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DIVISIBLE GROUPS DERIVED FROM DIVISIBLE HYPERGROUPS

Mohammad Hamidi1, Arsham Borumand Saeid2, Violeta Leoreanu-Fotea3

The purpose of this paper is to define a new equivalence relation τ∗ on
divisible hypergroups and to show that this relation is the smallest strongly regular re-
lation (the fundamental relation) on commutative divisible hypergroups. We show that

τ∗ ̸= β∗, τ∗ ̸= γ∗ and, we define a divisible hypergroup on every nonempty set. We
show that the quotient of a finite divisible hypergroup by τ∗ is the trivial divisible group.
Moreover, the concept of (self) fundamental divisible group is defined and it is shown
that any divisible group is a self fundamental divisible group. Finally, we study complete

parts in divisible hypergroups.
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1. Introduction

The hyperalgebraic structure theory was firstly introduced in 1934 at the 8th con-
gress of Scandinavian Mathematicians by F. Marty [11]. Marty introduced hypergroups as
a generalization of groups. He published some notes on hypergroups, using them in differ-
ent contexts as algebraic functions, rational fractions, non commutative groups and then,
many researchers have worked in this new field of modern algebra and have developed it.
Fundamental relations are one of the main tools in algebraic hyperstructures theory, which
brings us into the classical algebra. The relation β (resp. the fundamental relation β∗)
was introduced on hypergroups by Koskas [9] and was studied mainly by Corsini [4] and
Vougiouklis [14]. Freni proved that in hypergroups the relation β is transitive [5]. Recently,
Freni introduced the relation γ as a generalization of the relation β and proved that, in hy-
pergroups, the relation β is transitive [6]. Davvaz et al. introduced the smallest equivalence
relation ν∗ on a hypergroup H such that the quotient H

ν∗ , the set of all equivalence classes,
is a nilpotent group and they characterized nilpotent groups via strongly regular relations
[1]. R. Ameri et al. introduced the smallest equivalence relation ξ∗ on a given hypergroup
G in a way that the quotient G/ξ∗, the set of all equivalence classes, is an Engel group
[3]. Further materials regarding solvable polygroups, solvable groups, subpolygroups and
hypergroups are available in the literature too [2, 8]. S. Pianskool et al. defined the concept
of divisible hypergroups and investigated some properties of them [12, 13].

In this paper, first we construct divisible hypergroups on every nonempty set. A new
strongly regular equivalence relation τ∗ on divisible hypergroups is defined and it is shown
that this relation is a fundamental relation on commutative divisible hypergroups. Using the
concept of a fundamental group, we investigate some of its properties and show that the τ∗

is different by β∗ and γ∗. Finally, we prove that direct product of divisible hypergroups is a
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divisible hypergroup, too and show that the τ∗ is transitive if and only if for all x ∈ G, τ∗(x)
is a τ -part.

2. Preliminaries

In this section, we review some definitions and results from [14], which we need in
what follows.

Let G be a nonempty set and P ∗(G) be the family of all nonempty subsets of G. Every
function ◦i : G×G −→ P ∗(G) where i ∈ {1, 2, . . . , n} and n ∈ N∗ is called a hyperoperation.
For all x, y of G, ◦i(x, y) is called the hyperproduct of x and y. An algebraic system
(G, ◦1, ◦2, . . . , ◦n) is called a hyperstructure and a binary structure (G, ◦) endowed with only
one hyperoperation is called a hypergroupoid. For any two nonempty subsets A and B of

G,A ◦ B means
∪

a∈A,b∈B

a ◦ b. Recall that a hypergroupoid (G, ◦) is called a semihypergroup

if for all x, y, z ∈ G, (x ◦ y) ◦ z = x ◦ (y ◦ z) and a semihypergroup (G, ◦) is a hypergroup
if it satisfies in the reproduction axiom, i.e. for all x ∈ G, x ◦ G = G ◦ x = G. The map
f : G1 → G2 is called an inclusion homomorphism if for all x, y ∈ G, f(x ◦ y) ⊆ f(x) ◦ f(y)
and is called a strong (good) homomorphism or briefly a good homomorphism if for all
x, y ∈ G, we have f(x◦y) = f(x)◦f(y). Let (G, ◦) be a hypergroup and ρ be an equivalence
relation on G. For nonempty subsets A and B of G, we denote AρB ⇐⇒ ∀a ∈ A, b ∈ B, aρb.
The relation ρ is called strongly regular on the left (on the right) if xρy =⇒ (a ◦ x)ρ(a ◦ y)
(xρy =⇒ (x ◦ a)ρ(y ◦ a), respectively), where x, y, a ∈ G. Moreover, ρ is called strongly
regular if it is strongly regular on the right and on the left. Let G/ρ = {ρ(g) | g ∈ G} be
the set of all equivalence classes of G with respect to ρ. Define a hyperoperation ∗ on G/ρ
as follows:

ρ(a) ∗ ρ(b) = {ρ(c) | c ∈ ρ(a) ◦ ρ(b)}.

Theorem 2.1. [4] Let (G, ◦) be a semihypergroup (hypergroup) and ρ be an equivalence
relation on G. Then (G/ρ, ∗) is a semigroup (group) if and if only ρ is strongly regular.

The smallest equivalence relation ρ on G, such that (G/ρ, ∗) is a group is called the
fundamental relation. Let U(G) denote the set of all finite products of elements of G. Define
relation β on G by

aβb ⇐⇒ ∃ u ∈ U(G) such that {a, b} ∈ u.

Denote the transitive closure of β by β∗. The quotient structure ( G
β∗ , ∗) is a group, called

the fundamental group of (G, ◦) [4]. We have:

aβ∗b ⇐⇒ ∃z1 = a, z2, ..., zn = b ∈ G, u1, u2.., un ∈ U, : {zi, zi+1} ∈ ui,∀ 1 ≤ i ≤ n.

Theorem 2.2. [4, 5] Let (G, ◦) be a hypergroup.Then
(i) the relation β∗ is strongly regular on G and so (G/β∗, ∗) is a group;
(ii) β∗ = β.

In [6], Freni introduced the relation γ =
∪
n≥1

γn, where γ1 is the diagonal relation and

for every integer n > 1, γn is the relation defined as follows:

xγny ⇐⇒ ∃ z1, . . . , zn ∈ G, ∃ σ ∈ Sn : x ∈
n∏
i=

zi and y ∈
n∏
i=

zσ(i),

where Sn is the symmetric group of order n. Denote the transitive closure of γ by γ∗. The
relation γ∗ is a strongly regular relation [6] and γ∗ is the least equivalence relation on a
hypergroup G, such that the quotient (G/γ∗, ∗) is an abelian group.
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3. Divisible hypergroups

The concept of a divisible semihypergroup and a divisible hypergroup was firstly
introduced by S. Pianskool, S. Chaopraknoi and Yupaporn Kemprasit in 2005, 2006 [12, 13].

Definition 3.1. [12, 13] A semihypergroup (G, ◦) is said to be divisible if for all x ∈ G and
every n ∈ N∗, x ∈ y ◦ y ◦ . . . ◦ y︸ ︷︷ ︸

(n−times)

, for some y ∈ G.

For every group G and subgroup H of G, they considered the hypergroups G/H and
G|H and showed that:

Theorem 3.1. [12] If G is a divisible group, then both G/H and G|H are divisible hyper-
groups.

Moreover, for the next equivalence relation ρ on every abelian group G:

xρy ⇐⇒ x = y or x = y−1,

they proved that

Theorem 3.2. [13] If G is a divisible group, then (G/ρ, ◦) is a divisible hypergroup.

The concept of divisible elements in semihypergroups (hypergroups) were not intro-
duced in [12, 13] and so, we define it as follows:

Definition 3.2. Let (G, ◦) be a semihypergroup (hypergroup) and x ∈ G. We say that x is
divisible, if for any n ∈ N∗ there exists y ∈ G such that x ∈ yn = y ◦ y ◦ . . . ◦ y︸ ︷︷ ︸

(n−times)

.

In this section, for every non-empty set, we construct a divisible (semi) hypergroup
and show that, for all n ∈ N there exists at least a divisible (semi)hypergroup such that its
order is n. To construct infinite divisible (semi)hypergroups, we use divisible groups and
applied homomorphisms.

Theorem 3.3. Let G be a nonempty set. Then there exists a binary hyperoperation ◦ on
G, such that (G, ◦) is a divisible semihypergroup.

Proof. If |G| = 1, the proof is clear. Let |G| ≥ 2 and e, f ∈ G be distinct. Now, for all
x, y ∈ G define a hyperoperation ◦ on G as follows:

x ◦ y =

{
{e, f}, if y = e,

{y}, otherwise.

Associativity: Let x, y, z ∈ G. We consider the following cases:
Case 1: x = y ̸= z. Then, (x ◦ y) ◦ z = (x ◦ x) ◦ z = {z} = x ◦ (x ◦ z) = x ◦ (y ◦ z).
Case 2: x = z ̸= y. Then, (x ◦ y) ◦ z = (x ◦ y) ◦ x = {e, f} = x ◦ (y ◦ x).
Case 3: y = z ̸= x. Then, for y ̸= e, (x ◦ y) ◦ z = (x ◦ y) ◦x = {y} = x ◦ (y ◦x) and for y = e,
(x ◦ y) ◦ z = (x ◦ y) ◦ x = {e, f} = x ◦ (y ◦ x).
Case 4: x ̸= y ̸= z. If e ̸∈ {x, y, z}, then (x ◦ y) ◦ z = y ◦ z = {z} = x ◦ z = x ◦ (y ◦ z) and if
e ∈ {x, y, z}, then (x ◦ y) ◦ z = y ◦ z = {e, f} = x ◦ z = x ◦ (y ◦ z).
Case 5: x = y = z. Then, (x ◦ y) ◦ z = y ◦ z = {z} = x ◦ z = x ◦ (y ◦ z).

Now, let x ∈ G. Notice that x◦G =
∪
y∈G

= (x◦x)∪
∪

x ̸=y∈G

= G, but G◦x ̸= G. Hence

(G, ◦) is only a semihypergroup. Let x ∈ G. Then for all n ∈ N∗ we have x ∈ x ◦ x ◦ . . . ◦ x︸ ︷︷ ︸
(n−times)

,

whence it follows that (G, ◦) is a divisible semihypergroup. �
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Corollary 3.1. Let n ∈ N∗. Then there exists at least a divisible semihypergroup (G, ◦)
such that |G| = n.

Theorem 3.4. Let G be a nonempty set. Then there exists a binary hyperoperation ◦ on G
such that (G, ◦) is a divisible hypergroup.

Proof. Let |G| ≥ 1 and e ∈ G. Now, for all x, y ∈ G define a hyperoperation ◦ on G, as
follows:

x ◦ y =

{
{e, x}, if x = y,

{x, y}, otherwise.

Associativity: Let x, y, z ∈ G. We consider the following cases:
Case 1: x, y, z are distinct. Then, (x ◦ y) ◦ z = {x, y} ◦ z = {x, y, z} = (x ◦ z) ◦ y.
Case 2: x = y ̸= z. Then, (x ◦ y) ◦ z = {x, e} ◦ z = {x, e, z} = (x ◦ z) ◦ y.
Case 3: x = z ̸= y. Then, (x ◦ y) ◦ z = {x, y} ◦ z = {x, y, e} = (x ◦ z) ◦ y.
Case 4: y = z ̸= x. Then, (x ◦ y) ◦ z = {x, y} ◦ z = {x, y, e} = (x ◦ z) ◦ y.
Case 5: x = y = z. Then, (x ◦ y) ◦ z = {x, y} ◦ z = {x, e} = (x ◦ z) ◦ y. Now, if x ∈ G, then∪
x∈G

(x ◦G) =
∪

x,y∈G

(x ◦ y) =
∪

x,y∈G

{x, y} = G.

Therefore (G, ◦) is a hypergroup. Let x ∈ G. Then for all n ∈ N, x ∈ x ◦ x ◦ . . . ◦ x︸ ︷︷ ︸
(n−times)

, whence

it follows that (G, ◦) is a divisible hypergroup. �

Corollary 3.2. Let n ∈ N∗. Then there exists at least a divisible hypergroup (G, ◦) such
that |G| = n.

Example 3.1. Let G = {e, a, b, c, d}. Define a hyperoperation ◦ on G as follows:

◦ e a b c d
e {e} {e, a} {e, b} {e, c} {e, d}
a {e, a} {a, e} {a, b} {a, c} {a, d}
b {e, b} {a, b} {e, b} {b, c} {b, d}
c {e, c} {c, a} {b, c} {e, c} {c, d}
d {e, d} {a, d} {b, d} {c, d} {e, d}

Then (G, ◦) is a divisible hypergroup.

Lemma 3.1. Let (G, .) be a divisible group. Then for every group (H, .), there exists a
binary hyperoperation ” ◦ ” on G×H, such that (G×H, ◦) is a divisible hypergroup.

Proof. Let (H, .) be a nonzero group. Define a hyperoperation ” ◦ ” on G×H, as follows:

(g, h) ◦ (g′, h′) = {(g.g′, h), (g.g′, h′)}

Clearly ◦ is associative. We verify the reproduction axiom. Let (g, h) ∈ (G × H). Since
(g, h) ∈ (g, h) ◦ (1, 1) = {(g.1, h), (g.1, 1)} = {(g, h), (g, 1)}, then

(g, h) ◦ (G×H) =
∪

(g′,h′)∈G×H

(g, h) ◦ (g′, h′) =
∪

(g′,h′)∈G×H

{(g.g′, h), (g.g′, h′)}

= G×H

and similarly, it follows that (G ×H) ◦ (g, h) = G ×H. Thus, (G ×H, ◦) is a hypergroup.
Let (g, h) ∈ G × H and n ∈ N∗. Since G is a divisible group, there exists y ∈ G such
that g = yn. Now (g, h) ∈ {(g, h)} = (y, h) ◦ (y, h) ◦ . . . ◦ (y, h)︸ ︷︷ ︸

(n−times)

. Therefore (G ×H, ◦) is a

divisible hypergroup. �
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Remark 3.1. (i) The divisible hypergroup (G ×H, ◦) is called the associated divisible hy-
pergroup to G via H (or shortly, the associated divisible hypergroup) and it is denoted by
GH .
(ii) The mapping φ : G −→ GH defined by φ(g) = (g, 1) is an embedding.
(iii) GH is a hypergroup with identity.
(iv) If H = Z, we denote GH by G.
(vi) For H = Z2, GH is the smallest associated divisible hypergroup.

Theorem 3.5. Let (G1, .) and (G2, .) be isomorphic divisible groups. Then, for every group
(H, .), G1H and G2H are isomorphic divisible hypergroups.

Proof. Let f : (G1, .) −→ (G2, .) be an isomorphism. Define a map θ : (G1 × H, ◦) −→
(G2 ×H, ◦) by θ(g, h) = (f(g), h) where (g, h) ∈ G1 ×H. Clearly θ is a bijection, now we
show that is a good homomorphism. Let (g1, h), (g2, h

′) ∈ G1 ×H. Then

θ((g1, h) ◦ (g2, h′)) = θ({(g1.g2, h), (g1.g2, h′)})
= {θ(g1.g2, h), θ(g1.g2, h′)} = {(f(g1.g2), h), (f(g1.g2), h′)}
= {(f(g1).f(g2), h), (f(g1).f(g2), h′)}
= (f(g1), h) ◦ (f(g2), h′))

= θ((g1, h)) ◦ θ((g2, h′))

Therefore θ is an isomorphism and (G1 ×H, ◦) ∼= (G2 ×H, ◦). �

Example 3.2. (Q × Z2, ◦) is the smallest associated divisible hypergroup, by the following
hyperoperation:

(g, h) ◦ (g′, h′) = {(g + g′, 0), (g + g′, 1)}

Theorem 3.6. Let (G, ◦), (H, ◦′) be hypergroups, f : (G, ◦) → (H, ◦′) be a good homomor-
phism, x, y ∈ G and n ∈ N∗. Then the following statements are satisfied:
(i) if x is a divisible element in G, then f(x) is a divisible element in H,
(ii) if f is an onto and G is divisible, then H is a divisible hypergroup, too.

Proof. (i) Since x ∈ G is divisible, then for all n ∈ N∗ there exists y ∈ G such that x ∈ yn

and so f(x) ∈ f(yn) = f(y)n. Thus f(x) is a divisible element in H.
(ii) Let y ∈ H and n ∈ N∗. Then there exists x ∈ G such that y = f(x). Since G is divisible
then x is divisible and by (i), y is divisible in H and so H is a divisible hypergroup.

�

4. New strongly regular equivalence relation τ∗ on (divisible) hypergroups

In this section, we introduce a new equivalence relation on a (divisible) hypergroup,
which we denote by τ∗ . We prove that τ∗ is the smallest strongly regular relation on a
divisible hypergroup and the elements of the quotient group are divisible. Moreover, we
show that τ∗ is a fundamental relation on commutative divisible hypergroups. We give
some examples for which τ∗ ̸= β∗ and τ∗ ̸= γ∗.

Definition 4.1. Let (G; ◦) be a hypergroup. Set τ1 = {(x, x) | x ∈ G} and for every integer
n ≥ 2, τn is defined as follows:

xτny ⇐⇒ ∃ a1, . . . , an ∈ G and σ ∈ Sn such that {x, y} ⊆
n⊙

i=1

ai,

and ai ∈ a3σ(j), for some 1 ≤ i, j ≤ n, i ̸= σ(j).
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Obviously for every n ≥ 1 the relation τn is symmetric, so τ =
∪
n≥1

τn is a reflexive

and symmetric relation. Let τ∗ be the transitive closure of τ . In the following theorem we
show that τ∗ is a strongly regular relation.

Theorem 4.1. Let (G, ◦) be a hypergroup. Then τ∗ is a strongly regular relation on G.

Proof. Let x, y ∈ G and x τ∗y . Then there exist a0, a1, . . . , ak ∈ G and n1, n2, . . . , nk ∈ N∗,
such that a0 = x, ak = y and

x = a0 τn1 a1 τn2 a2τn3 . . . τnk−2
ak−2 τnk−1

ak−1 τnk
ak = y,

where k ∈ N∗. For all 1 ≤ i ≤ k, ai−1 τni ai, there exist zqr ∈ G and σ ∈ Sn, such that

{ai−1, ai} ⊆
ni⊙
l=1

zi−1l, where ai ∈ a3σ(j) and zi−1m ∈ z3i−1σ(j), for some 1 ≤ i, j ≤ n, where

i ̸= σ(j). Moreover for all 0 ≤ q ≤ k − 1 we have 1 ≤ r ≤ k. Now, let s ∈ G. Then for all

1 ≤ i ≤ k, ai−1 ◦ s ⊆
ni⊙
l=1

zi−1l ◦ s and simillary ai ◦ s ⊆
ni⊙
l=1

zi−1l ◦ s. Now for all 1 ≤ i ≤ k

and for all u ∈ ai−1 ◦ s, v ∈ ai ◦ s, we have u τni+1 v, and so for all z ∈ a0 ◦ s = x ◦ s,
w ∈ an ◦ s = y ◦ s, we have z τ∗ w. Then τ∗ is a strongly right regular and similarly is a
strongly left regular relation. Therefore, τ∗ is a strongly regular relation. �

Corollary 4.1. Let (G, ◦) be a divisible hypergroup. Then τ∗ is a strongly regular relation
on G.

Example 4.1. Let G = {1, 2, 3}. Then (G, ◦) is a hypergroup, which is not divisible.

◦ 1 2 3
1 {1} {2} {3}
2 {2} {1, 3} {2}
3 {3} {2} {1}

Clearly {1, 3} ⊆ 2 ◦ 2∪ 1 ◦ 2 ◦ 2∪ 3 ◦ 2 ◦ 2∪ 1 ◦ 3 ◦ 2 ◦ 2 so 1β3. But 1 ̸∈ 2 ◦ 2 ◦ 2∪ 3 ◦ 3 ◦ 3, 2 ̸∈
1 ◦ 1 ◦ 1 ∪ 3 ◦ 3 ◦ 3 and 3 ̸∈ 1 ◦ 1 ◦ 1 ∪ 2 ◦ 2 ◦ 2, whence (1, 3) ̸∈ τ and so τ ̸= β.

Remark 4.1. Let (G, ◦) be a hypergroup. Then by Example 4.1, it follows that β ̸= τ ̸= γ
and so β∗ ̸= τ∗ ̸= γ∗.

Lemma 4.1. Let (G, ◦) be a divisible hypergroup and a, b ∈ G. Then there exist g, g′ ∈ G
such that b ∈ g3 and so a ◦ b ⊆ g ◦ g′ ◦ b.

Proof. Since b ∈ G and G is a divisible hypergroup, there exists g ∈ G such that b ∈ g3. Now
by the reproduction axiom, there exists g′ ∈ G such that a ∈ g◦g′. Thus a◦b ⊆ g◦g′ ◦b. �

Theorem 4.2. Let (G, ◦) be a hypergroup. Then
(i) τ∗ ⊆ β∗;
(ii) if G is divisible, then τ∗ = β∗;
(iii) if G is commutative and divisible, then τ∗ = γ∗.

Proof. We prove only (ii), (iii) ; (i) follows immediately.
(ii) By (i), τ∗ ⊆ β∗. Let x, y ∈ G. Since G is divisible, by Lemma 4.1, xβ∗y implies that
there exist n ∈ N∗ and a1, a2, . . . , an ∈ G such that for some 1 ≤ i ̸= j ≤ n, ai ∈ a3j and

{x, y} ⊆
n⊙

i=1

ai. Thus τ
∗ ⊇ β∗ and so τ∗ = β∗.

(iii) Since G is commutative, we have γ∗ = β∗ and by (ii) we get that γ∗ = τ∗. �
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Example 4.2. Define a hyperoperation ◦ on Q× Z as follows:

(g, h) ◦ (g′, h′) = {(g + g′, h), (g + g′, h′)}.

Clearly (Q× Z, ◦) is an infinite divisible hypergroup. For any (m/n, k), (r/s, l) ∈ Q× Z we
have

(m/n, k)β∗(r/s, l) ⇐⇒ ∃ u ∈ U(Q× Z) such that {(m/n, k), (r/s, l)} ∈ u

⇐⇒ m/n = r/s

and so

β∗(m/n, k) = {m/n} × Z. (1)

For g, g′ ∈ Q and h, h′ ∈ Z we have

(m/n, k) ∈ (g, h) ◦ (g′, h′) ⇐⇒ m/n = g + g′ and k ∈ {h, h′}.

Now if (r/s, l) ∈ τ∗(m/n, k) then (r/s, l) ∈ (p/q, p) ◦ (3p′/q′, p′) and l ∈ {p, p′}, so r/s =
(pq′ + 3p′q)/(qq′). It follows that

τ∗((m/n, k)) = {m/n} × Z. (2)

Theorem 4.3. Let (G, ◦) be a divisible hypergroup. Then (G/τ∗; ∗) is a group, of which
elements are all divisible.

Proof. By Theorem 4.1, τ∗ is a strongly regular equivalence relation and by Theorem 2.1,
(G/τ∗, ∗) is a group. Let x ∈ G and n ∈ N∗. Since (G, ◦) is a divisible hypergroup, there
exists y ∈ G such that x ∈ yn and so τ∗(x) = τ∗(yn) = (τ∗(y))n. �

Theorem 4.4. Let (G, ◦) be a divisible hypergroup. Then τ∗ is the smallest strongly regular
equivalence relation on G, such that G/τ∗ is a group.

Proof. It follows by Theorem 4.2, (ii). �

Example 4.3. Consider a divisible semihypergroup (G, ◦) and its quotient on τ∗ as follows:

◦ e a b c d
e {e, a} {a} {b} {c} {d}
a {e, a} {a} {b} {c} {d}
b {e, a} {a} {b} {c} {d}
c {e, a} {a} {b} {c} {d}
d {e, a} {a} {b} {c} {d}

and

∗ τ∗(e) τ∗(b) τ∗(c) τ∗(d)
τ∗(e) τ∗(e) τ∗(b) τ∗(c) τ∗(d)
τ∗(b) τ∗(e) τ∗(b) τ∗(c) τ∗(d)
τ∗(c) τ∗(e) τ∗(b) τ∗(c) τ∗(d)
τ∗(d) τ∗(e) τ∗(b) τ∗(c) τ∗(d)

.

It is easy to see that (G/τ∗, ∗) is a semigroup such that all its elements are divisible.
Clearly (G, ◦) is not commutative and for all x ̸= y ∈ G, we have τ∗(x) ∗ τ∗(y) ̸=

τ∗(y) ∗ τ∗(x).

Corollary 4.2. Let (G, ◦) be a commutative divisible hypergroup. Then (G/τ∗, ∗) is a
divisible group.

Example 4.4. Define a hyperoperation ◦ on Z(2∞)× Z2 as follows:

(a/2i, h) ◦ (b/2j , h′) = {(a(2j) + b(2i)/2i+j , 0), (a(2j) + b(2i)/2i+j , 1)} where i, j ∈ N.

Clearly (Z(2∞)×Z2, ◦) is a commutative divisible hypergroup and for all (a/2i, h) ∈ Z(2∞)×
Z2 we get that τ∗((a/2i, h)) = {(a/2i, 0), (a/2i, 1)}. Now we define a map θ : ((Z(2∞) ×
Z2, ◦)/τ∗, ∗) −→ (Z(2∞),+) by θ(τ∗(a/2i, h)) = a/2i.

Clearly θ is well-defined and an isomorphism, so ((Z(2∞)×Z2, ◦)/τ∗, ∗) ∼= (Z(2∞),+)
is a divisible group.
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Theorem 4.5. Let (G, ◦), (H, ◦′) be hypergroups, f : (G, ◦) → (H, ◦′) be a homomorphism,
x, y ∈ G and n ∈ N∗. Then
(i) xτ∗y implies that f(x)τ∗f(y);
(ii) if (G, ◦) ∼= (H, ◦′), then G/τ∗ ∼= H/τ∗.

Proof. It is immediate. �

5. Fundamental divisible groups

In this section, we introduce (self) fundamental divisible groups and fundamental di-
visible hypergroups and we point out on the relations between these concepts. We prove that
every divisible group is a fundamental divisible group and the fundamental divisible group
obtained from a finite divisible hypergroup is trivial. Moreover, we show that isomorphic
divisible hypergroups have isomorphic fundamental divisible groups and we construct a self
fundamental divisible group.

Definition 5.1. (i) A group (G, .) is said to be a fundamental group if there exists a non-

trivial hypergroup say, (H, ◦) such that ( (H,◦)
τ∗ , ∗) ∼= (G, .). In other words, it is equal to a

fundamental group of a nontrivial hypergroup, up to an isomorphism.
(ii) A fundamental group (G, .) is said to be a self fundamental group if there exists a

nontrivial hyperoperation ◦ on G such that ( (G,◦)
τ∗ , ∗) ∼= (G, .).

Theorem 5.1. Let (G, ◦) be a finite divisible hypergroup and ρ be a strongly regular equiv-
alence relation on G. Then (G/ρ, ∗) is the trivial divisible group.

Proof. Let (G, ◦) be a finite divisible hypergroup (by Corollary 3.2, there exists). Thus
((G, ◦)/τ∗, ∗) is a finite divisible group. Since there are not finite divisible groups, we obtain
that ((G, ◦)/τ∗, ∗) ∼= 1, where 1 is the trivial group. �

Corollary 5.1. The fundamental group of every finite divisible hypergroup is the trivial
divisible group.

Example 5.1. Consider an equivalence relation R on Q and the hyperoperation ◦ on Q/R
defined as follows:

xRy ⇐⇒ y + x = 2x or y + x = 0 and R(x) ◦R(y) = {R(x+ y), R(x− y)}.
Clearly (Q/R, ◦) is a divisible hypergroup and for all x, y ∈ Q, R(x)τ∗R(y). It follows

that ((Q/R, ◦)/τ∗, ∗) is a trivial divisible group.

Remark 5.1. By Example 5.1, the converse of Corollary 5.1, does not hold.

Theorem 5.2. Every divisible group is a fundamental divisible group.

Proof. Let (G, .) be a divisible group. By Lemma 3.1, for all group (H, .), (G × H, ◦)
is a divisible hypergroup. Let (x, y), (x′, y′) ∈ G × H. If (x, y)τ∗(x′, y′), then there exist
g1, g2 ∈ G such that {(x, y), (x′, y′)} ⊆ (g1, y)◦(g2, y′) and g2 = g31 or g1 = g32 . Without losing
generality, let g2 = g31 ; thus x = x′ = g41 and so τ∗(x, y) = {(x, z) | z ∈ H}. Now, we define

a map φ : ( (G×H,◦)
τ∗ , ∗) −→ (G, .) by φ(τ∗(g, h)) = g. Since for all (g, h), (g′, h′) ∈ G ×H,

τ∗((g, h)) = τ∗((g′, h′)) if and only if g = g′ if and only if φ(τ∗(g, h)) = φ(τ∗(g′, h′)), it
follows that φ is well-defined and one to one. Let (g, h), (g′, h′) ∈ G×H. Then

φ(τ∗(g, h) ∗ τ∗(g′, h′)) = φ(τ∗(g.g′, h)) = φ(τ∗(g.g′, h′))

= g.g′ = φ(τ∗(g, h)).φ(τ∗(g′, h′)).

Thus, φ is a homomorphism. Clearly φ is onto. Therefore, φ is an isomorphism and then

( (G×H,◦)
τ∗ , ∗) ∼= (G, .). �
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Example 5.2. Let (Q × Z, ◦) be the divisible hypergroup which is defined in Example 4.2.
By Equations 1 and 2, (Q×Z)/β∗ = (Q×Z)/γ∗ = (Q×Z)/τ∗ = Q×Z. Now define a map
θ : ((Q×Z)/τ∗, ∗) −→ (Q,+) by θ(τ∗(m/n, k)) = m/n. Clearly θ is an isomorphism and so
(Q× Z/τ∗, ∗) ∼= (Q,+). Therefore, the divisible group (Q,+) is a self fundamental divisible
group.

Theorem 5.3. Let G and H be two sets such that |G| = |H|. If (G, ◦) is a divisible
hypergroup, then there exists a hyperoperation ” ◦′ ” on H, such that (G, ◦) and (H, ◦′), are
isomorphic divisible hypergroups.

Proof. Since |G| = |H|, then there exists a bijection φ : G −→ H. For all h1, h2 ∈ H, define
the hyperoperation ” ◦′ ” on H as follows:

h1 ◦′ h2 = φ(g1 ◦ g2).

First we show that ”◦′” is well-defined. Let (h1, h2) = (h′
1, h

′
2), where hi = φ(gi), h

′
i = φ(g′i)

and gi, g
′
i ∈ G for 1 ≤ i ≤ 2. Then hi = h′

i implies that φ(gi) = φ(g′i). Since φ is a bijection
then clearly gi = g′i and so g1 ◦′ g2 = φ(g1 ◦ g2) = φ(g′

1
◦ g′

2
) = h′

1
◦′ h′

2
. Moreover,

φ(g1 ◦ g2) = φ(g1) ◦′ φ(g2). (3)

Moreover, (H, ◦′) is a hypergroup. Let g1 , g2 ∈ G. Then, by Equation (3), φ is a homomor-
phism. Therefore, by Theorem 3.6, (H, ◦′) is a divisible hypergroup, φ is a homomorphism
and then is an isomorphism. �

Corollary 5.2. Let (G, .) be a non-finite divisible group. Then there exists a hyperoperation

” ◦ ” on G such that (( (G,◦)
τ∗ , ∗) ∼= (G, .))

Proof. Consider the divisible hypergroup (G× Z2, ◦). By Theorem 5.2,

(
(G× Z2, ◦)

τ∗
, ∗) ∼= (G, .).

Since G is infinite, it follows that |G| = |G × Z2| and by Theorem 5.3, there exists a
hyperoperation ” ◦′ ” on G , such that (G, ◦′) and (G × Z2, ◦) are isomorphic divisible
hypergroups. We have

(G, .) ∼= (
(G× Z2, ◦)

τ∗
, ∗) ∼= (

(G, ◦′)
τ∗

, ∗).

Therefore, (G, .) is a fundamental group of itself and so is a self fundamental divisible
group. �

Definition 5.2. A hypergroup (H, ◦) is said to be fundamental divisible if its fundamental
group is a divisible group.

Example 5.3. (Q, ◦) is a fundamental divisible hypergroup, where ◦ is defined in Theorem
5.2.

Theorem 5.4. Let (H, ◦) be a commutative hypergroup. Then (H, ◦) is a fundamental
divisible hypergroup if and only if it is a divisible hypergroup.

Proof. Let (H, ◦) be a divisible hypergroup, y ∈ H and n ∈ N∗. By definition of τ∗, ( (H,◦)
τ∗ , ∗)

is an abelian group and there exists x ∈ H such that y ∈ xn. Then

τ∗(y) = τ∗(xn) = τ∗(x ◦ x ◦ . . . ◦ x︸ ︷︷ ︸
(n−times)

) = τ∗(x) ∗ τ∗(x) ∗ . . . ∗ τ∗(x) = τ∗(x)n.

Hence ( (H,◦)
τ∗ , ∗) is a divisible group and so (H, ◦) is a fundamental divisible hypergroup.

Conversely, let (H, ◦) be a hypergroup such that it is fundamental divisible, x ∈ H
and n ∈ N∗. Then τ∗(x) ∈ H/τ∗. Since H/τ∗ is a divisible group, we obtain τ∗(y) ∈ H/τ∗
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such that τ∗(x) = τ∗(y)n = τ∗(y ◦ y ◦ . . . ◦ y︸ ︷︷ ︸
(n−times)

). It follows that x ∈ yn and so (H, ◦) is a

divisible hypergroup.
�

Example 5.4. Consider the divisible hypergroup (Q× Z2, ◦), defined in Example 3.2. It is
easy to see that (Q,+) ∼= ((Q × Z2, ◦)/τ∗, ∗) and so (Q × Z2, ◦) is a fundamental divisible
hypergroup.

Corollary 5.3. Direct product of divisible hypergroups is a divisible hypergroup.

Proof. Let (H, ◦) and (K, ◦′) be divisible hypergroups. Then we define a map θ : ( (H,◦)×(K,◦′)
τ∗ , ∗) −→

( (H,◦)
τ∗ × (K,◦′)

τ∗ , ∗′) by θ(τ∗(h, k)) = (τ∗(h), τ∗(k)). Clearly θ is an isomorphism and so

( (H,◦)×(K,◦′)
τ∗ , ∗) ∼= ( (H,◦)

τ∗ × (K,◦′)
τ∗ , ∗′). Since ( (H,◦)

τ∗ , ∗) and ( (K,∗)
τ∗ , ∗) are divisible groups, it

follows that (H,◦)
τ∗ × (K,∗)

τ∗ and ( (H,◦)×(K,◦′)
τ∗ , ∗) are divisible groups. Hence by Theorem 5.4,

(H, ◦)× (K, ◦′) is a divisible hypergroup. The converse is similar. �
Transitivity condition of τ
In what follows, we determine when the relation τ is transitive. The following results

are similar to those relating to the relations β∗ and γ∗ and so, we do not give anymore the
proofs.

Definition 5.3. Let G be a hypergroup and M be a nonempty subset of G. M is called
τ -part if for all n ∈ N∗, a1, . . . , an ∈ G and all σ ∈ Sn, where for some 1 ≤ i, j ≤ n,

i ̸= σ(j) we have ai ∈ a3σ(j), then
n⊙

i=1

ai ∩M ̸= ∅ =⇒
n⊙

i=1

ai ⊆ M .

Lemma 5.1. Let M be a nonempty subset of a hypergroup G. Then the following conditions
are equivalent:
(i) M is a τ -part of G;
(ii) x ∈ M and x τ y imply y ∈ M ;
(iii) x ∈ M and x τ∗ y imply y ∈ M .

Theorem 5.5. Let G be a hypergroup and x ∈ G. Then the following conditions are
equivalent:
(i) τ is a transitive relation;
(ii) τ∗(x) is a τ -part.

Definition 5.4. Let (H, ◦) be a divisible hypergroup and A be a subset of G. We denote by
T (A) the complete closure of A, which is the smallest complete part of G, that contains A.
Denote K1(A) = A and for all n ≥ 1 denote

Kn+1(A) =

{
x ∈ G | ∃ p ∈ N∗, σ ∈ Sp and g1, ..., gp ∈ G,where ∃ 1 ≤ i, j ≤ p,

i ̸= σ(j), such that gi ∈ a3σ(j), x ∈
p⊙

i=1

gi and Kn(A) ∩
p⊙

i=1

gi ̸= ∅

}
and K(A) =

∪
n≥1

Kn(A).

Theorem 5.6. Let (G, ◦) be a divisible hypergroup and A ⊆ G. Then
(i) T (A) = K(A);

(ii) K(A) =
∪
a∈A

K(a).
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Theorem 5.7. Let (G, ◦) be a divisible hypergroup and x, y ∈ G. Then
(i) for all n ≥ 2 we have Kn(K2(x)) = Kn+1(x);
(ii) x ∈ Kn(y) ⇐⇒ y ∈ Kn(x).

6. Conclusions

In this paper we investigate divisible hypergroups and some of their new useful prop-
erties. We define a new equivalence relation τ∗ on a divisible hypergroup and we prove that:
(1) τ∗ is strongly regular, while τ is not transitive in hypergroups and so is not an equiva-
lence relation.
(2) In general τ∗ ̸= β∗ and τ∗ ̸= γ∗.
(3) τ∗ is the smallest strongly equivalence relation such that the corresponding quotient
structure is a group and such that all its elements are divisible.
(4) In commutative divisible hypergroups τ∗ is a fundamental relation.
(5) We construct a divisible hypergroup on every nonempty set.
(6) We define the concept of a fundamental divisible group and we show that all divisible
groups are self fundamental divisible groups.
(7) The quotient of a finite divisible hypergroup with respect to a strongly regular equiva-
lence relation is a trivial group.
(8) We prove that a direct product of divisible hypergroups is a divisible hypergroup.
(9) Considering of the concept of a τ -part in a divisible hypergroup , we analyse when τ is
transitive.
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