

INJECTIVITY OF BEURLING AND WEIGHTED MEASURE ALGEBRAS

Esmaeil Feizi¹, Javad Soleymani²

For a locally compact group G let $L^1(G, \omega)$ be a Beurling algebra. We characterize injectivity property of $L^1(G, \omega)$, $M(G, \omega)$ and $L^1(G, \omega)''$ as a Banach $L^1(G, \omega)$ -Modules. This characterization is employed to find a necessary and sufficient condition for amenability of G . In the special case where $\{\omega_n\}_{n=1}^\infty$ is a sequence of weight functions on G we prove the same result for Fréchet algebras $A(\omega)$ and $B(\omega)$.

Keywords: Injective module, Beurling algebra, weighted measure algebra, amenable group.

MSC2010: Primary 18G05; Secondary 43A07, 43A10, 43A20

1. Introduction and Preliminaries

Homology properties of some class of Banach algebras such as $L^1(G)$, $L^p(G)$ ($1 < p < \infty$), $M(G)$ and $L^1(G)''$ has been studied and expounded by H. G. Dales and M. E. Polyakov [4], and others [2], undertook a study of these properties for locally compact group G . The development of the homology theory of topological algebras outside the framework of Banach structures was introduced by Taylor [11] and then appeared in the works of Helemskii [6]. Unlike of the category of Banach algebras there are some problem on homology properties of locally convex modules over non-normable algebras, for example given a Fréchet module X over a Fréchet algebra \mathcal{A} , the dual module X' , has no reasonable topology to make it a Fréchet space. Moreover, the action of \mathcal{A} on X' often fails to be jointly continuous with respect to any natural topology on X' (cf. [11]). Let us also remark that many Fréchet algebras do not have nontrivial injective Fréchet modules at all [8].

In this work we investigate the relationship between injectivity of some Banach left $L^1(G, \omega)$ -module and locally compact group G related to the work of Dales and Polyakov[4]. In fact for a locally compact group G and a weight function ω on it with condition $\omega \geq 1$, we show that $M(G, \omega)$ is injective as a $L^1(G, \omega)$ -module if and only if G is amenable and ω is bounded. A similar

¹Mathematics Department, Bu-Ali Sina University, 65174-4161, Hamadan, Iran, e-mail: efeizi@basu.ac.ir

²Mathematics Department, Bu-Ali Sina University, 65174-4161, Hamadan, Iran, e-mail: J.Soleymani@basu.ac.ir

result will be proved for $L^1(G, \omega)$ and $L^1(G, \omega)''$. Finally we look into the injectivity of Fréchet algebras $A(\omega) = \cap_1^\infty L^1(G, \omega_n)$ and $B(\omega) = \cap_1^\infty M(G, \omega_n)$ where $\{\omega_n\}$ is an increasing sequence of weight functions on G . We begin by recalling some basic terminology.

Let G be a locally compact group and ω be a weight function on G , that is a positive continuous function with $\omega(xy) \leq \omega(x)\omega(y)$ for all $x, y \in G$ and $\omega(e_G) = 1$ where e_G is the identity of G . Throughout this paper ω is assumed to be $\omega(x) \geq 1$ and $\tilde{\omega}(x) = \omega(x^{-1})$ for all $x \in G$. The spaces $L^\infty(G, \frac{1}{\omega})$ and $L^1(G, \omega)$ will be defined by the set of all Borel measurable functions on G such that $\|f\|_{1,\omega} = \int_G |f(x)|\omega(x)dm(x) < \infty$ and $\|f\|_{\infty,\omega} = \text{ess sup}_{x \in G} \frac{|f(x)|}{\omega(x)} < \infty$ respectively where m is left Haar measure on G . We identify two elements in $L^\infty(G, \frac{1}{\omega})$ if they are equal locally almost everywhere and in $L^1(G, \omega)$ if they are equal almost everywhere with respect to the left Haar measure m on G . Then $(L^1(G, \omega), \|\cdot\|_\omega)$ with convolution product, $f \star g(x) = \int_G f(y)g(y^{-1}x)dm(y)$, and $(L^\infty(G, \frac{1}{\omega}), \|\cdot\|_{\infty,\omega})$ with pointwise product are Banach algebras. $L^\infty(G, \frac{1}{\omega})$ is the dual space of $L^1(G, \omega)$ by following dual pair $\langle f, g \rangle = \int_G f(x)g(x)dm(x)$, where $f \in L^1(G, \omega)$ and $g \in L^\infty(G, \frac{1}{\omega})$. The left and right module actions of $L^1(G, \omega)$ on $L^\infty(G, \frac{1}{\omega})$ are defined by

$$f \cdot g(x) = \int_G f(y)g(xy)dm(y), \quad g \cdot f(x) = \int_G f(y)g(yx)dm(y),$$

where $f \in L^1(G, \omega)$ and $g \in L^\infty(G, \frac{1}{\omega})$. Since the dual of any Banach $L^1(G, \omega)$ -module is Banach $L^1(G, \omega)$ -module so the dual of $L^\infty(G, \frac{1}{\omega})$ is also $L^1(G, \omega)$ -module.

We denote by $M(G, \omega)$ the Banach space of all complex-valued, regular Borel measures μ on G such that $\|\mu\|_\omega = \int_G \omega(x)d|\mu|(x) < \infty$. Moreover suppose that

$$C_0(G, \frac{1}{\omega}) = \{f \in L^\infty(G, \frac{1}{\omega}) : \frac{f}{\omega} \in C_0(G)\}.$$

Then $C_0(G, \frac{1}{\omega})$ is a closed subspace of $L^\infty(G, \frac{1}{\omega})$ that is a left Banach $L^1(G, \omega)$ -module. $M(G, \omega)$ is the dual of $C_0(G, \frac{1}{\omega})$ with respect to the pairing

$$\langle f, \mu \rangle = \int_G f(x)d\mu(x), \quad f \in C_0(G, \frac{1}{\omega}), \mu \in M(G).$$

The convolution product \star on $M(G, \omega)$ is defined by the formula $\langle f, \mu \star \nu \rangle = \int_G \int_G f(xy)d\mu(x)d\nu(y)$, where $\mu, \nu \in M(G, \omega)$ and $f \in C_0(G, \frac{1}{\omega})$. It is easy to see that the space of discrete measures $\ell^1(G, \omega)$ is a closed subspace of $M(G, \omega)$. We consider $M(G, \omega)$ as a Banach $L^1(G, \omega)$ -module by the module actions $(f \star \mu)(x) = \int_G f(xy^{-1})\Delta_G(y^{-1})d\mu(y)$, and $(\mu \star f)(x) = \int_G f(y^{-1}x)d\mu(y)$, where $x \in G$, $f \in L^p(G, \omega)$, $1 \leq p \leq \infty$, $\mu \in M(G, \omega)$ and Δ_G is modular function of G . A net $\{\mu_\alpha\}$ in $M(G, \omega)$ is called convergent to μ in *so*-topology

if for all $a \in L^1(G, \omega)$:

$$\|a \cdot \mu_\alpha - a \cdot \mu\|_{\omega_n} \longrightarrow 0$$

Theorem 1.1. [3, Theorem 7.9.] *Let ω be a weight function on a locally compact group G . Then the Banach space $M(G, \omega)$ is a unital Banach algebra with respect to the convolution product \star ; $L^1(G, \omega)$ is a closed ideal in $M(G, \omega)$, and $\ell^1(G, \omega)$ is a closed subalgebra of $M(G, \omega)$.*

2. Injective Fréchet modules

A complete topological space X whose topology is given by an increasing countable family of semi-norms is called a Fréchet space. Suppose that \mathcal{A} is a Banach algebra, a complete Hausdorff locally convex space X is called a left \mathcal{A} -module if it is an algebraic left module over \mathcal{A} and if in addition the action $m : \mathcal{A} \times X \rightarrow X$ is jointly continuous. The space X' , the dual space of a Fréchet \mathcal{A} -bimodule X with the strong topology, is a locally convex \mathcal{A} -bimodule with respect to the module operations defined by

$$\langle a \cdot f, x \rangle = \langle f, x \cdot a \rangle, \quad \langle f \cdot a, x \rangle = \langle f, a \cdot x \rangle \quad (x \in X),$$

where $a \in \mathcal{A}$ and $f \in X'$. In this case we say that X' is the dual module of X . In special case Banach space E is a Banach \mathcal{A} -module, if E is a Banach space for a norm $\|\cdot\|$ and $\|a \cdot x\| \leq \|a\| \|x\|$ and $\|x \cdot a\| \leq \|a\| \|x\|$ for all $a \in \mathcal{A}$ and $x \in E$. If X is a Banach \mathcal{A} -module, then the dual Banach space X' is a Banach \mathcal{A} -module. An especially interesting case occurs when we consider \mathcal{A}' and \mathcal{A}'' as Banach \mathcal{A} -modules.

For Fréchet spaces X and Y we denote the space of all continuous morphisms from X into Y by $\mathfrak{B}(X, Y)$, which is complete locally convex space ([11], p.159). If for Banach algebra \mathcal{A} , X and Y are \mathcal{A} -modules then the space $\mathfrak{B}(X, Y)$ is also \mathcal{A} -module [11, Proposition 3.1] with the following actions

$$a \cdot T(x) = T(x \cdot a), \quad T \cdot a(x) = T(a \cdot x),$$

where $a \in \mathcal{A}$, $x \in X$ and $T \in \mathfrak{B}(X, Y)$. This module is denoted by ${}_A\mathfrak{B}(X, Y)$.

Let \mathcal{A} be a Banach algebra and X be a Fréchet space then $\mathfrak{B}(\mathcal{A}, X)$ is also Fréchet space with the family of semi-norms

$$Q_n(T) = \sup_{\|x\| \leq 1} |P_n(Tx)|,$$

where $\{P_n\}_{n \in \mathbb{N}}$ is family of semi-norms of X . A Fréchet left \mathcal{A} -module X is called faithful if for $x \in X$ with $a \cdot x = 0$ for all $a \in \mathcal{A}$ we have $x = 0$. We denote unit linked of Banach algebra \mathcal{A} with \mathcal{A}^\sharp .

For Fréchet spaces X and Y a morphism $\phi : X \rightarrow Y$ is said to be admissible if its kernel has, a topological direct complement in X and that the image is closed and also has a topological direct complement in Y .

Definition 2.1. *Let \mathcal{A} be a Banach algebra, and let I be a Fréchet \mathcal{A} -module. Then I is called injective if, for every Fréchet \mathcal{A} -module X, Y and for each*

admissible monomorphism $\rho \in_{\mathcal{A}} \mathfrak{B}(X, Y)$, and for each $\phi \in_{\mathcal{A}} \mathfrak{B}(X, I)$, there exists $\psi \in_{\mathcal{A}} \mathfrak{B}(Y, I)$ such that $\psi \circ \rho = \phi$.

Lemma 2.1. *Let \mathcal{A} be a Banach algebra and I be a Fréchet \mathcal{A} -module. Then I is injective \mathcal{A} -module if and only if the left \mathcal{A} -module morphism $\Pi \in_{\mathcal{A}} \mathfrak{B}(I, \mathfrak{B}(\mathcal{A}^{\sharp}, I))$ has left inverse $\rho \in_{\mathcal{A}} \mathfrak{B}(\mathfrak{B}(\mathcal{A}^{\sharp}, I), I)$, where Π is the product map $\Pi(x)(a) = a \cdot x$ for all $a \in \mathcal{A}^{\sharp}$ and $x \in I$.*

Proof. Suppose that I is injective Fréchet \mathcal{A} -module. Then by the second part of the proof of [11, proposition 3.3] the product map $\Pi \in_{\mathcal{A}} \mathfrak{B}(I, \mathfrak{B}(\mathcal{A}^{\sharp}, I))$ is admissible. Hence by above definition there is a $\rho \in_{\mathcal{A}} \mathfrak{B}(\mathfrak{B}(\mathcal{A}^{\sharp}, I), I)$ such that the following diagram commute

$$\begin{array}{ccc} I & \xrightarrow{\Pi} & \mathfrak{B}(\mathcal{A}^{\sharp}, I) \\ id \downarrow & \swarrow \rho & \\ I & & \end{array}$$

On the other hand suppose there is a $\rho \in_{\mathcal{A}} \mathfrak{B}(\mathfrak{B}(\mathcal{A}^{\sharp}, I), I)$ such that $\rho \circ \Pi = id_I$ since by [11, proposition 3.3] $\mathfrak{B}(\mathcal{A}^{\sharp}, I)$ is injective so for Fréchet \mathcal{A} -modules E, F and admissible morphism $\gamma : E \rightarrow F$ and morphism $\phi : E \rightarrow I$ there is a morphism $\theta : E \rightarrow \mathfrak{B}(\mathcal{A}^{\sharp}, I)$ such that $\theta \circ \gamma = \Pi \circ \phi$. Now define $\psi = \rho \circ \theta$ then we get

$$\psi \circ \gamma = \rho \circ \phi \circ \gamma = \rho \circ \Pi \circ \phi = \phi$$

so I is injective. \square

3. Injectivity of $L^1(G, \omega)$ and $M(G, \omega)$

Let G be a locally compact group. The map $\varphi_G : M(G, \omega) \rightarrow \mathbb{C}$, $\varphi_G(\mu) = \mu(G) = \langle \mu, 1 \rangle$ is called augmentation character. The augmentation character restricted to $L^1(G, \omega)$ has the form $\varphi_G(f) := \int_G f(x) dm(x)$, ($f \in L^1(G, \omega)$). For a left Banach $L^1(G, \omega)$ -module E an element $\lambda \in E'$ is called augmentation-invariant functional if $\langle f \cdot x, \lambda \rangle = \varphi_G(f) \langle x, \lambda \rangle$, ($f \in L^1(G, \omega)$, $x \in E$). E is called augmentation-invariant, if there exist a non-zero, augmentation invariant functional in E' .

Example 3.1. *For locally compact group G and weight function ω , $M(G, \omega)$ is augmentation-invariant with $\lambda = \varphi_G$, since $\varphi_G(f \star \mu) = \varphi_G(f) \varphi_G(\mu)$ where $f \in L^1(G, \omega)$ and $\mu \in M(G, \omega)$. Specially $L^1(G, \omega)$ so is.*

If λ be the constant function 1 on G , regarded as an element of $L^{\infty}(G, \frac{1}{\omega})$, and hence as an element of $E' = L^1(G, \omega)''$, then λ is an augmentation-invariant functional in E' , since for $\Lambda \in L^1(G, \omega)''$ and $f \in L^1(G, \omega)$ we have

$$\langle f \cdot \Lambda, 1 \rangle = \langle \Lambda, 1 \cdot f \rangle = \langle \Lambda, \varphi_G(f) 1 \rangle = \varphi_G(f) \langle \Lambda, 1 \rangle,$$

and so the module $L^1(G, \omega)''$ is augmentation-invariant.

For locally compact group G , an element Λ of $L^\infty(G)'$ is called mean, whenever $\langle 1, \Lambda \rangle = \|\Lambda\| = 1$. The group G is called amenable if there is a left-invariant mean on $L^\infty(G)$. We denote $P(G, \omega)$, as all $f \in L^1(G, \omega)$, such that $f \geq 0$ and $\langle 1, f \rangle = 1$. In special case when $\omega = 1$, we denote it by $P(G)$.

Proposition 3.1. *Let G be a locally compact group and ω be a weight function on G . Then the following statements are equivalent:*

- (a) *There is a net $\{f_\alpha\} \subseteq P(G, \omega)$ such that $\lim_\alpha \|\delta_g \star f_\alpha - f_\alpha\|_{1, \omega} = 0$ where δ_g is mass point at $g \in G$;*
- (b) *G is amenable and ω is bounded.*

Proof. Let $\{f_\alpha\}$ be a net in $P(G, \omega)$ that satisfies (a). Since $P(G, \omega) \subset P(G)$, by [7, Proposition 0.8] there is an invariant mean on $L^\infty(G)$, and so G is amenable. Now for boundedness of ω , our proof is similar to that of [5]. In fact, let $E(\alpha) = \{s \in G : \Omega(s) < \alpha\}$ where $\Omega = \omega\tilde{\omega}$. Then for $h \in E(\beta)^c$ the complement of $E(\beta)$, let $x \in E(\alpha)h^{-1}$ then for some $y \in E(\alpha)h^{-1}$ we have $x = yh^{-1}$ so $\Omega(x) = \Omega(yh^{-1}) = \Omega(hy^{-1}) \geq \frac{\Omega(h)}{\Omega(y)} \geq \frac{\beta}{\alpha}$ and consequently

$$\chi_{E(\alpha)} \star \delta_h = \chi_{E(\alpha)h^{-1}} \leq \chi_{E(\frac{\beta}{\alpha})^c}, \quad (1)$$

where $h \in G$ and χ is characteristic function. In this case

$$\langle \chi_{E(\alpha)}, \Lambda \rangle = \langle \chi_{E(\alpha)} \star \delta_h, \Lambda \rangle \leq \langle \chi_{E(\frac{\beta}{\alpha})^c}, \Lambda \rangle \leq \frac{\alpha \|\Lambda\|}{\beta} \quad (2)$$

since

$$\|\chi_{E(\frac{\beta}{\alpha})^c}\|_{\infty, \omega} = \sup_{x \in G} \frac{\chi_{E(\frac{\beta}{\alpha})^c}(x)}{\omega(x)} = \sup_{x \in E(\frac{\beta}{\alpha})^c} \frac{1}{\omega(x)} \leq \frac{\alpha}{\beta}.$$

Suppose that ω is unbounded then Ω is unbounded and $E(\alpha)^c \neq \emptyset$ so for all $\alpha \in \mathbb{R}^+$ there is $h \in E(\alpha)^c$ such that the inequality (1) holds and so from (2) we have $\langle \chi_{E(\alpha)}, \Lambda \rangle = 0$ for all $\alpha \in \mathbb{R}^+$ thus,

$$\begin{aligned} 1 = \langle \chi_G, \Lambda \rangle &= \langle \chi_{E(\alpha)}, \Lambda \rangle + \langle \chi_{E(\alpha)^c}, \Lambda \rangle \\ &= \langle \chi_{E(\alpha)^c}, \Lambda \rangle. \end{aligned}$$

But by $\beta = 1$ and $\frac{1}{\alpha}$ instead of α in the relation (2) we have $\lim_\alpha \langle \chi_{E(\alpha)^c}, \Lambda \rangle = 0$ which is contradiction and hence Ω is bounded. Since $\omega \leq \omega\tilde{\omega} = \Omega$, so ω is bounded.

We note that if ω is bounded then $L^1(G) = L^1(G, \omega)$ so the converse is also true by [7, Proposition 0.8]. \square

For a locally compact group G , set $A = L^1(G, \omega)$ and $\tilde{A} = L^1(G, \tilde{\omega})$. Then for $f \in A$ we define $f^\triangleleft \in \tilde{A}$ by the formula $f^\triangleleft(s) = f(s^{-1})\Delta_G(s^{-1})$ ($s \in G$), clearly the map $f \mapsto f^\triangleleft$ is a linear isometry from A into \tilde{A} , and we have $f^{\triangleleft\triangleleft} = f$ for $f \in A$ and $(f \star g)^\triangleleft = g^\triangleleft \star f^\triangleleft$ for $f, g \in A$. Furthermore

$\varphi_G(f^\triangleleft) = \varphi_G(f)$ for $f \in A$ and for all $T \in \mathfrak{B}(\tilde{A}, E)$, we define $T^\triangleleft \in \mathfrak{B}(A, E)$ by setting

$$T^\triangleleft(f) = T(f^\triangleleft), \quad f \in A.$$

Thus the map $T \mapsto T^\triangleleft$ is a linear isometry from $\mathfrak{B}(A, E)$ into $\mathfrak{B}(\tilde{A}, E)$ that is $\|T\| = \|T^\triangleleft\|$.

Theorem 3.1. *Let G be a locally compact group, $A = L^1(G, \omega)$ and E be the dual of the Banach right \tilde{A} -module F . Suppose that E is faithful and augmentation-invariant. Then E is injective if and only if G is amenable and ω is bounded.*

Proof. Let λ_0 be a non-zero augmentation-invariant functional on E . Then there is a $x_0 \in E$ with $\langle x_0, \lambda_0 \rangle = 1$, and set $T_0 = \Pi(x_0) \in \mathfrak{B}(\tilde{A}, E)$. From the lemma [4, proposition 1.7] there exists $\rho \in \tilde{A}^* \mathfrak{B}(\mathfrak{B}(\tilde{A}, E), E)$ with $\rho \circ \Pi = I_E$ in particular $\rho(T_0) = x_0$ and hence also $T_0^\triangleleft \in \mathfrak{B}(A, E)$. After adjustment of λ_0 and x_0 by suitable non-zero constant we may suppose that $\|T_0\| = \|T_0^\triangleleft\| = 1$ by considering the element $\lambda_0 \circ \rho \in \mathfrak{B}(\tilde{A}, E)'$ similarly to the proof of [4, lemma 4.3], we can find a left-invariant element $\Lambda_0 \in \mathfrak{B}(A, E)'$ such that $\langle T_0^\triangleleft, \Lambda_0 \rangle = 1$.

Now let $X = L^1(G, \omega) \hat{\otimes} F$, so from [4, lemma 4.4] there is a net $\{v_\alpha\}_{\alpha \in I}$ in X such that

$$\langle T_0^\triangleleft, v_\alpha \rangle = 1, \quad \lim_\alpha \|L_s v_\alpha - v_\alpha\|_\pi = 0, \quad (3)$$

where $(L_s v_\alpha)(t) = v_\alpha(s^{-1}t)$ and $\alpha \in I$, $s, t \in G$. By [10, Theorem 2.2] X is isomorphic with the space $L_\omega^1(G, F)$, that is, (the space of weighted F -valued integrable functions on G), so we can consider (v_α) as a net in $L_\omega^1(G, F)$ and hence $k_\alpha(t) = \|v_\alpha(t)\|_F$, as a net in A . Since $L_\omega^1(G, F)$ and $L^1(G, F)$ are isometric (see [3, p. 66]) and $\|T_0^\triangleleft\| = 1$ we have:

$$\begin{aligned} \langle k_\alpha, 1 \rangle &= \int_G k_\alpha(t) dm(t) \\ &= \|v_\alpha\|_\pi = \|v_\alpha\|_\pi^\omega \\ &\geq \langle T_0^\triangleleft, v_\alpha \rangle = 1 \end{aligned}$$

where $\|\cdot\|_\pi$ and $\|\cdot\|_\pi^\omega$ are the norm of $L^1(G) \hat{\otimes} F$ and $L^1(G, \omega) \hat{\otimes} F$ respectively. Set $h_\alpha = k_\alpha / \langle k_\alpha, 1 \rangle$, so $\langle h_\alpha, 1 \rangle = 1$ and $h_\alpha \geq 0$, this shows that $h_\alpha \in P(G, \omega)$. Now take $s \in G$, we have $(L_s v_\alpha)(t) = v_\alpha(s^{-1}t)$ for $t \in G$ and so $(L_s h_\alpha)(t) = h_\alpha(s^{-1}t)$ for $t \in G$. It follows that

$$\begin{aligned} \|L_s h_\alpha - h_\alpha\|_{1, \omega} &\leq \|L_s k_\alpha - k_\alpha\|_{1, \omega} \\ &\leq \int_G \|L_s v_\alpha - v_\alpha\|_F \omega(t) dm(t) \\ &= \|L_s v_\alpha - v_\alpha\|_\pi^\omega = \|L_s v_\alpha - v_\alpha\|_\pi. \end{aligned}$$

Moreover from (3) we have $\lim_{\alpha} \|L_s h_{\alpha} - h_{\alpha}\|_{1,\omega} = 0$, so the Proposition 3.1 implies that G is amenable and ω is bounded.

For the converse, suppose that G is amenable and ω is bounded then $L^1(G, \omega) = L^1(G, \tilde{\omega}) = L^1(G)$ so by [4, Theorem 4.6] E is injective, which completes the proof. \square

Corollary 3.1. *Let G be a locally compact group and ω be a weight function on G . Then the following statements are equivalent:*

- (a) *The group G is amenable and ω is bounded;*
- (b) *$M(G, \omega)$ is injective as a Banach $L^1(G, \omega)$ -module;*
- (c) *$L^1(G, \omega)''$ is injective as a Banach $L^1(G, \omega)$ -module.*

Proof. Apply the previous theorem and example 3.1 to the dual Banach right $L^1(G, \tilde{\omega})$ -modules $M(G, \omega)$ and $L^1(G, \omega)''$. \square

As an another application of the last theorem, we characterise injectivity of the class of Fréchet algebras. Suppose that $\{\omega_n\}$ is an increasing sequence of weight functions with condition $\omega_n \geq 1$ for all $n \in \mathbb{N}$. Then the families $\{L^1(G, \omega_n)\}$ and $\{M(G, \omega_n)\}$ are decreasing sequences of Banach algebras. Now we define $A(\omega) = \cap_1^\infty L^1(G, \omega_n)$, $B(\omega) = \cap_1^\infty M(G, \omega_n)$. These algebras are projective limit of Banach algebras $L^1(G, \omega_n)$ and $M(G, \omega_n)$, respectively, so these are Fréchet algebras, for more details see [9].

Theorem 3.2. *Let G be a locally compact group and $\{\omega_n\}_{n=0}^\infty$ be a sequence of increasing weight functions on G with condition $1 \leq \omega_n \leq \omega_0$ for all $n \in \mathbb{N}$. Then the following statements hold:*

- (i) *$A(\omega)$ is injective as $L^1(G, \omega_0)$ -module if and only if G is amenable, discrete and ω_0 is bounded.*
- (ii) *$B(\omega)$ is injective as $L^1(G, \omega_0)$ -module if and only if G is amenable and ω_0 is bounded.*

Proof. (i) Let $\mathcal{A} = L^1(G, \omega_0)$ and let $A(\omega)$ be injective \mathcal{A} -module. By Lemma 2.1 the map $\Pi \in_{\mathcal{A}} \mathfrak{B}(A(\omega), \mathfrak{B}(\mathcal{A}^\sharp, A(\omega)))$ has a left inverse $\rho \in \mathfrak{B}(\mathfrak{B}(\mathcal{A}^\sharp, A(\omega)), A(\omega))$. If we denote $\overline{A(\omega)} = \overline{A(\omega)}^{\|\cdot\|_{1,\omega_n}}$ then $\rho \in \mathfrak{B}(\mathfrak{B}(\mathcal{A}^\sharp, A(\omega)), \overline{A(\omega)})$, because $\overline{A(\omega)} = L^1(G, \omega_n)$ and the topology of $L^1(G, \omega_n)$ is coarsest than the topology of $A(\omega)$. Thus consider $\overline{\Pi} \in_{\mathcal{A}} \mathfrak{B}(\overline{A(\omega)}, \mathfrak{B}(\mathcal{A}, \overline{A(\omega)}))$ as the product map and $\bar{\rho} \in \mathfrak{B}(\mathfrak{B}(\mathcal{A}, \overline{A(\omega)}), \overline{A(\omega)})$ as extension of ρ and let $x \in L^1(G, \omega_n)$ and net $\{x_\alpha\} \subset A(\omega)$ converges to x . Then we have

$$\begin{aligned} \|\bar{\rho} \circ \overline{\Pi}(x) - x_\alpha\|_{1,\omega_n} &= \|\bar{\rho} \circ \overline{\Pi}(x) - \bar{\rho} \circ \overline{\Pi}(x_\alpha)\|_{1,\omega_n} \\ &\leq \|\bar{\rho}\| \|x - x_\alpha\|_{1,\omega_n}, \end{aligned}$$

this means that $\bar{\rho} \circ \overline{\Pi}(x) = x$ for all $x \in L^1(G, \omega_n)$. Thus Lemma 2.1 shows that $L^1(G, \omega_n)$ is an injective \mathcal{A} -module and also from Theorem 3.1 ω_n is bounded and hence $L^1(G, \omega_n) = L^1(G)$, so [4, Theorem 4.9] implies that G is amenable and discrete.

(ii) Since $B(\omega)$ is *so*-dense in $M(G, \omega_n)$, so for all $\mu \in M(G, \omega_n)$ there is a net $\{\mu_\alpha\} \subset B(\omega)$ such that $\|a \cdot \mu - a \cdot \mu_\alpha\|_{\omega_n} \rightarrow 0$ for all $a \in L^1(G, \omega_0)$. Similarly to (i), if $B(\omega)$ replaced by $A(\omega)$ we have

$$\begin{aligned} \|\bar{\rho} \circ \bar{\Pi}(a \cdot \mu) - a \cdot \mu_\alpha\|_{1, \omega_n} &= \|\bar{\rho} \circ \bar{\Pi}(a \cdot \mu) - \bar{\rho} \circ \bar{\Pi}(a \cdot \mu_\alpha)\|_{1, \omega_n} \\ &\leq \|\bar{\rho}\| \|a \cdot \mu - a \cdot \mu_\alpha\|_{1, \omega_n}, \end{aligned}$$

that is $\bar{\rho} \circ \bar{\Pi}(a \cdot \mu) = a \cdot \mu$. Now from Cohen's factorization theorem [1, Corollary 2.9.26] for all $\mu \in M(G, \omega_n)$ there is an $a \in L^1(G, \omega_0)$ and $\nu \in M(G, \omega_n)$ such that $\mu = a \cdot \nu$. Thus

$$\bar{\rho} \circ \bar{\Pi}(\mu) = \bar{\rho} \circ \bar{\Pi}(a \cdot \nu) = a \cdot \nu = \mu,$$

which implies that $M(G, \omega_n)$ is injective $L^1(G, \omega_0)$ -module. Then, by corollary 3.1, G is amenable and ω is bounded. This completes the proof of the theorem. \square

Corollary 3.2. *Let G be a locally compact group and ω is weight function. Then $L^1(G, \omega)$ is injective Banach $L^1(G, \omega)$ -module if and only if G is discrete, amenable and ω is bounded.*

By the same assumption of the theorem 3.2, the Fréchet $L^1(G, \omega_0)$ -module $A(\omega)$ is injective Fréchet $L^1(G, \omega_0)$ -module if and only if $L^1(G, \omega_n)$ is injective Banach $L^1(G, \omega_0)$ -module for all $n \in \mathbb{N}$. And similarly $B(\omega)$ as a Fréchet $L^1(G, \omega_0)$ -module is injective if and only if $M(G, \omega_n)$ is Banach $L^1(G, \omega_0)$ -module for all $n \in \mathbb{N}$.

REFERENCES

- [1] H.G. Dales, *Banach algebras and automatic continuity*, Clarendon Press, Oxford, 2000.
- [2] H. G. Dales, M. Daws, H. L. Pham and P. Ramsden, *Multi-norms and the injectivity of $L^p(G)$* , J. London Math. Soc. (2) **86** (2012) 779-809.
- [3] H. G. Dales, A. T-M. Lau, *The second duals of Beurling algebras*, Memoirs Amer. Math. Soc., Vol. **117**, Amer. Math. Soc., Providence, R. I., 2005.
- [4] H. G. Dales and M. E. Polyakov, *Homological properties of modules over group algebras*, Proc. London Math. Soc, **89** (2004) 390-426.
- [5] N. Groneak, *Amenability of weighted convolution algebras on locally compact groups*, Trans. American Math. Soc., **319** (1990), 765-775.
- [6] A. Ya. Helemskii and M. V. Sheinberg., *Amenable Banach algebras*, (Russian). Funktional. Anal. i Prilozhen, 13 (1979), no. 1, 4248. English transl.: Functional Anal. Appl. **13** (1979), no. 1, 32-37.
- [7] A. L. T. Paterson, *Amenability*, Mathematical Surveys and Monographs, Volume. **29**, American Math. Soc., Providence, Rhode Island, 1988.
- [8] A.Yu. Pirkovskii, *On Arens-Michael algebras which do not have non-zero injective $\hat{\otimes}$ -modules*, Studia Math. **133** (1999), no. 2, 163-174.
- [9] H. Schaefer., *Topological vector spaces*, The Macmillan Co., New York, 1966.
- [10] E. Samei, *Weak amenability and 2-weak amenability of Beurling algebras*, J. Math. Anal. Appl. **346** (2008), 451- 467.
- [11] J.L. Taylor, *Homology and cohomology for topological algebras*, Adv. Math. **9** (1972), 137-182.