squared mean curvature of the subman-
ifold M in M is computed by:

‖H‖2 =
1

n2

m∑
α=n+1

(
n∑
i=1

hαii

)2

,

where:
hαij = ḡ(h(ei, ej), eα),

for i, j ∈ {1, . . . , n+ 1}, α ∈ {n+ 1, . . . ,m}.
Moreover, the following properties hold:

g(S(X,Y )W,Z) = g(S(Z,W )Y,X)

g(S(W,Z)Y,X) = −g(S(Z,W )Y,X)

g(S(Z,W )X,Y ) = −g(S(Z,W )Y,X)

S(Z,W )Y + S(W,Y )Z + S(Y,Z)W = 0.

The Casorati curvatures of the submanifold M in M are denoted by C and C∗ and given as:

C =
1

n
‖h‖2 =

1

n

m∑
α=n+1

n∑
i,j=1

(
hαij
)2
,
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C∗ =
1

n
‖h∗‖2 =

1

n

m∑
α=n+1

n∑
i,j=1

(
h∗αij
)2
.

Let L be a s-dimensional subspace for TpM, s ≥ 2 and {ei, . . . , es} be an orthonormal basis
of L. Then the Casorati curvature of the subspace L is defined as

C(L) =
1

s

m∑
α=n+1

s∑
i,j=1

(
hαij
)2

and the normalized δ–Casorati curvatures are given by [9]

δC(m− 1)|p =
1

2
C|p +

m+ 1

2m
inf {C(L)|L a hyperplane of TpM}

and

δ̂C(n− 1)|p = 2C|p −
2n− 1

2n
sup {C(L)|L a hyperplane of TpM}

We define analogically the dual normalized δ∗-Casorati curvatures:

δ∗C(n− 1)|p =
1

2
C|p +

n+ 1

2n
inf {C∗(L)| L a hyperplane of TpM}

and

δ̂∗C(n− 1)|p = 2C∗|p −
2n− 1

2n
sup {C∗(L)|L a hyperplane of TpM}

We can also consider the generalized normalized δ− Casorati curvatures δc(r, n − 1) and
δ∗c (r, n− 1) of statistical submanifold Mm defined by

δC(r, n− 1)|p = rC|p −
(n− 1)(n− r)(n2 − n− r)

rn
inf {C(L)|L a hyperplane of TpM}

and

δ̂∗C(r, n− 1)|p = rC∗|p −
(n− 1)(n− r)(n2 − n− r)

rn
inf {C∗(L)|L a hyperplane of TpM} ,

if 0 < r < n(n− 1).
Moreover, if r > n(n − 1), then the generalized normalized δ−Casorati curvatures

δ̂C(r, n− 1) and δ̂∗C(r, n− 1) are defined by

δ̂C(r, n− 1)|p = rC|p −
(n− 1)(n− r)(n2 − n− r)

rn
sup {C(L)|L a hyperplane of TpM}

and

δ̂∗C(r, n− 1)|p = rC∗|p −
(n− 1)(n− r)(n2 − n− r)

rn
sup {C∗(L)|L a hyperplane of TpM} .

3. Main Inequalities

This section is dedicated to establish the main results of this paper, namely, for
obtaining an improvement of the inequalities stated in [17] and [4].

In order to achieve the results, we will use the next result.

Lemma 3.1. [23] Let Γ =
{(
x1, . . . , xn

)
∈ Rn

∣∣x1 + . . .+ xn = k
}

be a hyperplane in Rn
and f : Rn → R be a quadratic form given by

f
(
x1, . . . , xn

)
= a

n−1∑
i=1

(
xi
)2

+ b (xn)
2 − 2

∑
1≤i<j≤n

xijj ,

where a > 0, b > 0.
Then the conditioned extreme problem:

min
(x1,...,xn)∈Γ

f
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has a global solution: {
x1 = x2 = . . . = xn−1 = k

a+1

xn = k
b+1 = n−1

b

(
k
a+1

)
= (a− n+ 2) k

a+1

provided that

b =
n− 1

a− n+ 2
.

Theorem 3.1. Let Mn be a statistical submanifold of a statistical space form M
m

(c). Then:
i. The normalized δ-Casorati curvatures δC(r, n− 1) and δ∗C(r, n− 1) satisfy

ρ ≤ 2δ◦C(r, n− 1)

n(n− 1)
+

C0

2(n− 1)
− 4n

n− 1

∥∥H◦∥∥2
+

2n

n− 1
g(H,H∗) + c, (2)

where

2δ0
C(r, n− 1) = δC(r, n− 1) + δ∗C(r, n− 1)

and

2C0 = C + C∗.

ii.The normalized δ-Casorati curvatures δ̂C(r, n− 1) and δ̂∗C(r, n− 1) satisfy

ρ ≤ 2δ̂◦C(r, n− 1)

n(n− 1)
+

C0

2(n− 1)
− 4n

n− 1

∥∥H◦∥∥2
+

2n

n− 1
g(H,H∗) + c, (3)

where

2δ̂0
C(r, n− 1) = δ̂C(r, n− 1) + δ̂∗C(r, n− 1).

Proof. Using the Gauss equation we obtain:

2ḡ(S̄(X,Y )Z,W ) = 2g(S(X,Y )Z,W ) + ḡ (h(X,Z), h∗(Y,W ))

+ḡ (h∗(X,Z), h(Y,W ))− ḡ (h(X,W ), h(Y, Z))−
ḡ (h(X,W ), h∗(Y,Z)) , X, Y, Z,W ∈ Γ(TM). (4)

Replacing

X = ei, Y = ej , Z = ej , W = ei

in (4) and using the symmetry of the curvature tensor, we obtain by summation over 1 ≤
i < j ≤ n :

2τ = n(n− 1)c+ 2n2g(H,H∗)− 2
∑

1≤i<j≤n

ḡ(h(ei, ej), h
∗(ei, ej)). (5)

But

g
(
H +H∗, H +H0

)
= ‖H‖2 +

∥∥H∥∥∗+2g (H,H∗) (6)

and inserting (6) in (5) we get

n(n− 1)c = 2τ − 4n2‖H‖2

+n2

‖H‖2 +
∥∥H∗‖2 + 2

∑
1≤i<j≤n

ḡ(h(ei, ej), h
∗(ei, ej))

 (7)

In the following, we are going to compute the last sum in (7) in terms of Casorati curvatures
C and C∗. In order to obtain the desired equation, we will use the relation between h and
h∗.
We know that:

2∇̄◦ = ∇̄+ ∇̄∗. (8)
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But 
∇̄◦XY = ∇◦XY + h◦(X,Y )

∇̄XY = ∇XY + h(X,Y )

∇̄XY ∗ = ∇∗XY + h∗(X,Y )

(9)

We replace (9) in (8) and we obtain that:

2∇XY + 2h◦(X,Y ) = ∇XY + h(X,Y ) +∇∗XY + h∗(X,Y ), ∀X,Y ∈ X(M)

By identifying the normal components in the above relation we find:

2h◦(X,Y ) = h(X,Y ) + h∗(X,Y ).

hence we have:

2h◦ = h+ h∗. (10)

On the other hand, it is obvious that

ḡ

∑
α

hαijeα,
∑
β

h∗βij eβ

 =
∑
α

∑
β

hαijh
∗β
ij g(eα, eβ)

and therefore we derive

ḡ (h(ei, ej), h
∗(ei, ej)) =

∑
α

hαijh
∗α
ij .

We know:

C0 =
1

n

∑
α

∑
i,j

(
h◦αij
)2

C =
1

n

∑
α

∑
i,j

(
hαij
)2

C∗ =
1

n

∑
α

∑
i,j

(
h∗αij
)2

Due to the fact that

2h0 = h+ h∗

we deduce

2h◦αij = hαij + h∗αij ,

which implies

4
(
h◦αij
)2

=
(
hαij
)2

+
(
h∗αij
)2

+ 2hαijh
∗α
ij .

So, we have:

4
∑
α

∑
i,j

(
h◦αij
)2

=
∑
α

∑
i,j

(
hαij
)2

+
∑
α

∑
i,j

(
h∗αij
)2

+ 2
∑
α

∑
i,j

hαijh
∗α
ij

In this way:

2
∑
i,j

g (h(ei, ej), h
∗(ei, ej)) = 2

∑
α

∑
i,j

hαijh
∗α
ij

= 4
∑
α

∑
i,j

(
h∗αij
)2 −∑

α

∑
i,j

(
hαij
)2 −∑

α

∑
i,j

(
h∗αij
)2

= 4nC0 − nC− nC∗

Hence we derive:

2
∑

1≤i<j≤n

ḡ(h(ei, ej), h
∗(ei, ej)) = 4nC0◦ − nC− nC∗
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and inserting the above equation in (5) we arrive at

n(n− 1)c = 2τ − 4n2
∥∥H‖◦∥∥2

+n2
(
‖H‖2 +

∥∥H∗∥∥2
+4nC0 − n(C + C∗)

)
. (11)

We define at this moment the polynomial

P = 2rC◦ +
2(n− 1)(n+ r)(n2 − n− r)

rn
C◦(L)

−2T − n2
(
‖H‖2 +

∥∥H∗∥∥2
)

+n(C + C∗) + n(n− 1)c.

Using relation (11), we obtain:

P =
∑
α

[2r
n

n∑
i,j=1

(
h0α
ij

)2
+

n−1∑
i,j=1

2(n+ r)(n2 − n− r)
rn

(
h0α
ij

)2
+

n∑
i,j=1

[(
hαij
)2

+
(
h∗αij
)2]

−4n2
∥∥H∗∥∥2

+4nC0 − n (C + C∗)
]

=
∑
α

[(2(n− 1)(n+ r)

r
− 1

) n−1∑
i=1

(
h0α
ii

)2
+

4(n− 1)(n+ r)

r

n−1∑
i<j

(
h0α
ij

)2
+ 4

( r
n

+ 1
) n−1∑
i=1

(
h0α
in

)2
+

4r

n

(
h0α
nn

)2 − 4
∑
i,j

h0α
ii h

0α
jj

]
.

Thus, we have the following inequality

P ≥
∑
α

[(2(n− 1)(n+ r)

r
− 1

) n−1∑
i=1

(
h0α
ii

)2
+

4r

n
(hαnn)

2 − 4
∑
i,j

h0α
ij h

0α
jj

]
. (12)

Hence, it follows from (12) that

P ≥
∑
α

Pα,

where

Pα =

(
2(n− 1)(n+ r)

r
− 1

) n−1∑
i=1

(
h0α
ii

)2
+

4r

n

(
h0α
nn

)2 − 4
∑
i,j

h0α
ij h

0α
jj .

Using Lemma 3.1 for the conditioned extreme problem:

min
(h0α

11 ,....,h
0α
nn)∈Γα

Pα
2
,

where
Γα = {(h0α

11 , ...., h
0α
nn)|h0α

11 + ....+ h0α
nn = kα},

for a constant kα, one obtains the global solution:

h0α
11 = .... = h0α

n−1,n−1 =
2kαr

2(n− 1)(n+ r)− r
, h0α

nn =
kαn

2r + n
.

But a direct computation shows that

Pα

(
2kαr

2(n− 1)(n+ r)− r
, ...,

2kαr

2(n− 1)(n+ r)− r
,
kαn

2r + n

)
= 0.
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Hence, it turns out that

P ≥
∑
α

Pα

(
2kαr

2(n− 1)(n+ r)− r
, ...,

2kαr

2(n− 1)(n+ r)− r
,
kαn

2r + n

)
= 0.

Now, P ≥ 0 leads to:

2τ ≤ 2rC0 +
2(n− 1)(n+ r)(n2 − n− r)

rn
C◦(L)

−n2
(
‖H‖2 + ‖H∗‖2

)
+ n (C + C∗) + n(n− 1)c

so we have:

2δ

n(n− 1)
≤ 2r

n(n− 1)
C0 +

2(n+ r)(n2 − n− r)
rn2

C0(L)

+
1

n− 1
(C + C∗)− n

n− 1

(
‖H‖2 + ‖H∗‖2

)
+ c

In view of

C + C∗ = 2C◦,

the above equation implies that:

ρ ≤ 2

n(n− 1)

[
rC0 +A(r, n− 1)C◦(L)

]
+

1

2(n− 1)
C0 − n

n− 1

(
‖H‖2 + ‖H∗‖2

)
+ c,

where

A(r, n− 1) =
(n− 1)(n− r)[n2 − n− r]

rn
.

But we have that

‖H‖2 + ‖H∗‖ = 4
∥∥H◦∥∥2−2ḡ(H,H∗)

and hence we get the inequality

ρ ≤ 2

n(n− 1)

[
rC◦ +A(r, n− 1) + C◦(L)

]
+

1

2(n− 1)
C◦ − 4n

n− 1

∥∥H◦∥∥2
+

4n

n− 1
ḡ(H,H∗) + c.

Passing to the infimum over all hyperplanes, we derive:

ρ ≤ 2δ◦c (r, n− 1)

n(n− 1)
+

C0

2(n− 1)
− 4n

n− 1

∥∥H◦∥∥2
+

2n

n− 1
g(H,H∗) + c,

which is nothing but (2). Similarly, by passing to the supremum, we obtain (3). �

Remark 3.1. As an immediate consequence of the above theorem, we obtain the following
result:

Corollary 3.1. Let Mn be a statistical submanifold of a statistical space form M
m

(c).
Then:

i. The normalized δ-Casorati curvatures δC(n− 1) and δ∗C(n− 1) satisfy:

ρ ≤ 2δ◦C(n− 1) +
C0

2(n− 1)
− 4n

n− 1

∥∥H◦∥∥2
+

2n

n− 1
g(H,H∗) + c. (13)

where

2δ0
C(n− 1) = δC(n− 1) + δ∗C(n− 1).
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ii.The normalized δ-Casorati curvatures δ̂C(n− 1) and δ̂∗C(n− 1) satisfy:

ρ ≤ 2δ̂◦C(n− 1) +
C0

2(n− 1)
− 4n

n− 1

∥∥H◦∥∥2
+

2n

n− 1
g(H,H∗) + c. (14)

where

2δ̂0
C(n− 1) = δ̂C(n− 1) + δ̂∗C(n− 1).

Proof. Replacing r = n(n−1)
2 in (2) and r = n(n− 1) in (3) we obtain (13) and (14) because

δC(
n(n− 1)

2
, n− 1) = n(n− 1)δC(n− 1),

δ∗C(
n(n− 1)

2
, n− 1) = n(n− 1)δ∗C(n− 1),

δ̂C(2n(n− 1), n− 1) = n(n− 1)δ̂C(n− 1),

δ̂∗C(2n(n− 1), n− 1) = n(n− 1)δ̂∗C(n− 1).

�

Remark 3.2. We note that Theorem 3.1 generalizes [4, Theorem 1.1], while the previ-
ous Corollary generalizes [17, Theorem 1.1], by considering the statistical curvature tensor
instead of the classical Riemannian curvature tensor.

4. Investigation of the equality cases

In the following, we are going to elucidate the geometry of the submanifolds that
achieve equality in the inequalities established in the previous section. First, we prove the
next result.

Theorem 4.1. Let Mn be a statistical submanifold of a statistical space form M
m

(c). Then
the case of equality of any of the inequalities (2) and (3) occurs at a point x ∈ M if and
only if the imbedding curvature tensors h and h∗ are related at x by h∗ = −h.

Proof. Suppose first that the equality of (2) is satisfied at x ∈ M . Then a straightforward
computation shows that the critical point hc of the polynomial P defined in the proof of
Theorem 3.1 has all components null, that is hcαij = 0, for α = n+ 1, ...,m and i, j = 1, ..., n.
But as P ≥ 0 and P (hc) = 0, we deduce that hc is in fact a minimum point for P . Taking
into account that 2h0 = h + h∗, we get that at x ∈ M , the imbedding tensors h∗ and h
are related by h∗ = −h. Conversely, if h∗ = −h at a point x ∈ M , then h0 = 0 at x
and the inequality (2) is trivially satisfied with equality sign. Similarly, we obtain the same
necessary and sufficient condition for the equality case of (3). �

Corollary 4.1. Let Mn be a statistical submanifold of a statistical space form M
m

(c).
Then the case of equality of any of the inequalities (2) and (3) occurs identically at any

point x ∈M if and only if M is a totally geodesic submanifold of M
m

(c) with respect to the
Levi-Civita connection of the metric ḡ.

Proof. Suppose that the equality case of (2) or (3) holds identically on M . Then the above
theorem implies h∗ = −h and equation (10) leads to h◦ = 0. Hence, M is a totally geodesic

submanifold of M
m

(c).

Conversely, if M is a totally geodesic submanifold of M
m

(c), then (2) and (3) are
trivially satisfied with equality. �

Applying Theorem 4.1 and Corollary 4.1 in the particular case of the normalized δ-

Casorati curvatures δC(n−1) and δ∗C(n−1), respectively δ̂C(n−1) and δ̂∗C(n−1), we derive
the next consequences.
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Corollary 4.2. Let Mn be a statistical submanifold of a statistical space form M
m

(c). Then
the case of equality of any of the inequalities (13) and (14) occurs at a point x ∈ M if and
only if the imbedding curvature tensors h and h∗ are related at x by h∗ = −h.

Corollary 4.3. Let Mn be a statistical submanifold of a statistical space form M
m

(c). Then
the case of equality of any of the inequalities (13) and (14) occurs identically at any point

x ∈ M if and only if M is a totally geodesic submanifold of M
m

(c) with respect to the
Levi-Civita connection of the metric ḡ.

Example 4.1. Consider the upper half-space:

Hm+1 = {(x1, ..., xm+1) ∈ Rm+1|xm+1 > 0}

equipped with the natural metric

ḡ =
1

(xm+1)2

m+1∑
i=1

(dxi)
2.

We take the affine connection ∇̄ given by

∇̄ ∂
∂xi

∂

∂xj
= 0, 1 ≤ i 6= j ≤ m,

∇̄ ∂
∂xi

∂

∂xm+1
= ∇̄ ∂

∂xm+1

∂

∂xi
= 0, 1 ≤ i ≤ m,

∇̄ ∂
∂xi

∂

∂xi
=

2

xm+1

∂

∂xm+1
, 1 ≤ i ≤ m,

∇̄ ∂
∂xm+1

∂

∂xn+1
=

1

xm+1

∂

∂xm+1
.

It is known that (∇̄, ḡ) is a statistical structure of constant curvature 0 on Hm+1 (see
[12]). Then in view of Remark 2.2 it follows that (∇̄∗, ḡ) is also a statistical structure of
constant curvature 0 on Hm+1. Therefore we conclude that Hm+1 is a statistical space form
of constant curvature 0. We consider now an immersion i : Rn → Hm+1 defined by

i(x1, ..., xn) = (x1, ..., xn, 0, ..., 0),

where n ≤ m. Then it is easy to see that i is a totally geodesic immersion providing a
natural example of statistical submanifold satisfying the equality cases of all inequalities
stated above, namely (2), (3), (13) and (14).

5. Conclusions

In this work, we have generalized some optimal inequalities obtained in [4, 17] con-
cerning the normalized scalar curvature and (generalized) normalized δ-Casorati curvatures
of statistical submanifolds in a statistical space form, by considering the statistical curva-
ture tensor instead of the Riemannian curvature tensor, a more natural curvature tensor in
statistical setting as it was suggested by Opozda in [19]. Moreover, we have proved that the
equality cases of these inequalities hold identically only for totally geodesic submanifolds.
We also provided an example to illustrate the main results.
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