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WHEEL\RAIL INTERACTION DUE TO PARAMETRIC
EXCITATION

Traian MAZILU'

Interactiunea roatda-sind datoratd excitatiei parametrice este cauzatd de
rigiditatea dinamica a cdii care variaza de-a lungul distantei dintre traverse. Este
prezentat un model original pentru studiul interactiunii roatd/sind datorata
excitatiei parametrice. Calea este redusd la o sind rezematd pe semi-traverse. Sina
este consideratd ca o grinda Timoshenko uniformd infinitd. Pentru miscarea
longitudinala a sinei, aceasta este tratata ca o bard infinita. Migcarile verticala si
longitudinala ale sinei sunt cuplate prin suportii de sind. Roata este considerata ca
un disc care se rostogoleste fara alunecare pe sind. Solutia ecuatiilor de miscare
este obtinutd prin aplicarea unei originale metode bazata pe functiile Green. Sunt
calculate deplasarile verticale si forta de contact roatd/sind. Sunt prezentate
influentele vitezei rotii §i masei rotii.

Wheel/rail interaction due to parametric excitation is caused by the dynamic
stiffness of the track which varies along the span length. An original model for the
wheel/rail interaction due to parametric excitation is presented. The track is
reduced to a rail supported by semi-sleepers. The rail is considered as a uniform
infinite Timoshenko beam. For longitudinal dynamics, the rail is treated as an
infinite bar. The vertical and longitudinal dynamics of the rail is coupled to the rail
pads. The wheel is regarded as a disc which rolls without slip on the rail. The
solution of the motion equations is obtained by using an original Green’s functions
method. The vertical displacements and the contact force wheel/rail are calculated.
The influences of the wheel speed and wheel mass are presented.

Keywords: wheel, rail, parametric excitation, Green functions
1. Introduction

When a loaded wheel rolls without slip on a rail supported by sleepers and
both are perfectly smooth and they have no defects, wheel/rail interaction is
caused only by the varying dynamic stiffness due to the sleepers. This particular
interaction behaviour is known as ‘wheel/rail interaction due to parametric
excitation’ or as ‘steady state interaction’.

During wheel/rail interaction due to parametric excitation, the wheel/rail
relative displacement is caused by the periodical dynamic stiffness of the rail’s
discretely support and the contact force varies too. The dynamic force of
wheel/rail contact is periodical and its own fundamental frequency equals the ratio
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between the speed and the span length. It is actually interesting to study the
wheel/rail interaction due to parametric excitation because this interaction
behaviour overlaps on the wheel/rail vibration induced by the roughness. The
result is an amplitude modulated vibration, in which the carrier frequency is
caused by roughness excitation and the modulated is given by the parametric
excitation.

Wheel/rail interaction due to parametric excitation was studied in many
papers. Nordborg [1] used the Green functions method to solve wheel/rail
interaction. He described some aspects of wheel/rail interaction. For the studied
case, the contact force peaks sharply precisely above the support points, followed
by a short loss of wheel/rail contact, also for smooth rails. It is impossible to
eliminate the vibrations of the rail pinned-pinned mode by removing surface
roughness.

Wu and Thompson [2] have studied the parametric excitation of the
wheel/track system. They have developed an equivalent time-varying model for
the track, according to the space-varying receptance in a sleeper bay. This track
model was combined with a wheel mass model; wheel/rail interaction due to
parametric excitation was simulated. As they have shown, the contact force due to
parametric excitation increases in magnitude with the wheel speed. Further, the
contact force may be compared with that due to the roughness excitation,
especially at low frequencies. The force spectrum presents many harmonics with a
fundamental component at the sleeper-passing frequency, and the components
around the pinned-pinned resonance frequency are at a higher level.

Hou et al [3] have studied the asymmetrical vehicle/track interaction. They
applied a finite element model, and many vehicle/track interaction behaviours
have been studied. They have detected an interesting resonant case vehicle/track,
when the wavelength equals half of the sleeper spacing.

The study of wheel/rail interaction due to parametric excitation requires
the time-domain analysis for the wheel/rail response. Many studies may be cited.
Clark et al [4] have proposed an analytical model, considering a track discretely
supported, for the numerical simulation of the wheel/rail corrugation dynamic
interaction. Also, Nielsen and Igeland [5] have studied the vertical interaction
between a bogie and the track in the presence of many different kinds of practical
imperfection, using a track model with finite elements.

The current work comes with a different solution for solving the issue of
wheel/rail interaction due to parametric excitation. The moving wheel on a
discretely supported rail model was considered. The rail model is based on a
mixed ‘Timoshenko beam/infinite bar on a discrete pad’ model [6, 7].

The equations of track motion are integrated using the Green functions
method in an original manner, and both the complex and real Green function of
the rail are used. Starting to the real Green functions of the rail, a Green matrix of
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the track is assembled, and the wheel/rail interaction due to parametric excitation
can be simulated for any time value.

The influences of the wheel speed and the wheel mass are studied and
other aspects too (spectral issue, corrugated rail).

2. Mathematical model
In the following, an analytical model of the wheel/rail interaction due to

parametric excitation has been developed (fig. 1). The model has three parts: the
track, the wheel and wheel/rail contact.

Fig. Mechanical model for wheel/rail interaction due to parametric excitation:
1. rail; 2. rail-pad; 3. semi-sleeper; 4. ballast; 5. wheel; 6. stiffness contact.

The track is reduced to a single rail discretely supported by semi-sleepers
[7]. The rail is a uniform infinite Timoshenko beam with mass per length unit m.
For longitudinal dynamics, the rail is treated as an infinite simple bar. The vertical
and longitudinal dynamics of the rail is coupled to the rail pads. The parameters
for the rail are: the Young’s modulus £, the shear modulus G, the density p, the
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cross-section area S, the area moment of inertia / and the shear coefficient k. The
distance from the rail foot to the cross — section neutral fibre is 4. The loss factor
of the rail is neglected. The dynamics of the rail are: the vertical displacement v(x,
?), the rotation of the cross-section 6(x, ¢) and the longitudinal displacement u(x, ).

The rail pad is taken as a parallel connection of spring and dashpots
having linear characteristics in x and z dimensions, and a similar torsion spring
and damper restraining rotation in vertical-longitudinal plane. The elastic
constants are k., k- and k,, and the viscous damping constants are ¢, ¢, and ¢ .

The ballast is modelled as a system of parallel connections of springs and
dashpots having viscose damping in x and z dimensions. The elastic constants 4y,
kp. and the viscous damping constants cy,, ¢, are related to the ballast.

The semi-sleeper is considered as a rigid body with three degrees of
freedom: the vertical translation z(7), the lateral translation x,(¢) (along the rail)
and the rotation o,(¢) (across the rail). A semi-sleeper has the mass M, and mass-
moment of inertia /;. The place of the sleeper i is s;, and the span between the
sleepers is d. The distances between the sleeper and the two elastic layers
(modelling the rail pad and the ballast) are /#; and 4,.

The model of the track based on the conventional Timoshenko beam
model may be used up to about 2000 Hz [8].

The wheel is regarded as a loaded mass which moves along the rail at a
constant J speed. Wheel mass is M,, and the load force P,.

The wheel/rail contact is modelled as a spring between the wheel and the
rail. The wheel/rail contact force P(¢) is related to the wheel/rail deflection,
according to Hertz’s theory.

The equations of motions are

- for the track

L. {a}+ XY (A {a,}+B,{a; Bee—s)=1p} (1)

ieZ

C.la;j=D.{a,} @)

where L., A, B, C; and D, stand for matrix differentials (see appendix [7]), {q} =
{qx, O} = [u(x, 1) v(x, ) B(x, H)]" is the column vector of rail displacements,
{94=1aGs: D}, {0’ = GO} = [x(0) zd0) ()] is the column vector of the
considered i sleeper displacements, {p} = -P(t)0(x- Vt){e} is the column vector of
forces on the rail where P(¢) is the wheel/rail contact force, {e} =[ 0 1 O]T and d(.)
is Dirac’s delta function.

- for the wheel
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M. Z,(t)=F - P(). 3)
The wheel/rail contact force is expressed by
[P@)/C, " =z,(0)H[z,(1)], 4)

where zs(t) =z, (t)—v(Vt,t) is wheel/rail deflection, Cy represents the Hertzian

constant and HJ.] is the Heaviside function.
The boundary conditions are

tim facen}=[0 0 of . lmfer}=[ o of ®)

|x=Vt| >
and the initial conditions are

2,(0)=0, z,(0)=0,
ax0=[ o of, {ax0j=[0 o of,

o= o o, o= o of. (©6)

The differential equations of motion may be solved through numerical
step-by-step integration, using an original Green functions method. For this aim,
the Green function’s column vector for rail displacement {g(x, &, £ - 1)} = [g"(x, &,
t-1), gx & t-1), ge(x, E, ¢ - 7)]" was calculated [7]. Starting to the Green
function g'(x, &, ¢ - 1), the rail displacement at the contact point may be
determined

v(Vt,f)=— j“; jo g Vt,E,t—T)P(1)S(E - Vr)drdé =

’ (7)
= —J.Ogv Vt,Vr,t —7)P(r)dr.

The Green function is damped and then,

g Vt,Ve,t—-7)=0, (®)
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for a certain 7 and ¢ - ©> T. Also, the Green function is periodical because the
track is a periodical structure

g V(t+kT,),V(t+kT,),t —1)=g" (Vt,Vt,t - 1), 9)

fort-t € [0, T], where Ty = d/V and k is an integer.
The wheel vertical displacement and speed are

2,(0=2,(0+[ 2,()dz, ,()=2,0)+ ML [[p-P@lz.  (0)

Practically, a certain #y, #1, ... ¢, (wWith % =0, t,= t and At = ¢;- t;1 where i =
1 + n) must be considered. The rail displacement at the contact point and the wheel
displacement and speed can be calculated with the formulae

vVt ) = —i [ "'t Vit —1)P(t)de (11)
2,(6)=2,0,)+ [ 2,0 (12)
20)=2,,0 [ 1A Pk (13

It is assumed that the contact force P(t) and the Green function will have a
linear variation in the [#., #] time interval.

. o At _P(tn)+P(tn—l)
Zw(tn)_zw(tr1—l)+Mw |:P0 2 :| (14)
_. ; A [ P(t,)+2P(,.)
Zw (tn ) - w(tnfl) + w(lnfl )At + 2MW |:P0 3 :| (15)

2 3

J=1

w(Vt,.t,) = —Ati{g;'llaj &b, okt AL _Pj'l)}, (16)

where g'; = g'(Vt,, V1, t, - 1)) and P;= P(1)).
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Using the above properties of the Green function, g"(Vt,, V%, t, - #)) can be
organized as a matrix — the Green matrix of the track. For any time numerical
simulation, the Green matrix of the track can be utilised.

The wheel displacement and the rail deflection can be expressed as
functions of magnitude contact force P(z,). By substituting the wheel displacement
and the rail deflection in the contact equation (4), a non-linear P(,) based equation
results. Solving this equation in an iterative manner, the P(#,) contact force is
determined at each integration step. Then, the wheel displacement and the rail
deflection are determined. After that, the procedure repeats with the next step.

2. Numerical application

Further on, the particular case of a moving wheel on the rail track
consisting in a rail having the linear mass m = 56 kg/m on concrete sleepers, is
analyzed. The wheel mass M,, = 750 kg and a static load Py = 100 kN are
considered. The values for the rail parameters are: /= 23.14-10° m*, § = 7.134- 10
m’, E =210 GPa, G = 85 GPa, k = 0.34, M, = 129 kg, I, = 0.82 kgm?, d = 0.698, / =
0.08 m, 4; = 0.085 m, i, = 0.089 m, k. = 34 MN/m, k. =280 MN/m, k., = 114.3
kNm, ¢, = 24 kNs/m, ¢,- = 63 kKNs/m, ¢, = 25.7 Nms, kz, = 35 MN/m, kp.= 180 MN/m,
¢pe = 52 kNs/m and ¢, = 82 kNs/m.

The Hertzian constant Cy; = 11.86 10" N/m*? was calculated for a wheel
having a 920 mm diameter and an S 78 rolling profile on UIC 56 rail.
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Fig. 2. Wheel/rail response for harmonic behaviour: wheel between sleepers, — - — - — wheel
above sleeper, —— — — rail between sleepers, — — — rail above sleeper.

Firstly, in order to understand the wheel/rail interaction due to parametric
excitation, the wheel/rail harmonic behaviour is analyzed. For this purpose, the model
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of a moving irregularity between a stationary wheel and the rail is adopted. The
wheel/rail response is calculated from the equations

v , v _ v

zZ, 1k, +o, +a z, 1/k,+o, +a,
P 1
z,  k,+o,+a,’

where v and Z, are the complex amplitudes of the rail and the wheel, P is the
complex amplitude of contact force, z, is the complex roughness amplitude, o,

and o, are the wheel and rail receptances and ky is the elastic constant of the
Hertzian contact.
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Fig. 3. Wheel/rail contact force for harmonic behaviour:

at mid-span, — — above sleeper.

Fig. 2 and 3 display the wheel and rail displacement, respectively the contact
force in the domain of 10 - 2200 Hz. All values are compared to the roughness. Two
resonances may be observed, the first at frequency about 65 Hz, and the second at
frequency about 240 Hz. The rail displacement is smaller than the wheel’s in the
frequency range below the first resonance because the rail receptance is smaller than
the wheel’s. After the first resonance, the wheel receptance is smaller and its
displacement is smaller too.

The pinned-pinned resonance/anti-resonance occurs at a frequency of about
760 Hz. The rail resonance and the wheel anti-resonance are connected, and the rail
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anti-resonance and the wheel resonance are connected too. The contact force diagram
shows that the differences between the system’s response above a sleeper and at mid-
span are maximal at the pinned-pinned resonance/anti- resonance frequencies.
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Fig. 4. Contact force: wheel mass of 750 kg, at mid-span, —— —— above sleeper, wheel mass
of 1100 kg, — - — - — at mid-span, — — above sleeper.

Fig. 4 shows the contact force around the first resonance frequency for two
wheel masses, 750 kg and 1100 kg, and for two span lengths 700 mm and 600
mm. The first resonance frequency varies with a few Hz for the wheel between
sleepers or above the sleeper. If the wheel mass is 1100 kg, then the first
resonance frequency decreases with about 11-12 Hz comparing with the wheel
mass of 750 kg, and the contact force increases with about 0,34-0,37 N/nm. The
first resonance frequency increases slightly with 2,5-3,5 Hz for a span length of
600 mm comparing with the span length of 700 mm.
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In the following, the numeric simulation results in the time-domain are
analyzed. The track Green matrix was calculated for many speed values between
20 m/s and 60 m/s, both for span length of 700 mm and 600 mm. In order to
capture the high frequency dynamic response, the time step for integrating the
equations of motion was chosen between 16.67 and 50 ps.
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Fig. 5. Wheel/rail displacement at the contact point: a) at 24 m/s, b) at 28 m/s; ¢) at 48 m/s,
d) at 60 m/s; wheel displacement, ———— rail displacement, o sleeper position.

Fig. 5 displays the displacement of the wheel and the rail at the contact
point in the interaction due to parametric excitation, between sleepers # 20 and #
24, at different speeds. The displacement of the wheel is larger than the rail’s
because the wheel/rail contact is elastic. The displacements of the wheel/rail
system are higher at the speeds of 24 m/s and 48 m/s especially. At the wheel
speed of 48 m/s, the frequency of passing over sleepers (the first spectral
component of wheel/rail interaction due to parametric excitation) equals the first
resonance frequency, and this fact counts for the magnitude of displacements.
This speed value may be named the critical speed of wheel/rail interaction due to
parametric excitation. At the wheel speed of 24 m/s, the second spectral
component of wheel/rail interaction due to parametric excitation equals the first
resonance frequency too. This aspect explains the double oscillation of wheel/rail
displacements along the sleeper bay. At the speeds equal the critical speed of
wheel/rail interaction due to parametric excitation, the minimal wheel/rail
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displacements may be observed after the wheel passes over the sleeper, especially
when the wheel speed is higher than the critical speed.

—
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Fig. 6. Wheel/rail contact force: a) at 24 m/s, b) at 48 m/s, c¢) at 60 m/s,
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Fig. 6 presents the wheel/rail contact force for time-domain and its spectral
components. The numerical simulation shows that the contact force above sleeper
increases with the speed. Generally, the spectrum of the contact force is
dominated by the first component which has the frequency equal to the frequency
of passing over the sleepers. The first two components have the magnitude of 45.7
kN and 1.4 kN at 48 m/s, and 12.6 kN and 1.2 kN at 60 m/s, respectively. There is
an exception, when the wheel speed is about half the critical speed. In this case,
the second spectral component is the highest, e.g. it has the amplitude of 7.0 kN
and the first spectral component, 1.9 kN at the wheel speed of 24 m/s. On the
other hand, the highest spectral components increase as the wheel speed increases.
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Fig. 7 displays the effective contact force for the wheel mass of 750 kg
and 1100 kg, for both the span length of 700 mm and 600 mm. One can see the
critical speed in every studied case. Thus, the critical speed decreases as the wheel
mass increases because the first own wheel/rail resonance frequency decreases.
Such as, the critical speed is 48 m/s for the wheel mass of 750 kg and 40 m/s for
wheel mass of 1100 kg, respectively and the span length of 700 mm. The same
trend can be observed for the span length of 600 mm, the critical speed is 43 m/s
for a wheel mass of 750 kg and it decreases to 36 m/s for the wheel mass of 1100
kg. Comparing these numerical results one can conclude that the critical speed
decreases as the span length decreases as well.
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Fig. 7. Effective wheel/rail contact force: x wheel mass of 750 kg, o wheel mass of 1100 kg.

In fact, if the wheel rolls over a smaller span length, the frequency of
passing over the sleepers is higher. On the other hand, the first own wheel/rail
frequency increases as the span length decreases because the stiffness per unit
length increases. However, the slope of the frequency of passing over the sleepers
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is higher than the first own wheel/rail frequency’s and, as the result, the critical
speed decreases.
The effective force has its maximum value at the critical speed. The
critical value of the effective force increases with wheel mass. Indeed, when the
wheel mass is heavy, then the own first wheel rail frequency is smaller and the
damping force is smaller too. Because of this, the effective force increases:
starting from 32.4 kN to 43.1 kN for the two wheel masses and the span length of
700 mm, and starting from 23.3 kN to 30.7 kN value for the span length of 600
mm. Finally, the critical effective force decreases when the passing time over the
sleepers becomes smaller.
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speed of 60 m/s: a) rail displacement, ——— wheel displacement, o sleeper position; b)
contact force; ¢) contact force spectrum, o modulated components, + components due to
parametric excitation.
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Figure 8 displays the wheel/rail response due to parametric excitation and the rail
roughness input at the wheel speed of 60 m/s. For numerical simulation, the term
of the rail roughness must be added in the equation (4). The rail roughness has
sinusoidal form with the amplitude of 30 um and wave length of 93.33 mm. The
rail displacement is modulated by the roughness because the rail receptance is
smaller than the wheel’s and the rail compensates the roughness by its
displacement.
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Fig. 9. Wheel/rail contact force due to harmonic excitation by the wavelength of 70 mm,
wheel speed = 60 m/s: a) contact force; b) contact force spectrum.

The contact force is modulated too as it can be seen. In fact, the wheel/rail
response due to parametric excitation is overlapped by the wheel/rail response due
to roughness. In this case, the carrier frequency is caused by the sinusoidal
roughness excitation and the modulated one is given by the interaction due to
parametric excitation. The carrier has 643 Hz and the fundamental component of
the modulated has 86 Hz. The spectrum of the contact force has two distinctive
components: the harmonics of the modulated and the modulated spectral
components with the frequencies of f. + k f,, where f. stands for the frequency of
the carrier, f;, stands for the frequency of the modulated and k& stands for an integer
number. The amplitude of the carrier has the value of 14.6 kN and the amplitude
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of fundamental component has the value of 12.5 kN. The effective force has the
value of 14.8 kN.

When the carrier frequency is a multiple of the fundamental component of
the interaction due to parametric excitation, both kind of components are
overlapped. Figure 9 illustrates this aspect, the contact force and its spectrum due
to roughness with the wavelength of 70 mm and the same amplitude and wheel
speed are presented. The amplitude of the fundamental modulated has the value of
12.6 kN and the carrier one has the value of 28.1 kN. The effective force has the
value of 26.3 kN. The modulated fundamental is practically unaffected by the
carrier. In this last case, the frequency of the carrier is situated in the pinned-
pinned range and the contact force is higher.

3. Conclusions

In the case of ballasted track on sleepers, the wheel/rail interaction is
strongly influenced by the parametric excitation due to sleepers, the dynamic
stiffness of the track varying along the span bay.

This particularly type of wheel/rail interaction behaviour must be studied
for many reasons (wheel/rail wear, the rolling noise, etc.). For this aim, an original
theoretical model is presented. The rail is assumed as an infinite Timoshenko
beam, respectively an infinite bar which are coupled by the rail-pads. The wheel
is taken as a moving mass on the rail. In order to simulate the wheel/rail
interaction, an efficient method based on the Green matrix of the track is applied.

The wheel/rail interaction behaviour due to parametric excitation is
dominated by the first own frequency for wheel/rail system. When the passing
frequency over the sleepers equals the first own resonance frequency, the
wheel/rail contact force due to parametric excitation has the highest value and the
wheel rolls over the rail at the critical speed. Consequently, the railway traffic at
the critical speed must be avoided.

The numerical results show that the wheel/rail contact force may be
reduced if the railway vehicle has the light wheel sets. In addition, the wheel
rolling on a track with smaller span length is less stressed.

As the wheel speed increases, a part of the main components of the contact
force spectrum due to parametric excitation are pushed in the pinned-pinned
resonance frequency range and the amplitudes of these spectral components
become higher. The previously mentioned aspect contributes to the rail
corrugation.

Generally, the wheel/rail interaction is characterised by the superposition
of the roughness and parametric excitation due to sleepers. The modulated
oscillation phenomenon occurs — the carrier is the effect of the excitation due to
roughness and the modulated is given by the parametric excitation. The spectral
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components of both the carrier and the modulated can be added in the pinned-
pinned resonant/anti-resonant frequency range, especially. As a result, the contact
force becomes higher, and this last aspect contributes to the rail corrugation too.
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