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A NEW CUMULATIVE DISTRIBUTION FUNCTION BASED ON m
EXISTING ONES

Christophe Chesneau', Tassaddaq Hussain?, Hassan S. Bakouch®

In this note, we present a new cumulative distribution function using sums
and products of m existing cumulative distribution functions. Consequently, some new
functions are discussed with focusing on one of them and providing two practical data
examples.
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1. Introduction

In literature, several transformations exist to obtain a new cumulative distribution
function (cdf) using other(s) well-known cdf(s). The most famous of them is the power
transformation introduced by [4]. Using a cdf F'(z), the considered cdf is G(x) = (F(x))%,
a > 0. For extensions and applications, see [5], [13] and [14], and the references therein.
Another popular transformation is the quadratic rank transmutation map (QRTM) intro-
duced by [15], where the considered cdf is G(z) = (1 + N\ F(z) — M(F(z))?, X € [-1,1].
Recent developments can be found in [2, 3], [7] and [8], and the references therein. Mod-
ern ideas include the DUS transformation proposed by [9]: G(z) = L5 (eF'(®) — 1), the SS

transformation introduced by [10]: G(z) = sin (3F(z)) and the MG transformation studied

by [11]: G(z) = '~ 7. Other transformations obtained by compounding can be found in
[16]. An interesting approach is also given by the M transformation developed by [12], where

using two cdfs Fi(x) and Fy(x), the considered cdf is G(x) = %ﬁ@
[12] showed that the M transformation has great applications in data analysis. With spe-
cific cdfs Fi(x) and Fy(z), it can better fit practical data in comparison to some exploited
distributions.

In this study, we propose a generalized version of the M transformation, called GM
transformation. It is constructed from sums and products of m cdfs with m > 1. In com-
parison to the M transformation, it offers more possibility of cdf, mainly thanks to more
flexibility on the denominator term. Then new distributions are derived, with the associated
probability density function (pdf). Some mathematical properties of the new distributions
are presented. A statistical study using two practical data sets is given: estimation of pa-
rameters of some of new distributions is performed using the method of maximum likelihood.
We consider the Kolmogorov-Smirnov statistic to compare our models with some existing
models. Better fits are obtained for our distributions.

The note is organized as follows. In Section 2, we present our new transformation.
In Section 3, we apply it with specific well-known distributions, defining the associated pdfs

. In particular,
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and some mathematical properties of these distributions are described. Section 4 is devoted
to a statistical study involving some of our new distributions as models, considering two
practical data examples. A conclusion is given in Section 5.

2. GM transformation

Let m > 1 be an integer, Fy(z), ..., Fy,(x) be m cdfs of continuous distribution(s) with
common support and 41, . . ., §,, be m binary numbers, i.e. §; € {0,1} forany k € {1,...,m}.
We introduce the following transformation of Fy(z),..., Fy,(2):

G(z) = =l , (1)
+ I (Fr(2))%
k=1
with the imposed value §,, = 0 in the special case where m = 1. The support of G(z) is the
common one of Fy(x),..., Fp(x).
The role of d1,...,d,, is to activate or not the chosen cdfs in the product in the

denominator. For examples, taking m = 2, 61 = 1, and d2 = 1, the function (1) becomes

G(z) = %ﬁ% This cdf will be at the heart of Section 3. Taking m = 3, §; = 1,

d2 =1 and d3 = 0, the function (1) becomes G(x) = W ; F3(x) is excluded of
the denominator.

The following result motivates the interest of (1).
Theorem 2.1. The function G(x) (1) possesses the properties of a cdf.

Proof of Theorem 2.1. For any k € {1,...,m}, let fi(z) be a pdf associated to the cdf Fj(z).
Recall that Fy(z) is continuous with Fy(x) € [0, 1], EIJP Fp(z) =1, EIP Fi(z) =0 and

fr(xz) = Fj(x) almost everywhere with fx(z) > 0. Let us now investigate the sufficient
conditions for G(z) to be a cdf.

e Since > Fy(x) and m — 1 + [] (Fy(w))% are continuous functions with m — 1 +

k=1 k=1
[T (Fi(x))% # 0, G(z) is a continuous function of x.
k=1
e Let us prove that G(x) € [0,1]. Owing to > Fj(z) > 0 and m—1+ [] (F(2))% > 0,
k=1 k=1
we have G(z) > 0. On the other hand, using the inequality: H (1—zp)>1- Z Tk,
k=1
zp, € [0,1], with o = 1 — (Fj(2))% € [0, 1] and observing that (FJ(z))% > Fk( )7 we
obtain
[[(Fe(@)™ = (1= (Fi(@))™) = L= m+ Y (Fi(z))™
k=1 k=1 k=1
> 1-m+ Z Fy(x)
k=1

Hence G(z) <1
e Let us prove that G'(x) > 0, mplymg that G(z) is increasing. For any derivable
function u(z), note that ((u(z))%) = épu/(z) since 0, € {0,1}. Therefore we have
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G'(z) = gg; almost everywhere, where
Alz) = (i fk(x)> (m —1+ ﬁ(Fk(x))5k>
k=1 k=1
- (Iczm:l Fk(ﬂﬁ)) iékfk(z) ﬁl(Fu(I))é“
and .

We have B(z) > 0. Let us now investigate the sign of A(z). The following decompo-
sition holds: A(x) = A1 (z) + Aa(zx), where

Ar(@) =Y Sufil@) [ m—1+ [[(Fu@)™ - (Z Fu(fc)> [T (Fut@)’
k=1 u=1

v=1 =
Zk

s R
T

and

Ay(z) = Z(l — 0k) fi(x) (m -1+ H(Fk(x))5k> .
k=1 k=1
Since Az (x) > 0 as a sum of positive terms, let us focus on the sign of A;(z). Observe
that, if d, = 1, we have Fy(x) [ (Fu(2))% = [ (Fu(x))%. If 6, = 0, the k-th term
u=1 u=1
utk
in the sum of A;(z) is zero. Therefore we can write

Ay (z) = Zékfk(x) m—1-— Z F,(x) H(Fu(x))‘s“
k=1

v#£k U

v=1

u=1

utk

plying that A;(z) > 0. Therefore A(x) > 0, so G'(z

e Let us now investigate lim G(z) and lim G(zx
T——00 T—400

Since F,(x) ﬁ (Fy(x))% < 1, we have m — 1 — (i F,(x) ﬁ (Fy(x))% >0, im-

. If m > 2, we have m — 1 +

—~
~ —

[T (F(2))% >m—1> 0. Since Em > Fix(x) = 0, we have Em G(z) =0. If
k=1 T—r—00 g z——00
m = 1, recall that we have imposed ¢, = 0, so Erg G(x) = Egl Fi(z) =0. On

the other hand, for any m > 1, we have lim G(z) = _m
T—+00 m—1+1

O

Let us now present some immediate examples existing in the literature. Taking m =1
(so 81 = 0), we obtain the simple cdf G(x) = Fy(x). The choice 6; = ... = §,, = 0 gives an
m

uniform mixture of cdfs: G(z) = L > Fj(x). Finally, for m = 2, 6, = 1 and §; = 0, we
k=1
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Fi(z)+F ()

obtain the M transformation introduced by [12]: G(z) = T F )

For this reason, we will call (1) as the GM transformation (as Generalization of the
M transformation). To the best of our knowledge, it is new in literature.

New cdfs can also be derived by the GM transformation and existing transformations.
Some of them using only one cdf are described below.

e For any cdf F of continuous distribution and d1,...,d,, such that > §, = ¢ with
k=1
g € {0,...,m}, the GM transformation yields the following cdf:

mF(x)
m—1+ (F(z))?
e For any cdf F of continuous distribution with support equal to R or [0, +00) or (—oc0, 0)

and any real numbers 5i,..., 3y, where 8y > 0 for any k € {1,...,m}, the GM
transformation includes the following cdf:

i F(Brz)
k=1

m—1+ kg(ﬂm»é?

G(x) =

G(z) =

e Combining the GM transformation and the power transformation introduced by [4],
for any cdf F of continuous distribution and any real numbers aq,...,a,,, where
ag > 0 for any k € {1,...,m}, we obtain the cdf:

> (F(x))™
G(z) = b=l .
=1+ [ (P
k=1

e Combining the GM transformation and the transformation using QRTM introduced
by [15], for any cdf F of continuous distribution and any real numbers Ay, ..., Ay,
where A, € [—1,1] for any k € {1,...,m}, we obtain the cdf:

m
2 (LA F(z) = Ak(F(2))?)
G(z) = =1 — .
m =1+ T1((+ M)F (@) = A(F(2))?)%
k=1

Remark 2.1. Others interesting combinations are possible according to the problem. Thanks
to their adaptability, with a specific F(x), these cdfs are of interest from the theoretical and
applied aspects.

3. A particular case with some related new distributions

Let us now focus our attention on a simple configuration already mentioned. If we
chose m = 2 and §; = J = 1, then the GM transformation is reduced to the following form

F F:
Gla) = )+ Fale)

1+ Fi(2)Fy(x)
The main difference with G(z) and the cdf proposed by [12] is the function Fy in the
denominator introducing more flexibility, and leading new cdf. The associated pdf is given

by
o) = fi(z)(1 = (Fa(2))?) + fa(x)(1 = (Fi(2))?)
(1+ Fi(z)F2(x))? '




A new cumulative distribution function based on m existing ones 79

We now described some of its mathematical properties. The quantile function @Q(x)
can be obtained via the nonlinear equation:

GRE) =2 < Q)+ Q) =121+ F(Q(x))F2(Q())) .

For = such that Fy(z) € (0,1) and Fa(z) € (0, 1), using the geometric series, we can expand
G(x) as
—+oo

G(2) = > (=D (R @) (Ba)* + (R@)" (Fa@)).
k=0
“+o0
An expansion of the pdf g(x) is given by g(z) = Z(fl)kuk(x), where
k=0
@) = ((k+1)(R@F@)" @)+ fa)

+ k(R0 F(2) " (fo(2) (Fu(2)* + fi(2) (Fa(2))*).

These expansions can be used to determine the r-th moments of a random variable X having
the cdf G(x), and other crucial quantities. Their expressions are however long to express in
full generality.

Two special cases arising from G(x) and using the usual distributions are described
below.
New Two Component Weibull (NTCW) distribution.: Considering the cdf F; of
the Weibull distribution with parameters k; > 0 and Ay > 0 and the cdf F5 of the
Weibull distribution with parameters ks > 0 and Ay > 0 . Then we have Fj(z) =

(1 - e‘(x’i)’”), Fy(z) = (1 - e—(é)kz)

R i e
and
k1 ko \ 2
f%(%)’“*e ()" (1= (1 ()
g(r) = o ( )

, x> 0. (2)

New Gumbel-Normal (NGN) distribution.: Considering the cdf F; of the Gumbel
distribution with parameters A € R and § > 0 and the cdf F5 of the normal distribution
with parameters A € R and ¢ > 0 the corresponding cdf’s are expressed as Fj(z) =

—z=A (t—2)2
e T B)= ffoo 2;02 e 3t dt = ®(x), then we have
zg)\
e o
Gla) = & + o(z)
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x €R. (3)

The next section is devoted to applications of these two distributions in a statistical
setting.

4. Applications

We now propose to check the suitability of the parametric models related to the
NTCW and NGN distributions. Two data sets representing different scenario of practical
life are considered. Estimations of the different parameters are given via the maximum like-
lihood method and hence the corresponding log-likelihood £(0) is evaluated based on equa-
tions (2) and (3) for comparing purposes. In order to compute and measure the compatibility
of a random sample with a theoretical probability distribution function, our benchmark is
the Kolmogorov-Smirnov (KS) goodness of fit statistic.

Application I: NTCW distribution. Here, we present a real data set taken from
[1] for comparing the fits of the NTCW distribution with the new generalized Lindley (NGL)
distribution proposed by [1], Lindley distribution and Exponential distribution. The data
set represents the breaking stress of carbon fibers (in Gba) and consists of the values: 3.70,
2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 3.56, 4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09,
1.87, 3.15, 4.90, 1.57, 2.67, 2.93, 3.22, 3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 3.31, 2.85, 1.25, 4.38,
1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.89, 2.88, 2.82, 2.05, 3.65, 3.75, 2.43, 2.95,
2.97, 3.39, 2.96, 2.35, 2.55, 2.59, 2.03, 1.61, 2.12, 3.15, 1.08, 2.56, 1.80, 2.53. The results are
summarized in Table I:

Table I: NTCW distribution with practical application
Distribution B & [ I A £(O) KS

NGL 8.485 7.412 2.788 - - -91.107  0.117
Lindley - - 0.590 - - -122.384  0.711
Exponential - - - - 0.362 -132.9944  0.282
NTCW o1 =8.2544 ) =10.2118 oy = 3.4404 [ = 3.0624 - -86.0677  0.0791

The above inferences indicates that NTCW not only posses the largest log-likelihood
£(©) values but also possess the smallest KS statistic as compared to the competing models.
Therefore, NTCW distribution is the best for this data from these criteria.

Application II: NGN distribution. The considered data set shows the lowest 7
days average flows in meter cube per second at gauging station La Parota 1963-1999.The
values during this period are 19.8, 15.1, 0.3, 19.1, 19.0, 14.4, 17.5, 15.4, 18.9, 16.5,15.3, 19.3,
19.1, 13.0, 16.4, 15.3, 22.3, 17.4, 16.9, 23.2, 13.1,14.2, 17.1, 15.8, 3.2, 13.4, 17.7, 21.5, 9.8,
21.1, 18.7, 15.0,15.2, 9.8, 21.1, 15.7, 11.9, which are reported by [6]. The comparing mod-
els includes the generalized Logistic (GLO), the generalized Pareto (GP) and the Gumbel
(Gumb.) distributions. For respective density functions, readers are referred to [6]. The
results are given in Table II:

Table II: NGN distribution with practical application

Distribution A & Ié] e £(©) KS
GLO - - 0.267  4.241 -125.06 0.743
GP - - 0.999 25.25  -119.47  0.3797
Gumb. - - 7.604 17.822 -126.92 0.4062

NGN 16.6998 3.4261 2.8310 - -100.797  0.2273
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In view of above results, we can see that the NGN distribution takes the largest

log-likelihood £(©) and the smallest KS statistic. This confirms the capability of the NGN
distribution for modeling this data set than other compared models.

5. Conclusion

In this note, we introduce a new general family of distributions characterized by a cdf
G(z) constructed from m existing cdfs Fy(x),..., Fp,(z) via a special transformation called
the GM transformation. It can be viewed as a flexible version of the M transformation
introduced by [12]. Special cases of this family, generating new distributions, are introduced
and discussed. Applications are given to two practical data sets. We explore the estimation
of the unknown parameters and show that the new distributions can be used quite effectively
to provide better fits than some existing distributions.
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