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MULTIPLE EQUILIBRIUM STATES DURING THE
QUASI-STEADY FORMATION OF BUBBLES AND DROPS AT
A CIRCULAR ORIFICE

Sanda-Carmen GEORGESCU', Jean-Luc ACHARD?

Instabilities occurring during the quasi-steady formation of bubbles and
drops at a submerged orifice, under constant pressure conditions, have been
investigated numerically. For different values of the control parameters of the
problem, namely the Edtvos number EoO, and the excess pressure number A, which
denotes the pressure difference between gas and liquid across the orifice, computed
interface profiles are characterized by the apex height h, positive for bubbles, and
negative for drops. At high apex height values, bubbles and drops have an undulate
structure, with one or two necks. In the three-dimensional space (E0,Ah), the
equilibrium surface is multifold in both A directions, and some singularity lines
intersect to form higher singularities. The central singularity is a cusp that straddles
on the flat meniscus, between emerging bubbles and pendant drops profiles. The
upper cusp sheet corresponds to bubbles, and the lower one corresponds to drops.
Several fold curves that correspond to the multifold surface delimit stable and
unstable regions. The first four fold curves are roughly parallel, while the
following-ones are distorted, and exhibit a sequence of swallowtails. The numerical
bifurcation set is computed onto the control parameter plane (E6,4), extending in
particular the analytical bifurcation set that is valid only around the critical point,
defined at E6 =5.783186, A=0,and h=0.
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1. Introduction

To enhance the transport rate between gaseous and liquid phases, many
engineering applications involve formation of gas bubbles and liquid drops. We
focus here on the quasi-steady formation of bubbles and drops at a submerged
orifice [1; 2]. Experimental evidence on Newtonian fluids shows that, usually,
stable bubbles and drops, which form without phase change, have not an undulate
structure. However, Padday [3] studied the bifurcation and breakage of a pendant
drop, using an ultra high-speed cine camera. Some of its frames, especially those
with satellite drop formation, are reminiscent of drop configurations that may be
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considered as necked. Chains of bubbles connected by thin necks have been
observed by Kliakhandler [4], but only in concentrated polymeric solutions,
where bubbles may form a very stable, continuous, and slowly rising bubbles
sausage. The elastic properties of the liquid prevent the collapse of necks, and
detachment of rising bubbles from each other. The same author conducted
additional experiments with bubbling in viscous Newtonian liquids (corn syrup,
silicon oil), but no undulate bubble structure could be formed. In experimental
studies about the dynamics associated with a single bubble during nucleate
boiling on a horizontal surface, necked bubble profiles have been observed by
Pakleza et al. [5]: vapour bubbles could not be stabilised, but their growth is low
enough to meet temporarily some undulate steady configurations during their life.
Note that, in this experiment, the saturated vapour pressure is controlled via the
temperature.

We limit our interest to processes without phase change, and select
systems that contain Newtonian fluids. Each particle (bubble, drop) interface is
attached to the edge of a circular orifice through a thin plate, which separates an
upper cylindrical vessel of quiescent liquid, from a lower air chamber maintained
at constant pressure. Thus, the quasi-steady formation of bubbles and drops
appears as a process mainly governed by a balance of interfacial tension and
gravity forces. The analysis performed analytically by Achard and Georgescu [6]
has brought a unified picture of the quasi-steady formation of bubbles and drops
under constant pressure conditions, in connection with the Rayleigh-Taylor
instability. The validity of that analysis is restrained to interface configurations
that admit a simple (one-to-one) projection onto the orifice plane. The purpose of
the present paper is to extend the previous theoretical analysis through elementary
numerical computations, in order to capture the behaviour of interface profiles,
which start from the flat meniscus, and evolve to some undulate structures.

2. Problem formulation

The physical system includes an open cylindrical vessel of quiescent
liquid, over a gas chamber. A thin horizontal plate, which is perforated with one
small orifice of radius R, separates both fluids. The liquid vessel is assumed large
enough, to neglect sidewalls effect, and the free surface. Mathematically, the
liquid above the plate extends at infinity. A meniscus forms at the submerged
orifice: that meniscus may be flat (the Rayleigh-Taylor case), upward oriented for
emerging bubbles, or downward oriented for pendant drops.

The gas pressure p, is assumed to be constant. The hydrostatic liquid

pressure p, has the particular value p,, over the plate. The equilibrium interface

shape depends on R, on the difference between p, and p,,, on the gravity g, as
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well as on the liquid density p, and surface tension o. Two independent
dimensionless parameters control this evolution [6], namely the E6tvos number:

Ei=gpR*[o, (1)
and the dimensionless excess pressure across the orifice:
A=(pg = pro)R/o. )

The flat meniscus corresponds to 4 =0, while bubbles and drops are defined by
A>0,and A <0 respectively. The cylindrical polar coordinate system (r,H,z) is
defined with » =0 on the orifice axis, and z =0, the horizontal reference plane,
at the plate level. The gravity is acting in the negative z-direction. A parametric
representation of the interface profile is adopted, as » = r(s,t), z= z(s,t), and
W= y/(s,t). The curvilinear abscissa s is measured, in a meridian plane, from the
profile apex (s =0), to the orifice edge where s = L, the maximum arc length.
The azimuthal angle y defines the unit tangent vector 7 = (cos w,sin W) on the
interface. The sense of 7 is such that:

N S
r=—'|.cosz//ds, z=—jsinwds, and n=(—sin1//,cosy/). 3)
0 0
The unit normal n points outward from the liquid phase.

The appropriate boundary conditions that govern the continuously
changing contact line, which is attached at time ¢ =0 to the orifice edge, will be
simplified. Adopting a macroscopic point of view, the contact line can be
considered as attached to the seemingly sharp edged orifice. All the detailed local
physics of contact angles [7] can be by-passed, the studied interface
configurations being such that 8, <y, <(z+86,), where y, is the azimuthal

angle at the contact point, 6, is the limit receding contact angle, and 6, is the

limit advancing contact angle. During the quasi-steady interface evolution, the
slow motion in the incompressible inviscid liquid above the interface is supposed
to start irrotational and remain so. The velocity potential ¢ satisfies the Laplace

equation, V2¢ =0, and its evolution is governed by the Bernoulli equation:
op 1 2
/’(a_f*ﬂv‘/ﬂ j+pL +pgz=ppo - 4)

The velocity potential must be finite along the z-axis, d¢/dr =0, and it vanishes

at infinity. There is a vanishing normal velocity at the impermeable plate:
0¢/0z = 0. The normal component of the momentum balance on the interface is
written as:

pG —pr =o(l/R +1/R,), (5
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where R, and R, are the local principal radii of curvature. The planar curvature
is I/R; =—dw/ds . The axisymmetric curvature is 1/R, =siny /r outside the axis
of symmetry (7 # 0 ), and it equals the planar curvature on the Oz-axis (r = 0).

Combining Bernoulli Equation (4), and momentum balance (5) evaluated
at the interface, gives the following equation, written in a dimensionless form:

2 . % 1 1
=A+Eoz —| —+— |, (6)
Rl R

where the length scale R, and velocity scale U = \/g_R have been adopted. The
dimensionless variables have been taken as:

2 =z/R, ¢" =¢/(UR), and ¢ =Ut/R. (7)
Further, only dimensionless variables will be considered, so to simplify notations,
asterisks will be suppressed for convenience in the rest of the paper.

The left-hand side of Equation (6) contains the transient part, while the
right-hand side contains the steady part. The interface equilibrium profile is
defined by that steady part:

A+Eoz=1/R +1/R, . (8)
The Equation (8) can be rewritten as a coupled set of three first-order ordinary
differential equations, by deriving the dimensionless geometric parameters y , r

- E %+1‘V*¢*
o 2

and z with respect to the curvilinear abscissa s:
dy/ds=-A—Eéz+siny/r, r#0

dy/ds =—(4+Es z)/2, r=0 ©)
dr/ds = —cosy '
dz/ds = —siny
The following boundary conditions are available for the interface:
w(s=0)=7z, r(s=0)=0, z(s=0)=h (10)

l//(s =L)=l//c, r(s =L)=l, Z(s =L)=O'
where & denotes the dimensionless profile apex height.

The nonlinear system (9) with boundary conditions (10) is solved
numerically as in [8], through a standard shooting method: the integration of the
system of ordinary differential equations with initial conditions (imposed values
at s =0) is made repetitively by the classical fourth-order Runge-Kutta method,
to match the boundary conditions at the edge of the orifice (s = L), via a trial and
error process [9]. The apex height /4, the maximum arc length L, and the
azimuthal angle at the orifice edge y, are obtained upon the numerical

integration of the above system. For a given pair of control parameters { £5,4 },
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we found several equilibrium interface profiles, which correspond to different /% -
values (implicitly to different values of L and ). For drops, the numerical

procedure follows that of bubbles, with some differences: 4 < 0, the last equation
in (9) changes its sign, and l//(S = 0) =0 in (10).
3. Bifurcating solutions

Within the stability analysis performed by Achard and Georgescu [6], the
interface profile magnitude is expressed by the amplitude ¢ (positive for bubbles,
and negative for drops), defined as:

1
_ (1 JolAr)
8—\/2£r§(r) ) dr, (11)

where A; =2.40482556 . The Equation (11) includes the steady solution E of the

interface representation z = &(r,) = g (r)+ f(r, t), which defines only profiles that
admit a simple projection onto the orifice plane. It follows that the apex height is
then: 4 = E (O) For small axial disturbances 3,9 about E at A4 =0, the stability of

the null solution E =0 (that is the flat meniscus) has been tested in [6, Section 4],

together with the stability of the bifurcating solutions, E >0 for bubbles, and
E < 0 for drops [6, Sections 5-6]. The general condition for loss of stability has

been described for the flat meniscus, é? =0, by two eigenvalues:

o) =+ufm, , (12)
where m; = (EO'[J 1(4)] 2 )/ 2 is the added mass coefficient, and x is defined as:

u=E5—A = EG—5.783186. (13)
The flat meniscus is thus stable when g <0 (that is when Eé <5.783186), and
unstable when u > 0. In the neighbourhood of & =0, the subcritical bifurcation
diagram (in the plane 4 = 0) has been analytically defined by [6, Equation (49)]:

1 =-36.73425¢2. (14)

Its upper branch (&> 0) corresponds to bubbles, while its lower one (&< 0)
corresponds to drops. Those two branches emerge symmetrically from the critical
point P;, situated at 4 =0 (that is Eo=5.783186), A4=0, and ¢=0. For

A =0, it was shown that the solution E # 0 1is unstable as it bifurcates at the
critical point [6, Section 6]. In Figure 1 we plot the bifurcation diagram in the
plane (£6,&). The analytical curve of Equation (14) is transformed as E6 = Eo (5)

due to Equation (13). In Fig. 1 we also plot numerical results obtained within this
paper from Equations (9-10), and transformed then in terms of & through Eq. (11).
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Fig. 1. Subcritical bifurcation diagram (A = 0) : analytical curves, together with numerical results
plotted by star marks. Stable parts are plotted in solid line, while unstable parts are dashed
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Fig. 2. Left: complete bifurcation diagram obtained numerically (A = 0). Stable parts are plotted
in solid line, while unstable parts are dashed. Right: typical profiles of bubbles in P
(E6=0.996), Py (Eo=2.990), Pf (E6=1.286), P§ (Eo=2.560), Pf (E6 =1.348),and
the flat meniscus in P, (E6 = 5.783186)

We extend here the above stability analysis far from the flat meniscus, to
interface configurations that have an undulate structure (with one, or two necks).
The parametric representation is convenient. The representative interface
magnitude in the present paper is the apex height /4 (positive for bubbles, and
negative for drops), which results upon numerical integration of Equations (9-10).
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In Figure 2, we present the complete bifurcation diagram (in the plane A =0),
obtained numerically far from 4 = 0. Various turning points have been identified,
being denoted P2+,P3+,...,P5+,... when referring to bubbles, and P, ,P;,...,Ps ,...
when referring to drops. Typical profiles are plotted for bubbles corresponding to

the turning points P5,...,P;, together with the critical flat meniscus situated in

P,. The drops profiles at P, ,...,Pg are just symmetrical to the corresponding

bubble profiles, with respect to the orifice. The stability of the bifurcating
solutions far from the flat meniscus will be discussed upon an extended
eigenvalue problem [6, Equation (53)], modified here by introducing the
representation r = n(z,t) for necking interfaces (within the analytical study, the

parametric representation is not convenient). The dependant variable varies
between 0 and /. The apex height must be immobilized by introducing a change
of coordinates. Nevertheless the resulting eigenvalue problem has the same
structure as [6, Eq. (53)], and proceeding formally by using the Factorisation
Theorem proposed by Iooss and Joseph [10], we also find two eigenvalues:

V()= £, (W) M), (15)
where M (h)>1 is proportional to the added mass of the liquid. Note that G(l)(h)

as given by Equation (15) is not symmetric in 2 due to M (h), the added mass

effects being different for bubbles and drops. Thus, starting from the critical flat
profile, the equilibrium bubble and drop configurations at A =0 are unstable
before reaching the left-hand side turning points, and stable after that. The reverse
is true on the right-hand side turning points. In the typical one-sided subcritical
bifurcation plotted in Figure 2, the turning points limit thus zones where stable
bubbles, or drops should be observed. Profiles have one neck on the stable

branches {P, ,P; } and {P,,P;}, and two necks on the stable branches {P;,PJ}
and {P,,Ps5}.
4. Isolated solutions that break bifurcation

For small axial disturbances f about E at A # 0, the stability of isolated
solutions E # 0 has been analysed in [6, Section 7], near the critical point P;. In
the space (,u, A, 8), steady solutions §~ define an equilibrium surface, which is a
cusp described analytically by [6, Equation (79)]:

Au, €)= —170046 us — 62.46528 &7 (16)
The upper cusp sheet corresponds to bubbles, and the lower one corresponds to

drops. The turning points P;" and P; extend into 4 >0, and A< 0 regions as
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singularity lines (fold curves) of that cusp. The intermediate sheet of the cusp,

which is bordered by P;" and P; singularity lines, is stable. The upper and lower

sheets of the cusp (that is above P;*, and below P, lines) are unstable. Those
singularity lines are defined by the following system [6, Equation (81)]:
A=124.93056 &
1=-110.20302 2"
and represent the analytical bifurcation curve near the critical point. Upon
combining Equations (13) and (17), the analytical bifurcation curve is plotted in
Figure 3 onto the control parameter plane (E0,4), together with the numerical
results obtained in this paper through Equations (9-11). Far from the critical point
P, , the equilibrium surface can be found via the numerical approach.

(17)

—— analytical curve
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P} singularity line
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Fig. 3. Analytical (solid line), and numerical (star marks) bifurcation set near the critical point P; .
The upper branch is the projection of the P;" singularity line of the bubbles cusp sheet onto the

plane (E0,4); the lower branch is the projection of the P, singularity line of the drops cusp sheet

Equations (9-10) give the steady interface profiles that correspond to each
point of the equilibrium surface in the whole space (Ed6,4,k). The equilibrium
surface is very complex at very low Edtvés numbers, say E6 < 0.045, as well as
at large E6, say E6>6.5. We will restrict our numerical investigation mainly
between these limits, which cover a very large spectrum of physically interesting
cases. The 3D shape of the equilibrium surface is difficult to be plotted entirely: it
is a cusp at low A-values, and it becomes multifold when increasing apex height
(the surface zigzags away from the 4 =0 plane, and is antisymmetric in A4); at
high apex height values, the multifold surface exhibits even a sequence of
swallowtails. The equilibrium surface intersects the plane A =0 according to the
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curve given in Figure 2. The turning points P}r ( j=2,.. .,6) for bubbles, and their

counterparts P; for drops, form singularity lines (fold curves) when extending
into A>0, and A <0 regions of the space (Ed,4,h); those fold curves will be
denoted by the same symbols as their turning points, i.e. P;T and P, .

To understand better the configuration of the equilibrium surface, we plot
in Figure 4 complete cross sections of the equilibrium surface, for some typical
Eo-values. For Eo = 2.8, a cross section of the 3D surface restricted mainly to the
upper (bubble) part, is plotted in Figure 5, together with some typical stable
configurations of the interface profiles, at the same A-value (i.e., 4 =-0.4).
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Fig. 4. Dependence s = h(A) for bubbles and Fig. 5. Dependence s = h(A) for EG=2.8,

drops, at: Eo = 0.14 (upper left); £6 =1.0 (upper  restricted mainly to the bubbles part (left);
right); Eo =2.8 (lower left); E6 =5.7 (lower typical stable profile configurations for
right) A=-0.4,at By (drop), B, & B3 (bubbles)

For bubbles, the singularity lines P}r ( j= 1,...,4) are projected onto the
control parameter plane (E6,4) in Figure 6. The singularity lines P; for drops are

also drawn in this figure; they are symmetrical to P}r with respect to the 4 =0

plane. For j up to 4, the fold curves are roughly parallel, so a 3D graphical
representation can be plotted. Consider firstly the cusp that straddles on the flat
meniscus. The bifurcation curve, which is the projection of the first singularity
lines P;" and P, onto the plane (E5,4), follows the path of numerical star marks
plotted in Fig. 3. The upper cusp sheet, and the lower one are bordered by the
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second singularity lines, defined by the turning points P;” and P; . Over the entire
cusp surface, interface profiles are not necked. In Figure 7 (left), we plot the cusp
that we computed numerically, together with the bifurcation curve. Consider next
the multifold part of the equilibrium surface. It is plotted in Fig. 7 (right side), for
a restrained £ range, starting from the flat meniscus up to the fifth fold curve.

Fig. 6. Bifurcation set: singularity lines P;-r for bubbles (solid lines) and P for drops (dashed
lines), for ( j=1... ,4) , projected onto the control parameter plane (E6,4); Eé € [0.045, 6.5]

cusp from Py to 7 fold ines & bifurcation curve fokd equilbrium surface for £ = (2 64.4.66]
i face for £d = [2.64,4.

Fig. 7. Left: equilibrium surface between P2+ and P, , and bifurcation curve. Numerical
computations for that cusp correspond to Eé € [0.4, 8.0]; Right: multifold equilibrium surface for

E < [2.84,4.66]
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The stability study of isolated solutions (A # O), which perturb bifurcating
solutions (A = 0), will be based on the stability study of the latter, presented in [6,
Section 6]. The relations u = y(g), and g? = E (8) for A=0 will be replaced by
the relations A= A(u,&), and E=¢ (11,€), in which g is a fixed parameter such
as u < 0. Far from the critical point, the solution magnitude is represented by the
apex height %, and the Equation (15) has the following analogue:

o, ) =8 (. )/ M (a1 (18)
where 4, (,u,h) changes the sign as / is varied at each regular turning point.

Likewise in Section 3, at each turning point, the sign of 4, (z, /) controls whether
a(l) is a couple of real, or purely imaginary eigenvalues. The stability properties
of that imperfect problem (A # 0) are consistent with those found for the perfect
problem (A =0) treated in Section 3.

Consider the cross section of the equilibrium surface (£0,4,h) presented in
Figure 5. The first sheet {P; ,P;"} that crosses the Ed-axis is stable (solid line in

Figure 5), since precisely this axis has been found to be stable for the flat
meniscus case (Rayleigh-Taylor problem), as soon as Eo < 5.783186 [6, Section

4]. The next sheet, e.g. {P;",P, } for bubbles, is thus unstable (dashed line in
Figure 5). Observe that it crosses the 4 =0 plane according to a curve that has
already been shown to be unstable in the perfect case (line {P;,P; } in Figure 2).
The further sheet {P,,P;} is stable and so on, up to the 6th sheet {PS,P¢},

which is unstable. Each time when crossing A4 =0, we found results consistent
with those obtained in Section 3. For the particular value of Eo = 2.8, note that
the 5th sheet no longer crosses the plane 4=0. To sum up, pieces of surfaces

delimited by the couples of fold curves {P; ,P;"}, {P,,P;}, {P,,P5}, as well as
by {P,,P;}, {P,,Ps}, correspond to stable bubbles, or drops configurations.
Only bubbles and drops corresponding to {P; ,P,"} seem to have been currently
observed. Bubbles and drops corresponding to {P,,P;}, and {P,,P;} are single
necked; they appear less common. Profile configurations of {P;,PS}, and

{P4,P5} have two necks; they haven’t been observed. The reason may be that it

is difficult to control formation of bubbles and drops close enough to these
solutions. For Ed <5.783186, when interfaces are strongly disturbed to make
them escape from the attraction set of the flat meniscus, they grow into bubbles or
drops, without being stopped by the nearest unstable sheet. So they absorb more
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and more transient effects, and the following stable sheet cannot attract and
stabilise them. Another reason is that the projection of these pieces of surface on
the plane (£0,4), as seen in the bifurcation set of Figure 6, corresponds to stripes
that become narrow as the apex height grows. Thus, A must be carefully tuned to

attain say the {P;",P;} sheet, for a given E¢.

=
[
=
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3 and more than 3 solutions |

3 35 4 45 5 55 &
Es

Fig. 8. Number of stable solutions in regions bordered by the projection of singularity lines P}’
( j=1L... ,6) onto the control parameter plane (Ed,4), for A> 0

Far from P;, projections of fold curves corresponding to Pj ( j= 1,...,6)

have been plotted in Figure 8, for 4 > 0. In each region bordered by these curves
projections, the number of stable solutions is indicated. For j <4, this figure may

be compared to Figure 6 (where Ps, and P; do not appear). For j >4, the fold

curves are no longer smooth: they are distorted, and even exhibit swallowtails,
which are singularities well known in the Catastrophe Theory. A particular
sequence of such singularities is presented in Figure 9, together with typical
bubble profiles around a selected swallowtail [8; 11]. At high apex height values,

corresponding to fold curves Ps , and Pg , as well as to swallowtails, bubbles and
drops have an undulate structure with two necks. Around a selected swallowtail,
at constant £, we did not find significant differences between bubble profiles for
quite small changes in A-values (this last observation is valid for drops too). On
the left side, and on the right side of a swallowtail, the apex height has different
sense of variation when A-values increase monotonously. In fact, the upper branch
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of the swallowtail corresponds to the seventh turning point P; (see the bubble
index s7, or m7 in Figure 9). Usually, the 7th turning point follows closer the 6th
one (e.g. in Figure 5). The lower left branch of the swallowtail corresponds to P
(see the bubble index s6, or m6 in Figure 9), and the lower right branch
corresponds to Pg (see s8, or m8 in Figure 9). Because of the complexity of the

whole sequence of turning points, which appear and disappear at high s-values,
when increasing FE6, we denoted the whole distorted 6th fold line with its

swallowtails as the P; fold line. The same apply for denoting the distorted P
line, where at lower Ed, some swallowtails also appear.

zoom on bubbles bifurcation set E6=2.00 E6=215

02
01

-0.1
-02
-0.3

-0.4

-0.26

-0.28

-0.32

-0.34

Fig. 9. Left: zoomed bifurcation set for bubbles (upper left), showing a sequence of swallowtails
on Pg singularity line, for E£6 € [0.75,2.5], and 4 e [— 0.4,0.3]; selected swallowtail (lower left)

within the ranges Eé € [1.9,2.4], and 4 € [— 0.34,—0.26] (star marks show the position of 3
profiles at E6 = 2, and E¢ = 2.15); Right: bubble profiles around the selected swallowtail, for
Eo =2, where h| <h| <h| ,and for £o = 2.15, where h| <h| <h|
s6 s7 s8 m6 m7 m8

As stated before, stable undulate (necked) structure of bubbles and drops
were not observed so far in Newtonian liquids. Anyhow, as mentioned in
Introduction, Kliakhandler reported in [4] that undulate bubble structures may be
found in concentrated polymeric solutions. To investigate qualitatively the
existence of such necked bubbles, following [4], some simple experiments were
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conducted [12]: we present in Figure 10 the experimental results corresponding to

stable multi-necked bubbles in a polymeric solution, with density of 900 kg/m>,

surface tension of 0.0225 N/m, zero shear viscosity of 7.5 Pa-s, and time of
relaxation of 0.3s, at 20°C. The polymeric solution filled a transparent cylinder
of 65 mm diameter, open at its upper part. Obviously, due to the liquid elasticity,
stable undulate interface configurations can be easily found. It must be
highlighted that the bubbling we performed experimentally, as Kliakhandler does
[4], corresponds to bubbles attached to a nozzle, the air being injected slowly,
under constant flow conditions (we used a nozzle with inner radius of 0.45 mm).
Our numerical study deals with constant pressure conditions. We mention that the
evolution of the necked interface in polymeric solution is such that some bubbles
are breathing through their necks (see the two successive sequences from the left
in Figure 10): the air is supplied through each neck, producing the alternative
growth, and reduction of each volume that exists between two necks. Obviously,
the elastic properties are preventing the complete necking of the interface, and the
bubble detachment. Anyhow, those experimental results allow doing some
qualitative comparison: the sequence we cut from the undulate bubble in the right

side of Figure 10, is more like the bubbles we found numerically for P¢ (Figures
2 and 9).

Fig. 10. Undulate bubble structures in polymeric solution, at £6 = 0.079 [12]. Left: two
successive sequences of the necked interface evolution; each bar is 65 mm height. Right: a
particular necked interface shape, and its zoomed cutting sequence
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5. Conclusions

The stability analysis performed in [6] has brought a unified picture of the
quasi-steady formation of bubbles and drops at a submerged orifice, under
constant pressure conditions, in connection with the Rayleigh-Taylor instability.
This analytical analysis is valid only near the critical point P; of the flat
meniscus, where the E6tvos number has the particular value Ed =5.783186, and
the excess pressure number is 4 =0 (4 includes the pressure difference between
gas and liquid across the orifice). In the present paper, the above stability analysis
has been extended far from P;, through elementary numerical computations.

For the interface profiles (bubbles, drops), bifurcating steady solutions
(corresponding to A4 =0), together with isolated solutions (A # 0) that perturb the
former-ones, are provided numerically for a wide range of the control parameters
(E6,A), by taking the apex height 4 as the profile magnitude (positive for bubbles,
and negative for drops). It is shown that 4 zigzags away from the 4 =0 axis,

being antisymmetric in A; at each turning point (P} for bubbles, and P; for

drops, with j >1), solutions change their stability characteristics.

An explicit picture of the equilibrium surface has been given in [6] near
the critical point. It corresponds to a cusp, whose intermediate sheet is stable,
while its two upper and lower sheets are unstable. The bubbles and drops
configurations corresponding to that cusp are not necked; the profiles onto the
intermediate sheet of the cusp are the ones that are usually observed. Numerical
computations provide the complete equilibrium surface in terms of 4 for the
global variation in the controls (EG, A), over the half plane E6 > 0. In this three-
dimensional space, the equilibrium surface is multifold in both A directions.

In fact, the turning points P}r and P; extend into 4>0, and 4<0
regions as singularity lines (fold curves), which stay roughly parallel for j <4 in
the selected range E¢ [0.045,6.5]. For j >4, the fold curves are distorted and

exhibit swallowtails. The fold curves P; and P; border superimposed stripes of
the equilibrium surface, where solutions are alternatively stable, and unstable. For

instance, the surface stripes bordered by the couple of fold curves {P;,P; }, and
{P, ,P3} correspond to stable bubble, and drops configurations, which have one

neck. On the stripes bordered by {P;,PS}, and {P;,Ps;}, stable bubbles, and

drops have two necks. The experimental study of those stable configurations
deserves some attention, since the corresponding undulate profiles have not been
observed so far in Newtonian liquids. Following Kliakhandler [4], it was shown
experimentally within this paper that stable undulate bubble configurations might
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exist in concentrated polymeric solutions, due to the liquid elasticity. Anyhow, to
validate our theoretical results, new designed experiments using highly viscous
Newtonian liquids are necessary, attempting to damp perturbations, and to obtain
stable profiles. Perhaps most experiments fall out of the restricted range of
parameters insuring the existence of a stable solution, as indicated in the
bifurcation set (Figure 8).
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