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NOVEL APPROACHES IN GENERATING RANDOM 
NUMBERS USING GRAPHICS PROCESSING UNIT 

Alexandru PÎRJAN1, Dana PETROŞANU2 

In this paper, we have researched and developed optimization solutions for 
implementing the Sobol random number generator in the Compute Unified Device 
Architecture. We have conducted a thorough analysis, using a series of experimental 
tests, for studying the solutions’ influence on the execution time, on the number of 
generated samples per second and on the energy consumption. Lately, in the 
literature, there has been a lot of interest for developing random number generators, 
but none of the works so far (to our best knowledge) has developed optimization 
solutions targeted towards the Kepler GK104 architecture, harnessing its novel 
technical features.     

Keywords: Compute Unified Device Architecture, Kepler architecture, Sobol 
random number generator, warp shuffle instruction, thread blocks. 

1. Introduction 

The random number generation is an essential component in numerous 
applications, especially in simulation problems. In particular, a fast parallel 
number generation decisively influences the performance of the parallel Monte 
Carlo simulations that are frequently needed in countless scientific fields, like 
financial management, computational finance, engineering, computational 
science, telecommunications, applied statistics, physical sciences, medicine and 
computational biology. Traditionally, random number generators process most of 
the data in a sequential manner and therefore, their software implementations on 
central processing units often face significant computational limitations. The 
Compute Unified Device Architecture (CUDA) offers a potential solution to 
overcome all of these limitations by harnessing the huge parallel computational 
power of CUDA-enabled graphic processing units (GPUs). 

We have used in our research two of the most powerful and recent 
graphics processing cards, from the latest CUDA-enabled architectures: the Fermi 
architecture GF100 (from this architecture we have used the GeForce GTX480 
reference graphic card) and the Kepler GK104 architecture (in this case we have 
used the GeForce GTX680 reference graphic card). We have carefully taken into 
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account with utmost importance all of these technical characteristics when 
developing and implementing our random number generator solution.  

2. The Sobol random number generator algorithm 

The Russian mathematician I. M. Sobol has introduced in 1967 the notion 
of Sobol sequences, an example of quasi-random, low-discrepancy sequences, 
obtained through a standard algorithm for generating uniform numbers in the unit 
hypercube [1].  

Sobol’s random number generator algorithm, useful in performing 
numerical integration in the unit hypercube, constructs a sequence within the 
hypercube, filling it regularly. In order to compute the integral, one has to 
approximate it using the average of the function values in these points. If we 
denote by ܷ௠ ൌ ሾ0.1ሿ௠ the unit ݉-dimensional hypercube and ݂: ܷ௠ ՜ Թ an 
integrable function over ܷ௠, the Sobol sequence ݔ௦ א ܷ௠ satisfies the equation:  

                          lim௡՜ஶ
∑ ௙ሺ௫ೞሻ೙

ೞసభ
௡

ൌ ׬ ݂௎೘                                              (1) 
where the left side limit is finite and the convergence must be as fast as possible.  

Broadly, the Sobol random number generator algorithm is based on a set 
of variables that determines a state, denoted by ܺ௡ at the ݊-th step, linked with the 
next step’s state by an equation of the type: 

ܺ௡ାଵ ൌ ଵ݂ሺܺ௡)                                                    (2) 
that allows the determination of each step’s state, starting from the initial value 
ܺ଴. An output process generates a quasi-random (approximately uniformly 
distributed) sequence:  

௡ݔ ൌ ݃ሺܺ௡).                                                        (3) 
The parallelization of this random number generator is achievable taking 

into account that a CUDA thread block generates a block of numbers and 
therefore it requires the usage of a powerful advanced leaping algorithm that 
facilitates bouncing at the block’s start. In this way, the generator can bounce over 
a number of points using an algorithm of the type ܺ௡ା௞ ൌ ௞݂ሺܺ௡), having the 
complexity ܱሺlog ݇ሻ. In order to perform the bouncing, we have researched the 
possibilities and identified three viable solutions: 

a) The simple bounce solution: starting from a specified point in the 
generator sequence, each CUDA thread performs a bounce and then it generates a 
segment of points. These bounces are executed so that the segments do not 
overlap and are adjacent. 

b) The strided bounce solution: the ݊-th thread (݊ ൑ ܰ) generates the 
points ݊, ݊ ൅ ܰ, ݊ ൅ 2ܰ and so on.  

c) The hybrid bounce solution: first, at the thread block level, a large 
bounce is performed and afterwards, within a block, each thread executes the 
strided bounce. 
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The Sobol random number generator algorithm discussed in this paper 
uses an efficient bouncing method. We have implemented the simple bounce 
technique and it proved to be an efficient approach. However, we have obtained 
an even more efficient result using the hybrid bounce approach because, when 
writing the output data, this solution has the considerable advantage of simple 
memory coalescence.  

The initial Sobol’s algorithm for obtaining the sequence was later 
improved [2]. The main results that we have obtained in this paper are based on 
the usage of Gray code and lead us to the conclusion that if the sequence’s points 
were being permuted, a recurrence relation can be identified. This relation allows 
the simple generation of the ሺ݆ ൅ 1ሻ-th point directly from the previous one, the ݆-
th. Starting from this result, one can develop an efficient C algorithm that 
generates the Sobol sequences [3]. We have developed our algorithm by 
parallelizing and implementing the initial sequential C algorithm in the Compute 
Unified Device Architecture. 

In order to generate Sobol sequences in the unit cube [3], one must first 
notice that a high dimension sequence is composed of more one-dimensional 
sequences and therefore it is sufficient to study a one dimensional Sobol 
sequence.  

Usually, there are generated up to 2ଷଶ ൌ 4,294,967,296 points. In this 
case, we have defined the Sobol sequence using a set of 32-bit integers ݓ௥, 1 ൑
ݎ ൑ 32, called direction numbers. The sequence ݕଵ, ,ଶݕ … is defined by:  

௡ݕ ൌ ଵ݃ݓଵ ْ ݃ଶݓଶ ْ ݃ଷݓଷ ْ … ൌ ௡ିଵݕ ْ  ௙ሺ௡ିଵሻ,                  (4)ݓ
where ݕ଴ ൌ 0. In the equation (4) we have used the following notations:  

- ْ is the binary “or” operator (exclusive) 
- the bits ݃௥ are given by the binary expansion of the Gray code 

representation of ݊, namely ݊ ٔ ൫݊
2ൗ ൯ ൌ ڮ ݃ଷ݃ଶ ଵ݃ 

- the function ݂ሺ݊ሻ returns the index of the rightmost zero bit in the binary 
expansion of ݊. 

The Sobol sequence is obtained using the sequence ݕ௡ using the following 
relation: 

௡ݔ ൌ 2ିଷଶݕ௡                                                    (5) 
  When generating multidimensional Sobol sequences, it is recommended to 

use different direction numbers for each of the dimensions and to choose these 
numbers carefully in order to maintain the multidimensional uniformity properties 
of the sequence [4].  

After having analysed the equation (4), we have noticed that the first 
relation offers a method for bouncing to the point ݕ௡ as this relation gives the 
formula for direct computing ݕ௡, while the second relation represents an algorithm 
for computing ݕ௡  starting from the value of ݕ௡ାଵ. In this second expression, we 
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first consider the natural nonzero number ݊ fixed and then we increase it with 8. If 
the bit pattern of ݊ is ݊ ൌ ڮ ܾଷܾଶܾଵand we add 8 at ݊, these last three bits remain 
unchanged as 8ଶ ൌ 1000. Computing ݂ሺ݊ ൅ ݅ሻ for each ݅, 1 ൑ ݅ ൑ 8, one can 
observe that we obtain the result 1 four times, the result 2 twice, the result 3 once 
and a result bigger than 3 once. Taking into account the property of the exclusive 
or: 

ܽ ْ ܾ ْ ܾ ൌ ܽ,                                                     (6) 
we obtain: 

௡ା଼ݕ ൌ ௡ݕ ْ ଵݓ ْ ଵݓ ْ ଵݓ ْ ଵݓ ْ ଶݓ ْ ଶݓ ْ ଷݓ ْ ௔೙ݓ ൌ ௡ݕ ْ ଷݓ ْ ௔೙ݓ   (7) 
where ܽ௡ ൐ 3. More general, for any power of two, one can obtain: 

௡ାଶ೟ݕ ൌ ௡ݕ ْ ௧ݓ ْ  ௔೙,                                         (8)ݓ
where ܽ௡ ൐ ௡ܽ ,ݐ ൌ ݂ሺ݊|2௧ െ 1ሻ and the”|” denotes the bitwise or operator. Thus, 
it has been obtained a strided (“leapfrog”) bounce generation [5]. 
 In the following, we present an efficient method that we have developed 
and applied for implementing the Sobol pseudorandom number generator 
algorithm in the CUDA architecture.  

3. The CUDA implementation of the Sobol random  numbers 
generator algorithm 

The implementation of the Sobol random numbers generator algorithm in 
the CUDA parallel programming model is facilitated by the fact that CUDA 
supports random writes in memory and bitwise arithmetic operations.  

In order to develop the CUDA implementation of the above-described 
algorithm, we have first computed the values of the direction numbers on the host 
and then we have copied them to the device. In order to obtain a 32-bit Sobol 
sequence, we needed, for each dimension, at most 32 values for the directions ݓ௥. 
Taking into account that in a multidimensional Sobol sequence the dimensions are 
independent, we have computed each dimension’s points using one (or more) 
blocks. When we have used one block per dimension, then for each Sobol 
dimension a block of threads was launched, having the dimension 2௧, ݐ ൒ 6. The 
  .௥ values, corresponding to this dimension, are copied in the shared memoryݓ32

The ݇-th thread of the block bounces ahead to the value ݕ௞, according to 
the first relation from the equation (7). Usually, the bit pattern of ݇ ٔ ቀ݇

2ൗ ቁ 
contains mostly zero values and therefore, only a few bouncing iterations are 
needed. As in equation (8), the thread generates the points iteratively: 
,௞ݕ ,௞ାଶ೟ݕ ,௞ାଶ೟శభݕ …. At each step there are required the previous value of ݕ and 
the new value of ܽ௡, while the value of ݓ௧ is fixed in this iteration. As successive 
threads within the same warp generate successive values in the sequence, the write 
operations into the global memory are coalesced. When writing data in the global 
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memory, we have first stored the numbers corresponding to the first Sobol 
dimension, then for the second one and the process has continued until we have 
reached the last dimension.  

If we consider a Sobol sequence having the dimension ܦ, a total number ܰ 
of generated points, ݔ the array that contains the generated points, then for a 
dimension 0 ൑ ݀ ൑ and an index 0 ܦ ൑ ݇ ൑ ܰ, the ݇-th generated value of the ݀ 
dimension is located on the position ݔሾ݀ כ ܰ ൅ ݇ሿ. If more blocks of threads were 
available, additional parallel thread blocks could be used per each dimension, 
considering the fact that the number of blocks must be a power of two. For 
example, if the number of parallel thread blocks is 2ఉ, then the ݇-th thread in a 
block generates the points ݕ௞, ,௞ାଶ೟శഁݕ ,௞ାଶ೟శഁశభݕ … [5]. 

We have developed and implemented a suite of optimization solutions for 
achieving a high level of performance for our Sobol random number generator’s 
CUDA implementation, in a broad range of scenarios and situations that we 
present in the following.  

Solution 1. Using an efficient hybrid bouncing technique. We have 
implemented an efficient hybrid bouncing solution: a large bounce is performed 
first at the thread block level and then, within a block, each thread executes a 
strided bounce, as we have described in the section 2 of this paper. This solution 
has the advantage of simple memory coalescence when writing the output data. 

Solution 2. Scaling the number of used thread blocks according to the 
number of dimensions and vectors. In order to attain algorithmic and hardware 
efficiency for the Sobol random number generator’s implementation in CUDA, 
we have used multiple thread blocks, scaled to the number of dimensions and 
generated vectors. Thus, we have obtained considerable improvements, regarding 
the execution time and number of generated elements per second, compared to the 
sequential implementation run on the central processing unit. 

Solution 3. Load balancing the parallel computational tasks. As we 
have mentioned before, one of the main advantages offered by the CUDA 
architecture is the huge amount of parallelism that can be employed through 
multiple processing threads [6]. In order to benefit from this advantage, we have 
processed multiple parallel instances of the Sobol random number generator’s 
implementation, thus optimizing the computational load and benefitting from the 
huge computational resources of the CUDA architecture. 

Solution 4. Optimal management of the task distribution among the 
available threads. Using a single thread for generating one element causes high 
memory latency, as it has not been generated an appropriate computational load 
for the streaming multiprocessors. The GPU reduces the memory latency by 
executing in parallel the concurrent threads, unlike the CPU that hides memory 
latency by using extensively cache memory. In order to launch multiple instances 
of the Sobol random number generator and to reduce memory latency, we have 
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distributed the computational tasks among multiple execution cores, taking into 
account that the CUDA architecture offers 1536 cores for the GTX 680 and 480 
cores for the GTX 480. After analysing the GPUs’ features and experimenting 
with different settings for the resources’ allocation, we have decided to use 256 
threads per block for the GTX 480 and 512 threads per block for the GTX 680, as 
with these resources we have obtained the best results. 

Solution 5. Using the shared memory for storing data. As the GPU’s 
shared memory offers an improved memory bandwidth and reduced latency, we 
have decided to use shared memory for storing local data, thus obtaining an 
improvement in the coherence level and the overall performance of our Sobol 
random number generator in CUDA.  

Solution 6. Avoiding shared memory banks conflicts. The CUDA 
memory banks are shared memory modules, having the same size, each of them 
storing a 32-bit value [7]. If the same memory bank receives multiple data 
requests from the same memory address or from different ones, a memory bank 
conflict could be triggered. In this case, the hardware device serializes the 
requests, putting the threads in standby and then processes the memory requests 
sequentially. We have avoided this process that creates a time penalty, by assuring 
that all the threads of a half warp read the same memory address, thus triggering a 
complex distribution mechanism that broadcasts data to many threads 
simultaneously. 

Solution 7. Saving shared memory by using the warp shuffle 
operation. Taking into account that the warp shuffle operation is specific to the 
devices that have the compute capability 3.x, we have developed and applied this 
solution only for the GTX 680 graphic processing unit from the Kepler 
architecture. By using the warp shuffle operation, we have exchanged data 
directly between the threads of the same warp, thus managing to save a 
considerable amount of shared memory, maintaining the memory latency at a 
minimum.  

Solution 8. Minimizing the synchronization operations of the parallel 
tasks. In order to synchronize the tasks, one must usually define a synchronization 
point in the application that prevents a task from continuing its execution until 
other tasks have arrived at a certain point. In the case of the Kepler GK104 
architecture, we have used the warp shuffle operation described in Solution 7, in 
order to reduce the number of necessary synchronization operations. In the case of 
the GF100 architecture, we have used the shared memory and processed data in 
warps (as the warp shuffle operation is not supported). In this way, we were able 
to share data between the threads of the same warp, without having to 
synchronize. The only time when we had to synchronize was when sharing data 
between the threads of different warps.  
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Solution 9. Minimizing the usage of register memory. We had to take 
into account the fact that the threads’ number was limited by the register memory 
requirements because each thread needs its own private and register memory [8]. 
In addition, this type of memory is very important in our problem as it is being 
used for storing the partial results. Consequently, by reducing the number of 
registers, we were able to generate the necessary number of threads.  

Solution 10. Using the CPU for generating random numbers until 
reaching a certain threshold. After we have analysed the obtained experimental 
results, we have concluded that the CPU offers the best results until a certain 
threshold is reached. This threshold is influenced by the number of generated 
vectors and the vector’s dimension because, until this threshold has been reached, 
the computational load is not high enough as to harness the huge processing 
power of the GPUs.  

We have developed and run a series of benchmark tests for analysing the 
efficiency of the developed optimization solutions for our Sobol random number 
generator’s CUDA implementation. In the following, we depict and analyse the 
obtained experimental results. 

4. Experimental results 

After having developed and applied the optimization solutions for the 
Sobol random number generator’s CUDA implementation, we have analysed their 
efficiency through a series of experimental tests that we have developed using 
three different processing units, namely: the central processing unit Sandy Bridge 
Intel i7-2600K, the graphic processing unit GTX 480 from the CUDA-Fermi 
architecture and the GTX 680 from the CUDA-Kepler architecture.  

In order to obtain an objective measurement of the energy consumption, 
when we have run the tests on the CPU, we have used only the integrated Intel 
HD Graphics 3000 graphic core from the i7-2600K CPU and no other discrete 
graphic card was installed in the system. Because neither the CPU nor the 
integrated graphic core allows the execution of the developed optimized Sobol 
CUDA implementation, we have run on the CPU a sequential version of the 
generator. In all the three cases, beside the above mentioned software components 
we have used the Windows 8 Pro 64-bit operating system, a total amount of 
2x4GB of DDR3 random access memory dual channel at 1333MHz, the CUDA 
Toolkit 5.0 and the NVIDIA developer driver version 306.97 in order to program 
and access the GPUs.  

We have benchmarked different allocation settings regarding the GPUs’ 
thread blocks’ sizes (taking into account the features of each graphic processing 
architecture) and we have finally chosen the optimum resources allocation, that 
have provided the best level of performance: 256 threads per block for the GTX 
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480 and 512 threads per block for the GTX 680. As our random number generator 
is designed to be implemented in various GPU applications, having different 
computational requirements, complexities and dimensions, we have chosen to 
measure within our tests only the execution time of the generator, but not the 
transfer times between the CPU and the GPU, as these times are application-
specific.  

In our experimental tests, we have successively generated a number of 
10, 10ଶ, 10ଷ, 10ସ, 10ହ, 10଺ and 10଻ vectors of float type elements, ranging from 
10  to 10ସ elements. In order to obtain accurate, reliable results, we have run 
1000 iterations for each of the tests and then we have computed their average. We 
have computed the execution time (in milliseconds) and the number of generated 
samples per second (in millions per second) for each case, when generating the 
samples on the i7-2600K CPU and on the GTX 480, GTX 680 GPUs.  

After analysing the obtained experimental results, we have concluded that 
for a small number of generated vectors and for low dimension vectors, the best 
results (the lowest execution time, the highest number of generated samples per 
second) have been recorded on the CPU, as it has not been generated a sufficient 
computational load that fully employed the huge parallel computing power of the 
GPUs. For each number of generated vectors, as the vector’s dimension increases, 
the GTX 680 and then the GTX 480 surpass the CPU and obtain the best 
performance, starting with a certain threshold that is influenced by the vectors’ 
number and dimension. We have also noticed that, as the number of generated 
vectors has increased, the above mentioned threshold decreased and from a certain 
point the threshold does not exist anymore, as the GPU surpasses the CPU in 
every case, without being influenced by the number of dimensions. Thus, when 
generating a number of 10ସ vectors or higher, we have noticed that the best 
performance has been obtained on the GTX 680 GPU, then on the GTX 480 
(Table 1).  

Table 1 
The threshold from which the CPU’s performance has been surpassed by the GPUs 

The number of 
vectors 

The number of 
dimensions - threshold 

10 2500
10ଶ 250 
10ଷ 50 

10ସ െ 10଻ - 
Another aspect worth mentioning is that, starting from a number of 10ହ 

generated vectors and a certain number of dimensions (e.g. 10ସ when generating 
10ହ vectors, 10ଷ when generating 10଺ vectors or 10ଶ when generating 10଻ 
vectors), the necessary memory requirements exceeded our system’s available 
memory and from this point forward, if we had decided to continue, we would 
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have been forced to write the generated data on the disk and generate the rest of 
the numbers in partitions that do not exceed the system’s available memory. 

For example, when generating a number of ݊ ൌ 10ସ vectors, with a 
dimension ranging from 10 to 10ସ float type elements, we have obtained in all the 
analysed situations the lowest execution time on the GTX 680 and then on the 
GTX 480 (Table 2, Fig. 1). 

Table 2 
Synthetic experimental results – the execution time for ࢔ ൌ ૚૙૝ vectors 

No. Dimensions Execution time (ms) 
GTX 480 GTX 680 i7-2600K 

1 10 0.208197 0.141573 0.988593 
2 10ଶ 0.181088 0.158399 9.814390 
3 10ଷ 0.51001 0.386381 98.743101 
4 10ସ 3.64851 2.788590 985.239000 

 

 
Fig. 1. The execution time for ݊ ൌ 10ସ vectors 

 
Analysing the number of generated samples per second, we have noticed 

that the GTX 680 offers the best performance and is succeeded by the GTX 480, 
clearly surpassing the CPU’s performance (Table 3, Fig. 2). 

Table 3 
Synthetic experimental results – the number of generated samples per second for ࢔ ൌ ૚૙૝ 

vectors   

No. Dimensions Millions of numbers generated/s 
GTX 480 GTX 680 i7-2600K 

1 10 480.314 706.352 101.154 
2 10ଶ 5522.18 6313.171 101.891 
3 10ଷ 19607.4 25881.201 101.273 
4 10ସ 27408.5 35860.502 101.498 
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Fig. 2. The number of generated samples per second for ݊ ൌ 10ସ vectors 

 
Of particular interest in our research was to highlight the energy efficiency 

of our Sobol random number generator’s CUDA implementation, comparing it to 
the efficiency of the sequential approach, run on the CPU. Therefore, we have 
computed the total execution time for all of our analysed situations within the 
experimental tests (ie for all the number of vectors, for all their dimensions, for all 
the 1000 iterations and for each of the 3 processing units). In order to determine 
the system’s power (kW) and the total energy consumption in all of the analysed 
cases, we have used the Voltcraft Energy Logger 4000, an energy consumption 
meter device (Table 4). 

Table 4 
The system’s power and the total energy consumption 

The processing unit i7-2600K GTX 480 GTX 680 
The total execution 

time (h) 1.212 0.006 0.004 

The system’s power 
(kW) 0.198 0.358 0.307 

The total energy 
consumption (kWh) 0.240 0.002 0.001 

The GPU’s consumption compared 
to the CPU’s 

120 times 
lower 

240 times 
lower 

 
By analysing the above synthesized results, we have noticed that the total 

energy consumption is 120 times lower when the Sobol random number generator 
is run on the GTX 480 GPU than when it is run on the CPU and 240 times lower 
when the Sobol random number generator is run on the GTX 680 GPU than when 
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it is run on the CPU. Thus, by using the GTX 680 GPU when running the Sobol 
random number generator, we have obtained 240 times lower execution costs then 
by using the CPU and 120 times lower when using the GTX 480 GPU.  

After analysing the obtained experimental results, we have concluded that 
the optimization solutions, that we have developed for improving the performance 
of our Sobol random number generator’s CUDA implementation, offer 
remarkable results in a wide range of situations and scenarios. Thus, the generator 
proves to be a powerful and useful tool in many applications that require 
generating random numbers.  

5. Conclusions 

We have aimed in our research to harness the novel technical features and 
the huge parallel computing power offered by the latest generations of CUDA-
enabled graphic processing units (GPUs) from the Fermi GF100 and the Kepler 
GK104 architectures. We were able to achieve this by improving continuously 
and progressively the optimization solutions. 

We have obtained very promising results, the developed solutions offering 
a high level of performance and applicability. As we have generated a large 
volume of output data on different GPU architectures, using a large number of 
tests’ iterations, we have obtained a detailed analysis of our Sobol random number 
generator’s characteristics. 

Lately, in the literature, the interest in implementing random number 
generators on parallel architectures has continued to grow and a series of works 
have treated this topic. However, to the best of our knowledge, none of these 
works has studied the development of specific solutions for improving the 
performance of random number generators using CUDA-enabled GPUs of 
compute capability 3.x. By analysing the experimental results, we have noticed 
that our optimization solutions applied to the Kepler GK104 architecture achieve 
a huge level of performance when generating Sobol random sequences. The 
optimization solutions developed within this research prove their effectiveness 
and usefulness, the CUDA implementation of the Sobol generator proving to be a 
novel approach in generating random numbers using graphics processing units, a 
powerful and useful tool in a wide range of applications that require the 
generation of random numbers. 

Undoubtedly, graphic processing units that support the Compute Unified 
Device Architecture have an enormous potential to overcome the performance 
limitations of current central processing units’ architectures, offering considerable 
advantages in developing solutions that optimize data processing and lead to huge 
improvements in energy efficiency and computing performance. 
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