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PROPER BIHARMONIC SUBMANIFOLDS IN A UNIT SPHERE

Tianmin Zhu', Shichang Shu?

In this article, we study the proper biharmonic submanifolds in a unit
sphere S™. If the submanifolds satisfy certain geometric and rigidity properties,
we obtain some characterizations of the two canonical examples of proper bihar-
monic submanifolds: hyperspheres S"~*(1/v/2) and the generalized Clifford tori
S™(1/3/2) x §™2(1/y/2), m1 +ma =n — 1, m1 # ma.
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1. New theorems of proper biharmonic submanifolds

A biharmonic map is a map ¢ : M™ — N" between Riemannian manifolds
that is a critical point of the bienergy functional Ez(¢) = 5 [1;m |7()|?vg, Where
7(p) = trVdy denotes the tension field of ¢. By calculating the first variation of
¢, G.Y. Jiang [10] showed that the map ¢ is biharmonic if and only if its biten-
sion field m(¢) vanishes identically, that is, m(p) = tr(V¥V¥ — Vng)T(ap) -
trRN" (dp, 7(¢))dp = 0, where RN" is the curvature operator of N” defined by
RN (X,Y)Z = VX", V¥"Z — Vf\)fgy]Z. We note that any harmonic map is bi-
harmonic. The non-harmonic biharmonic maps are called proper biharmonic. The
submanifolds with biharmonic inclusion map are called biharmonic submanifolds. It
is well known that an isometric immersion is minimal if and only if it is harmonic.
So the minimal submanifolds are trivially biharmonic. The submanifolds with non-
harmonic (non-minimal) biharmonic inclusion map are called proper biharmonic
submanifolds.

From the results of G.Y. Jiang [11], we know that if ¢ : M™ — S™ be an
isometric immersion submanifold in a unit sphere S™ with codimension n — m, then
M™ is biharmonic if and only if for any «, ¢

@ 5 B « a
Zhjjkk - Z Rk + mz h§; =0, (1.1)
Jik i,9,k,8 j
> @k + W) =0, (1.2)
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where 1 < i, 5,k <m,m+1<a,pB <n, h;"j are the components of the second
fundamental form of M™, hiiy, and hiy, are the first and second covariant derivatives
of hg; defined by (2.6) and (2.7).

We should note that B.Y. Chen [7], Caddeo— Montaldo—Oniciuc [5, 6], Balmus—
Montaldo—Oniciuc [2, 3] and Ou [16] also studied biharmonic maps and biharmonic
submanifolds, they obtained (1.1) and (1.2) in several steps and by different sign
conventions. From [11], [2] and [4], the canonical examples of proper biharmonic sub-
manifolds in a unit sphere S™ are the small hypersphere S"~1(1/v/2) = {(z,1/V/2) €
Rz € R™, |z|> = 1/2} C S™ and the products S™ (1/v/2) x S™2(1/\/2) =
{(z,y) € R*lz € R™MFL y e R™2FL (2|2 = |y|2 = 1/2} € S™, where my + mg =
n—1and m; # ma. Recently, Balmus—Montaldo—Oniciuc [2] proposed the following:

Conjecture. The only m-dimensional (m > 3) proper biharmonic hypersurfaces
in S™* are the open parts of hyperspheres S™(1/+/2) and of the generalized Clif-
ford tori S™ (1/v/2) x §™2(1/y/2), m1 +ma = m, m1 # ma.

We should notice that the above Conjecture is still open. In this article, we
study the proper biharmonic submanifolds in a unit sphere S™ and prove that the
above Conjecture is true if the submanifolds satisfy certain geometric and rigidity
properties. More precisely, we obtain the following;:

Theorem 1.1. Let M™ be a m-dimensional (m > 3) proper biharmonic hypersur-
face in S™H1 with constant mean curvature. If the sectional curvature of M™ is
nonnegative, then M™ is an open part of S™(1/v/2) or of the standard products
S™1(1/4/2) x S™2(1//2), where my + mg = m and my # ma.

For a fixed a,m +1 < a < n, we may choose orthonormal frame field
{e1,...,em} such that h; = A{f6ij. Putting ¢f; = hiy — %trHo‘ézj and consider
the symmetric tensor ¢ = ZZ ja Pijwiwjeq, we can easily see that ¢ is traceless and
that |¢|? = |A|*> — mH?, where hes, |A|?, H and H are the components of the second
fundamental form, the square of the norm of the shape operator, the mean curvature
vector field and the mean curvature of M™. We know that |¢|?> = 0 if and only if
M™ is totally umbilical. We define a polynomial Pp ,—pn(2) by

Vo2 4+ ————mHz — m(1 + H?), (1.3)

PH,n—m(x) =(2- n—m m(m — 1)

where n—m is the codimension of M™. It may be easily checked that Pg ,,—m(2) =0
has a positive real root. Let By ,—n be the square of the positive real root. We
obtain the following results:

Theorem 1.2. Let M™ be a m-dimensional (m > 3) proper biharmonic hypersur-
face in S™L with constant mean curvature. If

6> < B 1, (1.4)

then M™ is an open part of hyperspheres S™(1/v/2) or of the generalized Clifford
tori S1(1/3/2) x S™1(1/v/2).
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Theorem 1.3. Let M™ be a m-dimensional (m > 3) proper biharmonic submanifold
in S™ with the codimension n —m (n —m > 2) and parallel mean curvature vector

field. If
6> < min{m(1 — H*), Bun-m}, (1.5)

then M™ is a minimal submanifold of a small hypersphere S"~1(1/1/2) C S™.

Theorem 1.4. Let M™ be a m-dimensional (m > 3) complete proper biharmonic
hypersurface in S™! with constant scalar curvature m(m—1)R and R = R—1 > 0.
If

_ mR + 2 m — 2
R< AP <(m-1 —
mit < sup|A]° < (m —1)="—o 4 T

(1.6)

then
(i) sup |A]> = mR and M™ is an open part of hyperspheres S™(1/+/2) or
(i) sup |[A]> = (m — 1)2LE2 4 #122. If the supremum sup |A|? is attained
at some point of M™, then M™ is an open part of the generalized Clifford tori

SH1/V2) x S™H1/V2).

We should notice that Theorem 1.1-Theorem 1.3 hold for all compact and
complete non-compact proper biharmonic hypersurfaces (submanifolds) in S™ and
Theorem 1.4 holds for all complete non-compact proper biharmonic hypersurfaces
in S™. For the compact case, integrating both sides of (4.12) and by the assertion
in the last part of the proof of Theorem 1.4, we conclude that if mR < |A|? <
(m — 1)% + 7;”13;32, then M™ is an open part of hyperspheres S™(1/v/2) or of
the generalized Clifford tori S'(1/v/2) x S™~1(1/v/2).

2. Basic formulas of submanifolds in S™

Let z : M™ — S™ be a m-dimensional submanifold in an n-dimensional unit
sphere S™. Let {ej,...,en} be a local orthonormal basis of M™ with respect to
the induced metric, {01,..., 60} are their dual form. Let ep,41,...,e, be the local
orthonormal normal vector field. We make the following convention on the range of
indices: 1 <14,5,k,l,s <m,m+1<a,B <n. Then the structure equations are

dr = Z@iei, (2.1)

de; = Z Hz-jej + Z h%@-ea — bO;x, (22)
J Ja
deo == h&ifiei+ Y Oagep. (2.3)
i,j B
The Gauss equations are
Rijri = (0irbj1 — 6qdjn) + Z(h?k G — hahSy), (2.4)
m(m —1)(R—1) =m?*H? — |A]?, (2.5)

where [A]> =3, (b))%, H =3, H%,, H®=2L3,he H=|H| Risthe

normalized scalar curvature of M™.
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The first covariant derivatives A ik and the second covariant derivatives h” il
of hj; are defined by

S h% 0k = dh + Z h 0 + Z hS Ok + Z h0a; (2.6)
k

Z h%klel zyk + Z hl]keh + Z hij01; + Z hzylelk + Z hljkega (2.7)
l

Then, we have the Codazz1 equations and the RICCI identities

ik = ik (2.8)
W — he = > S R + Y h&Raji + > 1 Raan. (2.9)
The Ricci equations are ’
Ragij = Y J(hikhi; — highty). (2.10)
k

Define the first, second covariant derivatives of the mean curvature vector field
H =", H%, in the normal bundle N (M™) as follows

ZHO“Q _dHa+ZH 050, (2.11)

Z H%0; = dHY + Z H%0j + Z H030. (2.12)

Let f be a smooth functlon on M™. The first, second covariant derivatives f;, f; ;
and the Beltrami-Laplace of f are defined by

df =Y fili, Y fig0i =dfi+ > fibji, Af=>fii (2.13)
i J J i

In general, for a matrix A = (a;;) we denote by N(A) the square of the norm of
A, that is, N(A) = tr(A - AY) = Zm-(aij)z. Clearly, N(A) = N(T'AT) for any

orthogonal matrix 7.

3. Formulas of proper biharmonic submanifolds

From (1.1) and (1.2), we may easily obtain that if ¢ : M™ — S™ be an
isometric immersion submanifold in a unit sphere S™ with codimension n —m, then
M™ is biharmonic if and only if for any «, 1

S HS = Y HPRG A +mH® =0, (3.1)
ik,
2> T hpHG +my HHT =0, (3.2)
B
Ifn—m=1, M™ is a biharmonic hypersurface if and only if for any ¢
— (JA> =m)H =0, (3.3)
2 Z hipH ), +mHH,; =0, (3.4)

k
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where A is the Weingarten shape operator, H the mean curvature, A the Beltrami-
Laplace operator on M™ defined by (2.13) and H; is defined by (2.11).
Define tensors

= hiy — H%j, (3.5)
o = 20000y oan = DN (36)
,L'7j
Then the ((n —m) x (n —m))-matrix (G,p) is symmetrlc and can be assumed to be
diagonized for a suitable choice of ep,41,...,e,. We set
Gap = Falag. (3.7)

By a direct calculation, we have

Zgﬁ%k = 07 &aﬁ = 0ap — mHaHﬁa ‘¢|2 = Z&a = ’A‘Q - mH27 (38)

«

ST ohphshG = Y dpoten +2>  HO¢G! + H o + mH*HP. (3.9)

1,5,k ,9,k,00 1,7,
From (3.1), we have >, H*HG, — ZiykﬁHo‘Hﬁh'B hg. + m(H*)? = 0. We take a
suitable choice of ey, 41,..., ey, such that 0,5 = Jaéaﬁ, then
1 1
GAH? =2 ZA(H“)Q =Y (H$)?*+ > HHyy, (3.10)
a,k a,k
=V H|* + > H*H043 — mH?* = |V*H|* + Z (H*)? 0 — mH?
’ﬁ
<IVEHP +) (H*)?D o5 —mH? = |VEH|? + (A — m)H>.
o B

If the codimension n —m = 1, from (3.3), we note that for proper biharmonic
hypersurfaces

—AHQ \VYH|? + (JA]>2 — m)H?. (3.11)
Taking covariant derivative for k on (3.2), we have
m m
Zhngﬁ+Zh6H€k =5 D HH -5 Y HOHG, (3.12)
B B

Setting k =7 in (3.12) and taking sum for ¢, we have

SO H Y hGHS == 2N (H)? = 2N HOH,
i3

1,5, 1,5,8 i,8
- %(!VLFIF +Y HHE) = —%AHQ,
0B
B ﬁ _ By2 M 2 _ L2 ™M 2
> wLHY Zm(H’j) — T AH? = —m|VEHP — AR, (3.13)

1,3,8
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On the other hand, we have

1 2 2
SAIAP = 37 (h)* + 3 BGARG = [V 4 3 hiy(mH®);
VLAY VEe VR
+ 3N hS(hgy Ruije + h Ruge) + D Y bl R
a 4,5,k a,B i3,k
From (3.13), we see that

1 1 a
5A(\A|2 + 5mQH?) = |Vh|? — m?|V+H|? (3.14)
+ D D (g Ruigi + hiRuge) + > iy Rag.

a 4,5,k a,B 4,5,k

From [15] and [18], we have

Proposition 3.1. Let M™ be a complete Riemannian manifold whose Ricci curva-
ture is bounded from below. If f is a C?-function bounded from above on M™, then
for any € > 0, there is a point © € M™ such that

sup f—e < f(z), |[Vf(x)|<e Af(x)<e. (3.15)
4. Proof of theorems

Proof of Theorem 1.1. Since for hypersurfaces, H is constant if and only if VIiH =
0, from (3.14), we have

1

1 -
§A(\A|2 + §m2H2) =|Vh* —=m?|VEH? + > hij(hw R + hiRugge) - (41)
i7j7k:7l
1
2 2
=V + 5 ZRZ-J-@-(A,- — )2
where we choose a local orthonormal basis {e1, ..., en} such that h;; = X\;d;;. From

(3.11), we see that for constant mean curvature proper biharmonic hypersurfaces
|A|? = m. Thus, if the sectional curvature is nonnegative, from (4.1), we infer that
Rijij(Ai — Xj)? = 0, that is, (1 + X\iAj)(\ — Aj)? = 0. This implies that M™ has at
most two distinct principal curvatures. From Theorem 4.3 of [2], we know that M™
is an open part of S™(1/4/2) or of the standard products S™(1/v/2) x S™2(1/1/2),
where m1 + mo = m and my # mo. This completes the proof of Theorem 1.1. [

Proof of Theorem 1.2. From (4.1), Lemmas in [14] or [1] and by a standard cal-
culation (see [1]), we have

m(m — 2)

m(m — 1)
Since M™ is proper biharmonic hypersurface with constant mean curvature, we have
|A|? = m. From (4.2) and the assumption of Theorem 1.2, we see that the right

hand side of (4.2) i tive. Thus |¢[2(m(H?+1) — 22 _f|g| — |¢[?) =
and side of (4.2) is nonnegative us | o) (m( ) Yy lp| — [6]%)
This implies that the equalities in Lemma of [1] hold. Thus we see that M™ has

at most two distinct principal curvatures and the multiplicities of the two distinct

SAAR + Jm?H?) =V6P + [0 (m(H? + 1) - Hlgl - 10P). (42)
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principal curvatures are 1 and m — 1. From Theorem 4.3 of [2], we know that M™
is an open part of $™(1/+/2) or of the standard products S'(1/v/2) x S~ (1/+/2).
This completes the proof of Theorem 1.2. O

Proof of Theorem 1.3. From (2.10), we have

Y (Roaje)® = Y (Wb = hihi) Roage = Y h;h% Raag

a,B,k a,B,1,5,k a,Bi,5,k
Z hkz zJRBaJk =2 Z Z hzyhszﬂaJk
a,B,4,4:k a,B i,5,k

Thus, we have

> hS by Ragi = —% > (Rpajn)? = —= Z > ok Zh W0 )2 (4.3)

a,B 1,4,k o, B,k aﬁ,]k l
- Y (et > o5 ——%ZN(&AB—AMQL
a,B.g,k 1 a,p

where Aq := (¢%) = (h% — H6;).
From (2.4), (2.10), (3.6), (3.8), (3.9) and (4.3), we have

> b (hg Ruggr, + hi} Ruggi) (4.4)
a g5,k
=mof* =3 D hihihihi +md > HOWGhGRG + D hgihi Raags
a,fB 1,7,k a,f 1,5,k a,f,i,5,k
=m|g* - Zo gtmY Y HPG ook +2my > HHP 60l
a,B i,5,k a,B 4,
+mY (H) y¢\2+m2H22 (HP)? —fZNA Ag — ApAa)
] a8
=m|¢>!2—Z&a5+mﬂ2r¢|2+mZZH%kj BT
a’/B a7ﬁ Z'7j7k‘.
1 - A
-5 D N(AaAp — Agha).
a7ﬁ

For a fixed a,m +1 < a < n, we can take a local orthonormal frame field
{e1,...,em} such that h; = A$0;5. Then, o5y = psés; with p§ = Af—H®, Zuf‘ =0.
K2

Let Z(@J = 73. Then 73 < Z(¢ZBJ)2 = 0g. Since Z(f)ﬁ =0, > p¥=0and
‘ i i i
S (u¢)? = G4. From Lemma 3.3 of [8] and Lemma 2.5 of [17] we have that

i
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YOS HOGS 0 =Y > HOG 6000 = ZHB Z% ) (4.5)

@ /B l’]’ 6,& z’.]’

Z—\/m(iZ\H 0ay/Ts 2 ——F——s ZaaZ’Hﬁ‘\F

S B Y 025 6 :_4£££L7H 3
> wﬂm{Mw¢%x Y = = el

From the well known inequality of Lemma 1 in [9], (3.6), (3.7), we have

= 52— ZNA Ag — Aphy) Za —ZNA Ag —Aghs)  (4.6)

a,B
ZO’ _2200‘05_ ZUO‘ +Z~2

a#

> — 2|t +

0 = (2~ —— ol

Therefore, from (3.14), (4.3)(4.6), we have

1 1 -
5A(|A;2+ 5mQHQ) > |Vh|? —m?|VH|? (4.7)
-2 1
ol {m+mH? — — 2 _mH|g| — (2— ——)|¢]%}
[ = 1) [0 = (2 = —)Io["}

From (1.5), we see that |A|?> < m. Since the mean curvature vector field is parallel,
that is V- H = 0, we know that H is nonzero constant, by (3.10), we have |A|2 = m.
From (1.5) again, we have |¢|*> < Bpn_m. Thus, the right hand side of (4.7) is
nonnegative. We conclude from (4.7) that |¢|?{m + mH? — m72mH|¢] (

1 2\ _ 2 _ 2 m—2 mon 2 _
—-)|#|°} = 0. Thus, [¢|* =0 or m +mH —\/TWHW (2 _nfm)‘(m

In the first case, M™ is totally umbilical and |A|?> = mH?. Since |A|?> = m, we have
m = mH? and H = 1. From Theorem 2.10 of [2], we know that M™ is a minimal
submanifold of a small hypersphere S"~1(1/1/2) C S™. In the second case, M™ is
not totally umbilical and the equalities in (4.7), (4.6), (4.5) and Lemma 1 of [9] hold.
Thus, we have VA =0, (n —m) Y., 62 = (3., 5a)?, that is

Gomgl =+ = O, (4.8)

N(j[ocjlﬁ - ‘;Lﬁjla) = 2N(jla)N(jLﬂ)7 a # B, (4'9)

> |HP|\/Gs = |H||4|. (4.10)
B

From (4.8), (4.10) and the assumption n — m > 2, we have /G411 ZB\HB| =

\/ZE(HB)Q\/ZB o5 = /(n—m)Gmi14/> g(HP)2 Since M™ is not totally um-

bilical, we have Gy41 # 0. Thus, we have (34 |HP)2 = (n —m) Zﬁ(Hﬁ)Q, that

and
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is,
|H™H | = ... = |H". (4.11)
From Lemma 1 of [9], we know that at most two of A, = (¢5;),c =m+1,---  nare

different from zero. If all of A, = (o5

is not totally umbilical. If only one of them, say Aq, is different from zero, which is
contradiction with (4.8). Therefore, we may assume that -Am+1 =M, Am+2 uB,
A #0, Ay =0, a > m+ 3, where A and B are defined in Lemma 1 of [9]. From
(4.10), we have (VINH™| + VEU[E™ )2 = H2JOP = 5, (H*P (22 + 2.
Thus, from (4.11), we have (Hm+1)2()\ + )2 = (n—m)(H™)2(A\2 + u?), that is,
(H™2[(n —m — DA% =2 \u + (n — m — 1)p?] = 0. Since A, u # 0, we infer that
H™*! = (. Thus, from (4.11), we have HO‘ =0,m+1<a<n,thatis, H=0, M™
is a minimal submanifold in S™. This is a contradiction with that M™ is a proper
biharmonic submanifold in S™. We complete the proof of Theorem 1.3. O

) are zero, which is a contradiction with M™

Proof of Theorem 1.4. Since the scalar curvature m(m — 1)R is constant and
R=R~-12>0, from (1.6), (2.5), (3.14), (4.2) and |Vh|?> > m?|V+H|? ( see Lemma
3.2 of [13]), by a standard calculation, we have

TAME Zlofm( +1) LT Aol of) (112
>" (AR~ mR)(m 4 mR ~ " (AP~ mR)

- T¢ AR + m(m — DR(A2 - mR)} > 0.
From (1.6) and (1.5) of Main Theorem in [12], we know that

U =2) g1 g2}

m(m — 1)
m—1 - m-—2 9 _
=——{m+mR— ——(|A* — mR)
m m

=2 JIAR + m(m — DRI(AR —mR)} > 0.

—1
Ric >~ {m(H? +1) —

Therefore, we know that the Ricci curvature is bounded from below.

Now we consider the following smooth function on M™ defined by f = —(|A|*+
a)_l/ 2 where a(> 0) is a real number. Obviously, f is bounded, so we can apply
Proposition 3.1 to f. For any € > 0, there is a point x € M™, such that at which f
satisfies (3.15). By a simple and direct calculation, we have

FAS = 3ldf2 — S F*AlAP (4.13)
From (3.15) and (4.13), we have
%AlAlz(ﬂﬁ) = [T @)Bldf (@)* = f(2)Af(2)] < fH(@)[3e* —ef(2)].  (4.14)

Thus, for any convergent sequence {&,,} with &, > 0 and lim,, ,cc £y = 0, there
exists a point sequence {z,,} such that the sequence {f(x,,)} converges to fy (we
can take a subsequence if necessary) and satisfies (3.15), hence, lim,, o0 €m[3€m —
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f(zm)] = 0. From the definition of supremum and (3.15), we have lim, o0 f(2m) =
fo = sup f and hence the definition of f gives rise to lim,, so |A|?(2m) = sup |A]?.
From (4.12) and (4.14), we have

F )28 — em (@m)] > SAIAR(wm) (115)

(AP ) — mR){m 4 mR — "2 (AP () — mR)

_ mT_Q\/HAP(xm) +m(m — 1)R](|A2(zm) — mR)} > 0.

m
>

Putting m — oo in (4.15), we have

m—1 m — 2

(sup |A|? — mR){m +mR — (sup |A|? — mR)

m

_ 7_2\/[Sup |A]? +m(m — 1)R](sup|A]> — mR)} = 0.

Thus, we have (i) sup |¢|* = =L (sup |A|*> — mR) = 0 and M™ is totally umbilical,
that is, M™ has one distinct principal curvature, from Theorem 4.3 of 2], we know
that M™ is an open part of_Sm(l/\/ﬁ), or Eu) m + mR — =2(sup |[A]? — mR) =
m=2, /lsup | A2 + m(m — 1)R](sup |A]2 — mR) that is,

mR+2+ m — 2
m—2 mR+2°

sup |A|? = (m — 1) (4.16)
From (4.16) and (4.12), we know that |A|? is a subharmonic function on M™. If
the supremum sup |$|? is attained at some point of M™, by the maximum principle,
we have |A|?> = constant. Thus, (4.12) becomes equality. This implies that the
equalities in Lemma of [1] hold. Thus we see that M™ has two distinct principal
curvatures with multiplicities 1 and m — 1. From Theorem 4.3 of [2], we know
that M™ is an open part of the standard products S'(1/v/2) x S™~1(1/4/2). This
completes the proof of Theorem 1.4. O

5. Conclusions

This article studies the proper biharmonic submanifolds in a unit sphere S™. If
the submanifolds satisfy certain geometric and rigidity properties, some characteriza-
tions of the two canonical examples of proper biharmonic submanifolds S"~1(1/+v/2)
and S™1(1/4/2) x S™2(1/+/2), m1 +ma = n — 1, my # ma are obtained, which give
some partly affirmative answer to the Conjecture proposed by [2]. We notice that
Theorem 1.1-Theorem 1.3 hold for all compact and complete non-compact proper
biharmonic hypersurfaces (submanifolds) in S™ and Theorem 1.3 generalizes Theo-
rem 1.2 to the case that the codimension n — m > 2. Therefore, we conclude some

new rigidity Theorems of the proper biharmonic hypersurfaces (submanifolds) in
S,
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