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MATHEMATICAL MODELING AND NUMERICAL 
SIMULATION OF A VIBRATING MEMS GYRO 

Petre NEGREA1, Constantin-Lucian SEPCU2, Romulus LUNGU3,              
Teodor Lucian GRIGORIE4 

This paper presents theoretical and numerical study of a MEMS vibration 
gyro, whose operating principle is based on Coriolis effect. In a first phase is 
exposed the gyro mathematical modeling in terms of its dynamic regime, modeling 
completed during two sections with equations that describe the gyro functioning 
with imposed control on the excitation axis gyro controlled and mathematical 
implemented control on the excitation axis . The mathematical models presented are 
validated by numerical simulations for both considered cases: imposed control or 
implemented control on the excitation axis. 

1. Introduction 

Using integrated optics, development of quartz crystals and NEMS (Nano-
electro-mechanical systems) or MEMS (Micro-electro-mechanical systems) 
technologies have led to significant advances in the development of miniaturized 
gyro systems for both highly or low precision commercial applications, and for 
military application. Research aimed at improving performance, miniaturization 
and obtaining a price able to compete with mechanical sensors. The components 
development and the emergence of advanced manufacturing technologies have 
placed the miniaturized electro-mechanical and opto-electronical sensors over the 
mechanical ones in terms of performance and have reduced their size to the order 
of a few mm3 and even less. Initial prices were quite high, but the launch of serial 
production had a substantial role in diminishing those prices ([1]-[4]). 

Currently, angular velocity detection with MEMS gyros uses four types of 
mechanisms: vibrating bars, vibrating plates, resonant rings and oscillating 
accelerometers. Detection is generally capacitive, but it encountered situations in 
which detection is on piezoresistive or piezoelectric principles. All these four 
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types of gyros fall into the category of vibrating gyros. Silicon technology have 
enabled the development of such gyros that detects angular velocity in two or 
three directions simultaneously. The advantages conferred upon the strap-down 
inertial navigator of such gyros architectures lies in their compactness and good 
alignment between the measurement axes, made on micro or nano scale, which 
greatly reduces alignment errors of the inertial platform that appear in the 
situation in which are used the mono-dimensional gyros ([5]). 

Reducing the size of the sensing elements has created new challenges in 
improving the performance of sensors, considering generally that downsizing 
sensors entails lower sensitivity, increased noise and decreased ability to control 
them. Further, the temperature varies of about 100 ppm/°C in specific Young's 
modulus of silicon, which causes serious problems related to thermal sensitivity. 

2. Gyro dynamic equations 

In Fig. 1 a) ([6]) is shown a schematic diagram of a MEMS vibrating gyro. 
Figure elements  (seismic mass m, elastic and the damping elements) are placed in 
the oxy plane, solidar with the base of which the angular velocity Ω  is measured. 
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Fig. 1 Gyro schematic diagram and the specific variables 

In the absence of the base rotation (Ω=0), the mass m is located in the 
origin of the coordinate system oxyz. When the base is rotated with the angular 
velocity Ω, the seismic mass m moves in a radial direction; R is the circumference 
radius and R  - radial linear velocity of the m mass; 
 kjyixRjyixR ΩΩ,, =+=+= , (1) 
where ji ,  and k  are the axes versors of the oxyz frame, x  and y  - the current 
coordinates of the mass m, and x  and y - the linear velocities of the mass m by 
the ox and oy axes directions ( R  components). 

According to Fig. 1 b), the forces acting on the seismic mass m are: iF  - 

the inertial force, aF  - the dynamic damping force (the equivalent of the dynamic 

damping forces caused by the dampers as in the figure), eF  - the elastic force (the 
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equivalent of the elastic forces created by the elastic elements as in the figure), fF  

- the centrifugal force and cF  - the Coriolis force; 
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where: Cxx and Cyy are the dynamic damping coefficients of the dampers, disposed 
by the ox and oy axes; dxy - the dynamic coupling damping coefficients; kxx, kyy 
and kxy are the elasticity coefficients of the elastic elements disposed by the ox, oy 
axes,  and the coupling, respectively; cxF  and cyF  - the components of the Coriolis 
force by the two axes directions. 

In Fig. 1 c) are given the components of the forces along the axes ox and 
oy; components fxF  and fyF  of the centrifugal force are small vis-à-vis of the 
elastic force components, being neglected; in addition, figure highlights the 
components kxF  and kyF  of the force kF  generated from outside, for the position 
control of the m mass (bringing mass in the neutral position, x=y=0). 

The m mass position is obtained as a result of the balance 
 .0=++++ kceai FFFFF  (3) 

Projecting this equation by the ox and oy axes directions, with the above 
expressions, is obtained the dynamic model ([7]) 
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where m is the vibrating mass; x, y - the proof mass coordinates with respect to the 
fixed frame related to the gyro housing; u(t) - the electrostatic excitation force. 

Relations (4) can be transfigured as 
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and with the notations 
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they became 
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ωn is the natural pulsation in the x direction; ωn1 - the natural pulsation in the y 
direction; ωn2 - the natural pulsation caused by coupling; q, q1, q2 - the quality 
factors on the x, y directions and coupling; uc - the control signal on the x axis. 

3. Gyro modeling with imposed control on the excitation axis  

There are several types of vibrating MEMS gyros, where the proof mass 
trajectories in both motion directions, detection and excitation are controlled or 
are not controlled. The version studied in the following ensures the seismic mass 
trajectory control only in the x direction of excitation ([8]). Usually, to have 
angular velocity signal on y detection axis by Coriolis effect, the seismic mass is 
engaged in an oscillatory motion on x axis, according to the relation 
 ,sin tAx nd ω⋅=  (8) 
where xd is the imposed coordinate for x direction, and A is the amplitude of the 
imposed oscillation. So, it results 
 tAx nnd ωω cos=  (9) 
and 
 .sin2 tAx nnd ωω−=  (10) 

In the situation where it is considered that the seismic mass trajectory 
along the x axis is controlled (x=xd) and neglecting the coupling between the two 
axes of the system (Cxy =0, kxy=0), the equation of motion of the seismic mass 
along the detection axis becomes 
 ,2)/( 2

111 dnn xyyqy Ω−=⋅+⋅+ ωω   (11) 
i.e. 
 .cos2)/( 2

111 tAyyqy nnnn ωωωω ⋅⋅Ω−=⋅+⋅+  (12) 
Equation (12) stationary regime solution describes the oscillator motion 

after the external harmonic force acted a very long time in comparison to the 
oscillator time constant τ=q1/ωn1 ([9]). In this case, the "transient oscillations", 
which describe the oscillator behavior over a period equal to few time constants, 
after the application of the initial external excitation, were completely 
extinguished. The oscillator performs then harmonics with external excitation 
frequency ωn/2π. The oscillations amplitude is proportional to the amplitude "-
2Ω·Aωn" of the external excitation. Stationary solution ys(t) can be written in the 
form ([9]) 
 ,cossin)( tAtAty nelnabs ωω +=  (13) 
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where Aab is called the absorptive amplitude, and Ael is the elastic amplitude 
(sometimes called the dispersive amplitude); 
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Note that the amplitude of the harmonics contain information of angular 
velocity Ω. Measurement of this amplitude resort in the achievement of a 
demodulation with synchronous detection, as shown in Fig. 2. 

This means that the signal y(t) must be multiplied by cosωnt, i.e. with a 
signal containing the base harmonic of the carrier signal. Therefore, the multiplied 
signal becomes 
 ).2cos1)(2/(2sin)2/(coscossin)( 2 tAtAtAttAty nelnabnelnnabd ωωωωω ++=+=  (15) 
After filtering with a low pass filter, the components with variable harmonic are 
cut off and remains only the continuous component, which with (14) becomes 
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i.e. 
 .Ω⋅= Ky f  (17) 

Given the dependence from equation (17), is expecting a linear static 
characteristic of the gyro in this simplified structure. 
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Fig. 2 Demodulation with synchronous detection 

Based on the mathematical model of the simplified structure, the gyro 
block diagram results as in Fig. 3. 

Matlab/Simulink implementation of the scheme from Fig. 3 leads to the 
model shown in Fig. 4. The numerical values considered for the scheme 
parameters are ([10]): fn=1.58·105 Hz, fn1=5.94·105 Hz, fn2=1.82·105 Hz, 
m=7.55012·10-9 Kg, A=50 µm, q=q1=q2=100. fn, fn1, fn2 are the natural 
frequencies in the x, y and coupling directions, respectively. 
 .2,2,2 2211 nnnnnn fff πωπωπω ===   (18) 
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Fig. 3 Simplified gyro block diagram 
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Fig. 4 The simplified gyro Matlab/Simulink model 

For an angular velocity unit step input, in rad/s, the scheme signals have 
the allure as in Fig. 5. Can be noticed that the simulation model respects the 
mathematical model that it implements. The response oscillation damping is 
realized after approximately 2·10-3 s, the overshoot being less than 0.04. 
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Fig. 5 Signals time variation for unit step input 

To have a perfect response correlated with the input, in the simulation 
model scheme was added an amplification factor equal to the inverse of the scale 
factor K=5.8656 ·10-11. 

System response to various input step can be viewed in Fig. 6, while Fig. 7 
shows the gyro response to a repeated step input type. For both cases stands out a 
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very good behavior of the model structure and the absence of stationary error. 
Static characteristic of the gyro in this architecture results in the form of Fig. 8. 

4. Introducing control on the excitation axis  

The next study step involves placing the trajectory control on the x axis, 
but neglecting coupling between the two axes (Cxy =0, kxy=0) and influence from y 
channel in x channel. In this case, equation (7) can be written in the form 
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    Fig. 6 Step inputs response    Fig. 7 Repeated step input response     Fig. 8 Static characteristic 

Choosing the control law in the following form ([10]) 
 ,)/( 2 νωω +⋅+⋅= dndnc xxqu  (20) 
with 
 ,2 xeB n ⋅−⋅−= ων  (21) 
first equation of (19) becomes 
 .)/()/( 22 νωωωω +⋅+⋅=⋅+⋅+ dndnnn xxqxxqx  (22) 
e is the tracking error, 
 ,dxxe −=  (23) 
and B is a parameter introduced in order to have a controlled damping in the error 
e dynamics ([10]). 

Given the equations (8) and (10) results 
  ,2

dnd xx ⋅−= ω  (24) 
and the expression (22) becomes 
 ,)/()/()( 222 νωωωωω +⋅+⋅=⋅+⋅+⋅−−+ dndnnndnd xxqxxqxxx  (25)  
i.e. 
 ,)()/()()( 22 νωωω +⋅=−+⋅−+− dnndndd xxxqxxxx  (26) 

Substituting the equations (21) and (22) into (26) is obtained 
 ,)/( 222 xeBxeeqe ndnnn ωωωω −−=++  (27) 
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The error final dynamic equation becomes 
 [ ] .0)2()/( 2 =⋅+⋅++ eeqBe nn ωω  (28) 
It has the solution in the following form ([9]) 
 [ ]{ },/)(sin)2/()0()0(cos)0()( 111

)2/( ωωτωτ teeteete t ⋅++⋅= −  (29) 
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With the control law in the form of (20), the system equations (19) can be 
rewritten in the following form 
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Based on the mathematical model described by the equations (33), the 
gyro block diagram in Fig. 9 is obtained. The differences against the simplified 
model of the gyro are coming from the fact that the control, this time, is on the x 
axis, and the x axis input in the detection axis y is controlled by the speed x  from 
the x axis and not through dx . 

Similar to the previous situation, the model from the detection axis y 
corresponds to a harmonic oscillator that perform forced oscillations, with 
damping, produced by harmonic external excitation. Stationary regime solution in 
the second equation of the mathematical model of (33) describes the oscillator 
motion, when the transient regime for the control of variables x  has fade, this 
motion being the source of excitation, also when the external excitation controlled 
x , modulated in amplification with the signal -2Ω (proportional to angular 
velocity that has to be detected), acted a very long time compared to the time 
constant )/( 111 nq ωτ =  of the oscillator. 

The detection phase modeling is described by similar equations of the 
model from (13)÷(17), the estimation of the angular velocity Ω being performed 
by synchronous detection demodulation (the scale factor is identical to the one 
from the situation simulated in the previous case). Implementing Fig. 9 scheme in 
Matlab/Simulink leads to the model shown in Fig. 10. 
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Fig. 9 Block diagram of the gyro with control on x axis and neglecting the two axes coupling 

 
Fig. 10 Matlab/Simulink model of the gyro with control on x axis and neglecting the axes coupling  

For a unit step input of the angular velocity Ω, in radians/s, the signals 
from the excitation axis have the form shown in Fig. 11, while the signals from 
the detection axis have the form shown in Fig. 12 (B=1was considered). 

Analyzing equations (30) observes that there is an upper limit value for B 
that it can be increased so that 04/])/[(2 2

1
22 ≥=+− ωωω Bqnn . The time 

response in equation (29) suggests that τ should be as small as possible, to obtain 
a fastest convergence of e to 0 value. Thus, B should be chosen to have a highest 
value, but lower than the limit imposed by the second equation (30). It follows  

 ,/22 qB nn ωω −≤  (34) 
i.e. 
 .104398.4)/122( 5⋅≅−≤ qB nω  (35)  

To check the relations truthfulness that gives the approximate waveform 
(stationary solution) of the system from the detection y axis, i.e. equations (29), 
(30) and (35), the model in Fig. 10 is simulated for the following step inputs: 1, 
102, 104, 105, 4.4398·105. The resulted characteristics of e are shown in Fig. 13. 
Note that numerical simulations confirm the theory, the damping optimal value of 
the error dynamic equation (28) being given by a value of B close to 4.4398·105. 
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Fig. 11 Time variation of the excitation axis signals for unit step input 

 
Fig. 12 Time variation of the detection axis signals for unit step input 

System response to various step inputs can be viewed in Fig. 14, while 
Fig. 15 shows the gyro response to a repeated step input. 

Can be observed that the structure in this configuration (controlled on x 
axis) responds very well, the obtained characteristics being similar to the 
simplified one. We also notice the absence of stationary error. A zoom of the yf (t) 
characteristic on the stationary portion shows a perfect response of the structure 
without parasitic oscillations. The static characteristic of the new architecture is 
similar to that plotted for the simplified architecture. 
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Fig. 13. Error e for different values of B 

 
Fig. 14 Response to various step inputs 

 
Fig. 15 Response to repeated step input 

5. Conclusions 

The paper presented theoretical and numerical study of a MEMS vibration 
gyro in two configurations: 1) with assumed control on the excitation axis (a 
simplified configuration used to validate the second one); 2) gyro controlled on 
the excitation axis. The model from the detection axis y corresponds to a harmonic 
oscillator performing forced oscillations, with damping, produced by harmonic 
external excitation, the estimation of the angular velocity Ω being performed by 
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synchronous detection demodulation. The first configuration assumes that the 
oscillation in the x axis already equals the theoretical desired one (xd). This 
simplified variant was introduced in order to have a reference for the variant with 
the controlled oscillation in the excitation axis x to validate its modelling. 

Mathematical model of the second studied architecture shown that there is 
an upper limit value for the damping coefficient B of the tracking error e. On the 
other way, the time response given by equation (29) suggested that τ should be as 
small as possible, to obtain a fastest convergence of e to 0 value. Thus, B should 
be chosen to have a highest value, but lower than the limit imposed by the second 
equation (30). Numerical simulations confirmed the modelling, the damping 
optimal value of the error dynamic equation (28) being given by a value of B 
closer to 4.4398·105. Also, simulations validated the mathematical model of the 
second configuration, showing that the obtained characteristics for controlled 
variables and the static characteristic are similar to the simplified configuration. 
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