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AUTOMATIC DESIGN OPTIMIZATION OF
MICROELECTRONIC POWER SWITCHES

G. Nicolae1,2, H. Cucu1, C. Burileanu1, A. Buzo2, C. Feuerbaum2, G. Pelz2

Design optimization plays a crucial role in advanced discrete device de-
sign as the performance requirements are constantly increasing. For power
switches, there is the need of high accuracy of on-state resistance (Ron) sim-
ulation. To achieve a high accuracy, there is the requirement of a complex
3D finite element simulation, which usually takes tens of minutes. Further-
more, preparing the simulation (e.g. model setup, adjusting design parame-
ters, solving numerical issues, etc.) increases the time for obtaining results
additionally. Therefore, designing new devices involves a lot of iterative
time-consuming manual work. In this paper, we introduce an automatic de-
sign optimization methodology for microelectronic power switches that min-
imizes the amount of manual work of engineers and the design time of new
devices. The methodology is structured in 3 blocks: Automated Simulation
Setup, Prediction Metamodel and Design Optimizer. A high accuracy meta-
model (error less than 2%) is obtained using only a couple of hundreds of
3D finite element simulation for training. Then, optimal design parame-
ters of any device using the same package technology, which needs to meet
an expected value of Ron, will be automatically determined in a matter of
seconds.

Keywords: device optimization, design optimization, MOSFET, on-state
resistance, machine learning

1. Introduction and Related Work

Power electronics semiconductors have attracted much more attention
since renewable energies and electric vehicles became high-importance topics
in academia and industry. Required performance specifications of the power
semiconductor devices are constantly increasing, hence the design process of
the new devices is becoming more challenging. Considering that the simulation
flow of a package technology is already available, engineers begin an iterative
design process for multiple devices with distinct performance requirements.
As designers need to find the minimum chip area of the devices to meet the
requirements, the number of Ron simulations becomes very high. The 3D finite
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element simulation time is also high (tens of minutes) because Ron must be ac-
curately determined. The time for obtaining simulation results is furthermore
increased by the necessary steps for preparing the simulation (e.g. model setup,
adjusting design parameters, solving numerical issues, etc.). Therefore, design
optimization is time consuming and requires a lot of effort. Although auto-
matic optimization has been employed in various semiconductor design-related
tasks, to the best of our knowledge, automatic design optimization of chip area
for meeting the Ron specification was not investigated in the literature.

Paper [1] presents an optimization framework for GaN Power device de-
sign which minimizes the energy loss of a boost converter. In order to enable
the optimization the authors have chosen the downhill simplex algorithm for
two main reasons: (i) it does not involve determining Hessian matrices, deriva-
tives, or gradients, and (ii) it requires much fewer computations of the cost
function. Because evaluating the cost function involves running a simulation,
choosing a complex search algorithms would make the entire flow unfeasible
because of the time necessary for the simulation to complete.

In [2] is described a neural network approach for modelling and optimiz-
ing Si-MOSFET manufacturing. The aim is to adapt the design parameters of
the transistor in order to meet the desired figure of merit. The algorithm used
as optimizer is Gradient Descend and Si-MOSFET is modeled using Neural
Networks at technology level (TCAD).

The authors of [3] employ a multi-objective genetic algorithm for opti-
mization while the cost function is evaluated using a behavioral circuit model
of a transistor. Therefore, within thousands of iterations, the genetic algo-
rithm optimizer is able to determine the optimal parameters of the behavioral
circuit model to meet the circuit requirements.

In this paper, we propose a design optimization framework for microelec-
tronic power switches. The first step is to develop an automatic simulation
framework for a specific package. Starting from a set of design parameters,
a machine learning metamodel is trained using simulation data. Then, this
metamodel is used in optimization algorithms for determining the optimal de-
sign parameter values which meet the device required performance. Technical
challenges and proposed solutions are detailed while presenting the optimiza-
tion flow. Using only a couple of hundreds of 3D finite element simulations to
train a high accuracy metamodel (error less than 2%), optimal design parame-
ters of any device using the same package technology, which needs to meet an
expected value of Ron, will be automatically determined in a matter of seconds.

The paper is structured as it follows. Section 2 illustrates an overview of
the optimization flow, while Sections 3–5 detail each functional block. Section
6 presents the results of the optimization applied to two technologies and
Section 7 draws concluding remarks.
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2. Design Optimization Methodology

Figure 1 illustrates the three main blocks of the proposed methodology.
Although each block is detailed in Sections 3–5, a short overview is presented
as it follows.

• Automated Simulation Setup is the first step towards automatic optimiza-
tion in the presented methodology. The main function of this block is
to evaluate the performance of a device design using traditional 3D finite
element simulation. Therefore, the input of this block consists in a design
parameter configuration of a device and as output Ron.

• Prediction Metamodel aims to substitute the Automated Simulation Setup
for complex tasks which require a very large number of simulations. In
the current case, determining Ron using metamodel is million times faster
compared to finite element simulation.

• Design Optimizer has the role of determining the optimal design param-
eters which feature the minimum chip area for the required Ron.

Figure 1. Design optimization Overview

3. Automated Simulation Setup

Developing the Automated Simulation Setup is fundamental for achieving
optimization. On this level, the design parameters of a power MOSFET design
are carefully defined. Therefore, this design will have a set of fixed parameters
such as package type, technology parameters, etc., and another set of variable
parameters which, in the presented case, is detailed in TABLE 1.

An overview of Automated Simulation Setup is illustrated in Figure 2.
The first block has as output a 2D layout based on user input (e.g. chip
dimensions, technology, chip position on lead frame, etc.). The second block
has the role of translating the 2D layout into a 3D structure, using a set of
fixed and variable parameters. A 3D section of the device is illustrated in
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Figure 3. The last block is the 3D finite element simulator which takes the 3D
layout and determines Ron.

The main challenge of this block consists in integrating multiple tools
(e.g. collecting user input, preparing chip design, simulation, etc.) in order to
ensure consistency of the simulation results. This is achieved by developing a
parametric device design and then imposing design rule constraints.

Figure 2. Automated Simulation Setup

Figure 3. Device section on x-axis [4]
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Table 1. Design parameters [5]

No. Parameter name No. Parameter name

1 Clip Width 6 Clip Thickness
2 Clip Length 7 Top Metal 1 Thickness
3 Chip Width 8 Top Metal 2 Thickness
4 Chip Length 9 Top Solder Thickness
5 Chip Thickness 10 Bottom Solder Thickness

4. Prediction Metamodel

The metamodel enables an Ron estimation million times faster than classi-
cal 3D finite element simulation, at the cost of an insignificant loss in accuracy.
Then, when executing a large number of simulations, the overall simulation
times duration becomes trivial. To do this, machine learning techniques are
employed. Therefore, the first requirement in training a prediction metamodel
is building a simulation dataset.

The trade-off between overall simulation time of the dataset and the
coverage of design parameter space needs to be carefully defined, as 3D finite
element simulation is time-consuming (e.g. a single simulation takes at least
20 minutes, on an average computer, for a generic power MOSFET design).
Reducing the number of simulations in the dataset will result in an accuracy
loss of the machine learning metamodel.

In this work, the method used to generate the dataset has two com-
ponents. The first component aims to identify the corners of the multi-
dimensional design parameter space and, therefore, defining the range of values
of Ron. To ensure this type of sampling, we employ a full factorial design of
experiments, illustrated in Figure 4 (a). The second component consists in
uniform sampling, illustrated in Figure 4 (b), and has the purpose of covering
the design parameter space.

After Ron simulation is complete for each entry of the dataset, the next
step is training and evaluation of the metamodel. To ensure a reliable eval-
uation, the simulation dataset is split in two main categories: training data
and evaluation data. Determining the best machine learning algorithm and
its configuration parameters for modelling is also very important and will be
approached in the Results and Use Cases section.

Another challenge in metamodel training is regarding discrete changes
in transistor design. As an example, considering a specific technology, the
number of gate fingers in the transistor design depends on the dimensions
of the chip. This kind of discrete changes should be addressed accordingly, as
they represent discontinuities in the performance curve (Ron) of the parametric
design. This aspect will be covered for Technology B in the Results and Use
Cases section.
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(a) Full factorial (b) Monte Carlo

Figure 4. Sampling Techniques

(1) Linear Regression
Linear regression is the least complex algorithm used for modelling a

result variable as a linear function of multiple input variables. The main ad-
vantages of this algorithm is simplicity and interpretability. Also, by using this
algorithm as a starting point in modelling, we can empirically estimate which
machine leaning algorithm would yield high accuracy and also the complexity
of such a model [6].

(2) Support Vector Machine Regression
Support Vector Machine (SVM) was initially designed for classification

tasks as it aims to find the best separation hyperplane between multiple classes.
SVM regression aims to find the hyperplane which intersects most of the data
points in the training set. Once this hyperplane is determined, the response of
any point in the space can be estimated. An advantage of this method consists
in the possibility of using different kernels to efficiently map the input variable
space [7].

(3) Gaussian Process Regression
The Gaussian process is a probabilistic modelling algorithm. The main

idea of this method is to fit a distribution over a function. An advantage of this
algorithm is the choice of the appropriate covariance functions for the specific
target model. In this work have been used Rational Quadratic and Matern
5/2 covariance functions [8].

(4) Neural Networks
Neural networks are currently one of the most popular machine learning

methods. The main advantage of neural networks is the possibility of fine ad-
justing the model size for achieving the optimal trade-off between complexity,
data volume and accuracy [9]. In this work we evaluated fully connected neural
networks consisting in a single hidden layer.
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5. Design Optimizer

The purpose of this block is to determine the best values of the design
parameters which result in the best Ron. This optimization problem consists
in minimizing a cost function which has two components: Ron deviation and
chip area. There are two important aspects to consider. The first is enforcing
constraints regarding technology limitations and Ron requirement. The second
important aspect is to evaluate possible discontinuities in the Ron curve as
a function of design parameters. From this point of view, if the metamodel
response is continuous, the optimization can be performed by a determinis-
tic algorithm. Otherwise, the optimization algorithm must provide robustness
with respect to discontinuities in the cost function. In this work, two opti-
mization algorithms have been used: interior-point and differential evolution.

The interior-point algorithm is one of the most popular methods for
solving non-linearly constrained optimization problems. This method consists
in finding the solution in an iterative way, starting from an initial point. Each
iteration involves one of the two main types of steps: Newton step, if projected
Hessian is positive definite, or conjugate gradient step, which minimizes a
quadratic approximation in a trust region [10].

Differential evolution is an iterative population-based optimizer which
starts from a set of randomly selected values. Then, it continues by updat-
ing this population based on the scaled difference of two randomly selected
population vectors (perturbation). This algorithm has proven to be highly
effective when approaching a global optimization problem defined with contin-
uous and/or discrete parameters [11].

6. Results and Use Cases

The optimization methodology is applied to two distinct cases of package
technologies. Technology A features a continuous parameterization character-
istic, the performance parameter Ron is a continuous function. Technology B
is characterized by a discontinuous Ron function of design parameters, as the
number of gate fingers depends on the chip size. Those discontinuity points
raise the challenge of optimization. Details regarding application of the opti-
mization methodology for these two technologies are provided in the following
subsections.

6.1. Technology A Devices

Technology A is a generic power MOSFET. This inherits all the char-
acteristics described in Section 3. As a specific feature, this technology has
the property of being parametrized in a continuous matter. In other words,
adjusting the size of each design parameter involves only resizing operations
starting from a design template.

The first step is developing the Automated Simulation Setup as presented
in Section 4. The main challenge is to ensure data consistency while resizing
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the layers and other geometry elements of the transistor design. Then, the
simulation dataset needs to cover sufficient data for training the metamodel.
Considering that enough data is provided to train a good metamodel, the
optimization algorithm will have to be designed or adjusted to handle Ron as a
function of the design parameter space (Table 1). For covering the parameter
space, a number of 1300 of simulations were performed. This data is split
between 70% training, 15% validation and 15% evaluation for neural network
training and for the other machine learning regressors was used a 10 k-fold
validation [5].

The results of the metamodel training are presented in Table 2. The best
results are achieved by neural networks, but the Gaussian process also shows
promising performance. Taking this into account, the neural network-based
metamodel is used further for optimization.

Figure 5 illustrates an optimization example in which the chip area is
minimized while achieving a target Ron. Three starting points are randomly
selected as input for the optimization algorithm and, as it can be observed
in the figure, they all lead to the same optimal point, represented with green.
The yellow starting point was selected to illustrate that even though the initial
set of design parameters does not satisfy technology constraints, the optimizer
is able to find the optimal point. The experiments presented were performed
using the interior-point optimization algorithm.

6.2. Technology B Devices

For Technology B, the variation of the design parameters involves two pro-
cesses: (i) geometry scaling, (ii) adjusting the number of gate fingers. Hence,
the performance result Ron can be considered as a function which is discontin-
uous in the points where the second process is involved. Also, being a more
complex design, the simulation time is longer compared to Technology A. Con-
sidering these aspects, sampling design space parameters needs to capture the
limits of continuity regions of the Ron function. Then, in order to achieve an
accurate metamodel, our proposal is to train separate machine learning models
for each continuous region of Ron.

Table 2. Technology A Metamodel Evaluation

Algorithm Maximum relative error [%]

Neural Networks 0.14
GPR Matern 5/2 0.70
GPR Rational Quadratic 1.13
SVM Cubic Regression 5.58
Linear Regression 74.02



Automatic Design Optimization Of Microelectronic Power Switches 385

Figure 5. Chip Area optimization for Technology A

The experiments for Technology B feature a reduced set of design param-
eters to illustrate the relevant application differences at a minimum simulation
time cost. The simulation dataset is composed of 500 samples where the pa-
rameters 1-5 from Table 1 are varied while the rest are kept constant. In
the presented case, the Ron response space is divided in 2 continuous regions.
Therefore, 100 samples cover a reduced region and the rest of 400 cover the
other region. The results of metamodel training are presented in Table 3. Two
types of approaches have been tried: (i) training a single metamodel (referred
as Single Model) for all design parameter space even though it has a discon-
tinuity hyperplane and (ii) training separate metamodels for each continuous
regions, referred as Model 1 for the small subspace and Model 2 for the largest
subspace. For neural networks, the percentage of data used for training, vali-
dation and test is the same as used for Technology A and 10 k-fold validation
for the rest of the algorithms. We have performed experiments with different
neural network sizes in the same way as presented in [5] and decided that the
hidden layer, for achieving the best results, should be composed of 7 neurons,
according to Figure 6.

The results of metamodel training are presented in Table 3 as the max-
imum relative error expressed in percents. Training a single metamodel for
the entire parameter space does not yield the best results. This fact can be
observed for all evaluated machine learning algorithms. An advantage of mod-
elling separate regions is combining distinct machine learning metamodels of
distinct sub spaces for achieving best prediction results. In this case, Ron as a
function of design parameters is most accurate approximated by GPR Matern
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Table 3. Technology B Metamodel Evaluation [Maximum
relative error %]

Algorithm
Single

metamodel
Combined metamodel
M1 M2 Combined

Neural Networks 1.81 0.59 0.27 0.59
GPR Matern 5/2 2.40 0.50 0.42 0.50
GPR Rational Quadratic 2.91 0.70 0.60 0.70
SVM Cubic Regression 14.21 6.15 4.79 6.15
Linear Regression 82.03 41.23 25.41 41.23

5/2 for M1 (the small part of sub space) and Neural Networks for M2 (the
large part of the sub space).

With the high accuracy metamodel achieved, the next step is the opti-
mization task. As Ron has discontinuity points, using the same optimization
algorithm as for Technology A does not lead to an optimal design. This aspect
is illustrated in Figure 7 where it can be observed that optimal points (col-
ored orange) resulting from the interior-point optimizer depend on the starting
point. This figure was generated by running the optimizer 1000 times, each
time with a different starting point for both the interior-point and differential

Figure 6. Choosing the size for Neural Network
Model
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Figure 7. Chip Area optimization for Technology B

evolution optimizer. The optimal solutions of differential evolution are closer
to the real optimum than the solutions yielded by interior-point optimizer. In
this specific case, the worst-case solution of the interior-point optimizer has a
3.11% larger chip area than the worst-case solution of differential evolution.

7. Conclusion

This paper presents a methodology for metamodel-based optimization
of MOSFET design. To achieve an automatic optimization, we propose a
flow composed of 3 main blocks: Automated Simulation Setup, Prediction
Metamodel and Design Optimizer. Several technical challenges of these blocks
have been discussed together with related solutions. There are four main
aspects when applying the current methodology for a technology:

• Automated Simulation Setup ensures results consistency;
• Simulation dataset covers design parameter space and its corners;
• Machine learning metamodels yield high accuracy;
• Ron function properties leads to optimization algorithm selection;

Two different package technology use cases have been detailed to illus-
trate that the methodology ensures optimization. The prediction metamodels
yield very high accuracy, with the maximum relative error being less than 2%
in both cases. The inference time of the machine learning metamodels is at
most hundreds of µs while 3D finite simulation time is tens of minutes in the



388 G. Nicolae, H. Cucu, C. Burileanu, A. Buzo, C. Feuerbaum, G. Pelz

presented use cases. Metamodels are fitted by performing an initial set of
simulations for metamodel training. Additionally, optimization examples have
been illustrated together with solution details to ensure design optimization
for a required Ron while minimizing the area of the chip. When using meta-
models for optimization, instead of using a classical simulation approach, the
number of cost function evaluations becomes insignificant. The final results
will be double-checked by 3D simulation. As future work, we consider de-
veloping complex metamodels that can predict other performance parameters
and adding device technology parameters. In this way, complete device design
optimization can be achieved automatically, or even technology itself can be
improved through optimization.
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