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A STUDY OF WINDKESSEL MODELS FOR CEREBRAL
HEMODYNAMIC CIRCULATION IN HUMANS

loana-Corina BOGDAN!?, Takashi TARUMI?, Dan O. POPA3

The purpose of this study was: 1) apply different Windkessel models to the
human cerebral circulation, and 2) compare the experimental data. We tested 24
healthy adults between the ages of 22 and 80 years old. The arterial blood pressure
and cerebral blood flow velocity were used as the input and output signals during the
hemodynamic parameter estimation. The arterial pressure waveform was measured
from the common carotid artery while simultaneously recording the cerebral blood
flow velocity from the middle cerebral artery using a transcranial Doppler probe with
a sampling frequency of 1KHz. Different linear models were studied in the parameter
estimation. Results showed that a Box-Jenkins linear model provides good confidence
values, and Windkessel model with four elements is closest to expressing cerebral
hemodynamic circulation.

Keywords: Age, Hemodynamic circulation and Modeling, Linear Models,
Parameter Estimation, Windkessel Model, Peripheral Resistance,
Compliance of Vessels, Input impedance.

1. Introduction

In this paper we study lumped models of cerebral hemodynamic circulation
and compare them against experimental measurements in adult subjects of different
ages. For this study the measurements were collected from 24 subjects. If
sufficiently accurate, models may be able to offer clinical indicators of impaired
blood flow regulation in the brain under pathophysiological conditions such as
aging, neurodegenerative disease, and stroke. Quantitative studies of the
cerebrovascular system are not new, and several categories of models have been
proposed in past studies. The first category contains a distributed model, frequently
used to describe detailed vascular geometry and assuming that the circulatory
system is linear. The distributed model is based on circular cylindrical shapes and
longitudinal impedance [1]. The second category includes transmission line models
or lumped Windkessel (WD) models, where the arterial system considers the mean
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values of the wave shapes of the pressure and flow and assumes the system to be
linear [1]. One of these models is the Broemser model which corresponds to the
WD model with three elements [2]. The Toska model is another mathematical
expression used for the circulatory system modeling that consists of a heart, an
elastic arterial reservoir and two resistive vascular beds disposed in parallel [3].
This model captures cardiovascular changes in humans, beat-to-beat variations and
neglects the pulsatile pattern of the flow [2].

Arterial WD model that is applied for a high-frequency pressure-flow
relation has not been established for the cerebral circulation in human subjects
because of challenges in recording cerebral arterial pressure [4]. Past research
assumes the magnitude and the phase of blood pressure versus cerebral blood
velocity to be a linear transfer function [4]. Olufsen et al. described the blood flow
as being an unsteady effect governed by principles of fluid mechanics [5]. To
characterize the blood flow and find a comprehensive model, they used the Navier-
Stokes equations related to fluid dynamics, as well as the suitable non-Newtonian
relations relevant for the blood [5]. The first and second order lumped models are
obtained by applying Laplace transform to one dimensional axisymmetric Navier-
Stockes equations ([6]), as well as the residue theory and the solutions applied to
Bessel equation.

The research contributions of this paper show that a 4-element WD model
is the best fit to correlate the pressure and flow measurements of the cerebral
circulation. To our knowledge this is the first time such a model was validated for
the cerebral circulation and the key lumped parameters can be identified from the
experimental data. We compared data fitting results of several WD models using
the state-space linear parameter identification algorithms. Since we did not have
prior information with respect to characteristics of the signal noise, we also
established that a Box-Jenkins model fit provides the highest confidence.

The article is organized as follows: in section 2 are presented the material
and methods, in section 3 are provided the notation and a briefly summary about
the 2, 3, and 4-th WD models, as well as the state—space linear models used in the
parameter’s estimation. The identification method will be described in section 4,
where the procedure of parameter estimation, criterion of optimization and transfer
functions describing WD models will be given, followed by experimental results
presented in section 5. Finally, we present the conclusion of this work.

2. Materials and methods

A. Study Participants

This study used data collected from 24 healthy subjects (12 women and 12
men) between ages of 22 and 80 years old. The subjects were recruited from the
Dallas/Fort Worth metropolitan area. Each participant was carefully screened for
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cardiovascular and cerebrovascular disease. Hypertension, diabetes mellitus,
obesity with a BMI greater than 35 Kg/m?, smoking, pregnancy, and presence of
cerebrovascular, metabolic, neurologic, and psychiatric history were excluded from
this study. In addition, patients with inflammatory disease, brain damage or trauma,
hypothyroidism, active alcoholism, or drug consumers were excluded [7]. All
subjects gave their written informed consent approved by the Institutional Review
Boards of the UT Southwestern Medical Center and Texas Health Presbyterian
Hospital of Dallas.

B. Auvailable Data and Acquisition

All data were acquired in an environmentally controlled laboratory. All
subjects fasted for >12 hours and abstained from caffeine, alcohol, and intense
exercise for >24 hours prior to data collection. Subjects rested in the supine position
for >10 minutes before hemodynamic measurements. Brachial cuff blood pressure
was taken intermittently using electroshygmomanometer (Suntech, Morrisville,
NC, USA). Non-invasive beat-by-beat arterial pressure waveform was recorded
from either the common carotid artery (CCA) or the internal carotid artery (ICA)
using applanation tonometry (SphygmoCor 8.0, AtCor Medical, Australia). The
pencil-type pressure sensor was placed directly on the skin where arterial pulse was
felt strongest (see in Fig. 1. the ICA and CCA localizations). Our preliminary
observations suggest that pressure waveforms measured in the CCA were like those
in the ICA (data not shown). Cerebral blood flow velocity (CBFV) was
simultaneously recorded from the middle cerebral artery using transcranial Doppler
(TCD) (Multi-Dop X2, Compumedics/DWL, Singen, Germany). A 2-MHz TCD
probe was placed over the temporal window using a headgrear (Spencer
Technologies, Seattle, WA) and fixated at a constant angle and depth where the
optimal CBFV signal was obtained. The data was collected with a sampling
frequency of 1KHz.

Left and Right Common
Carotid Arteries

Fig. 1. Human carotid artery.

Carotid pressure waveforms recorded by applanation tonometry was
calibrated to brachial blood pressure using a standard procedure described in detail
elsewhere [7]. Briefly, beat-by-beat recording of brachial arterial pressure



112 loana-Corina Bogdan, Takashi Tarumi, Dan O. Popa

waveforms was first calibrated to systolic and diastolic brachial blood pressures
measured by electroshygmomanometer. Brachial mean arterial pressure was
calculated from area under curve of the brachial arterial pressure waveform. Carotid
pressure waveform was then calibrated to brachial mean and diastolic blood
pressures. More details about this procedure can be found in [7].

3. Windkessel Model Description
A. Windkessel circulatory models

The WD model is a lumped-parameter model applied for the hemodynamic
relationship between blood pressure and flow measured through the human vascular
system [5], [9], [11]. In the cardiovascular system, it can be used to calculate stroke
volume based on the aortic pressure and flow relationship. The WD model was
introduced by S. Hales [12-14], formalized mathematically by O. Franck [15-16]
considering models consisting of two elements, resistors, and capacitors. [17]
extended the WD model to three and four elements respectively, based on the
assumption that with the addition of more elements, the model capacities will better
represent the pressure-flow relationship, a relation that can be interpreted as an
input impedance when the system is linear [12] and the high-frequency behavior is
considerably improved [9]. The input impedance provides an accurate description
of the arterial tree and is related to the arterial wall properties and blood properties
but also to the wave propagation [17].

The WD model has traditionally been used to estimate the hemodynamic
load on the heart. The model can be applied to any circulatory system in the human
body, including the brain [15]. It is a simple model derived from the Poinseuille's
Law developed for the hydraulic system, but in the Windkessel case describes the
blood flow through the arteries compared with the fluid flow through pipes [15].
However, this model raises questions on how the arterial tree is properly reflected
during the modeling stage and how to manage the estimated arterial properties [9].
Different Windkessel model will be presented below, and its parameters will be
estimated using linear models, results shown in section 1V,

B. Two-element Windkessel Model

The first WD model has a simple form consisting of two elements (i.e.,
resister and capacitor) in parallel as shown in the electric analog circuit from Fig.
2(a), [15]. The total resistance R depends on the radius of the vessel, and the
compliance of an arterial network C refers to the elasticity of the vessels [17]. R
increases with a smaller radius of the vessels while C increases with the elasticity
of the vessels.
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Fig. 2. WD model with two elements (a), three elements (b) and four elements (c)

The model of the arterial bed is described by a differential equation:

i(t) = % +C —d’;(tf’ (1)

where i(t) and u(t) are the cerebral blood flow velocity, analogue to the current
flowing in the circuit and the carotid blood pressure respectively, which is a time-
varying potential [15]. A more detailed description of Fig. 2. is provided elsewhere
[15]. Applying Laplace transform to equation (1), we get a first order transfer
function of the analogue electric circuit (see equation (2)). This expression will be

used in the parameter estimation, R and C respectively.
R

_Ue _
H(s) = I(s)  RCs+1 )
Based on Fig. (2)(a) the input impedance can be calculated as follows:
R
Z(S) =z C)

There are different types of vascular impedances, but the input impedance
quantifies the total sum of resistance and capacitance based on the hemodynamic
relation between the blood pressure and flow [10].

C. Three-element Windkessel Model

The second form of the WD model consists of a new element that is the
characteristic impedance, r (Fig. 2(b)) [19-22], [33], which provides a liaison
between the left ventricle and its after load [12]. The 3-element WD model can
generate the same pressure wave profiles as in the arterial tree [11] and capture the
dynamics of the cerebral circulation [22]. The model can be described by two
equations resulted from the analog electric circuit (see eqg. (4) and eg. (5)), and
applying Laplace transform to these equations will obtain a transfer function of first
order for the equivalent WD model with three elements (see eq. (6)).

i(t) =222 4 ¢ 2 (4)
u(t) = i(Or + uc(t) (%)

Equation (4) is like equation (1), and the characteristic impedance is
included in equation (5).
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RCrs+(r+R)

H(S) = RCs+1 (6)
The transfer function gives the number of poles and zeros used in the
parameter estimation. The input impedance is given by:

R
Z(s)=r+ 1+RCs

(7)
D. Four-element Windkessel Model

To reduce the errors caused by low frequencies, a WD model was developed
with another element, the blood inertia. The 4-element WD model (Fig.2.(c)) was
further extended by [1], and the lumped-model has the characteristic resistance r
displayed in parallel with the added blood pressure inertia L. Also, the compliance
of vessels C remains in parallel with the peripheral resistance R as in the two and
three elements Windkessel models. The reasons of developing and extending the
WD model were not only to represent a much better pressure flow relationship, but
also to better understand the clinical meanings of the estimated parameters [17].

There are three electrical equations resulting from the analog electric circuit,
including two differential equations (eq. (9) and eq. (10)) and one equation related
to the current that is crossing over the circuit (eq. (8)). After [23], this model
provides a relatively good approximation of the real systems and is a better
predictor than the other two models [24].

u(t) = u (8 +rfi(t) — iy ()] (8)
i(t) =i, () + 22 )

uc(t) 1 1.

D = ——u (8) +2i(1) (10)

The transfer function of the WD model is given in equation (11), in which
one can be observed that the order is increased becoming a second order transfer
function described by two poles at the denominator and two zeros to the numerator.
This information will be helpful in the parameter identification and in the selection

of the method and tools of parameter estimation.
RCLrs?®+L(r+R)s+Rr

H(s) = —= (11)
RCLs?+(L+RCr)s+r
The input impedance of the electric analog circuit is given by the
following mathematical expression:
Z(s) = : (12)

1+(L/r)s  1+RCs
It should be observed that at low frequencies closer to zero Hz, the input impedance
will be near the value of the peripheral resistance, the value corresponding to the
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measured mean input flow and pressure rapport. At high frequencies, the input
impedance is equal to the characteristic impedance [17].

4. System ldentification and Linear Models

The goal of the System Identification is to model the physical system and
its dynamics by mathematical expressions based on experimental data that are
related to the inputs and outputs of the system. This discipline is extensively used
in various applications, including hydrology and medicine [26]. In most cases the
system behavior is less known, or the important parameters have limited
information, so that the system identification leaves from different types of
identification: white box, grey box, or black box. In the present work, the parameter
estimation of the WD model uses the black box identification based on linear
models: the autoregressive model, the autoregressive moving average model, the
output error, and the Box Jenkins method.

The transfer function for each WD model, described by equations (2), (6)
and (11) respectively will be associated with a corresponding linear model, having
the same degree (equations of first or second order). Knowing the order of the
transfer function, based on the input and output measurements we obtain a time
domain transfer function with corresponding poles and zeros, which will be
converted in frequency domain (s-domain), a transfer function identified with the
WD transfer functions. This step will be described in section 5.

A. Autoregressive Model (ARX)

The structure of the ARX Model is given by equation (13). This model is used
for a system with an input excitation [27]. In our study, it is represented by blood
pressure (BP) measured at the carotid level and is used for its simple estimation
algorithm [27], [28].

y(®) = 28 u(t —n) + 5=e(t) (13)
where A(q) =1+ a;q7 +... +a,,q ™ and B(q) = by + byq~*+... +b,,q~ ™
are the polynomials of the ARX model, with a; and b; constant coefficients that are
estimated, and na and nb the degrees of the two polynomials, representing the
number of poles and zeros respectively, for the transfer function B(q)/A(q). The
input (arterial blood pressure), the output (cerebral blood flow velocity (CBFV)),
and the white noise of the system are represented by u(t), y(t) and e(t), and ny is
the backward shift operator usually named delay. Equation (13) translates a sum of
transfer functions, the first one generated by the input of the system, and the second
one generated by the noise model.
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B. Autoregressive Moving Average Models (ARMAX)

The ARMAX model brings the polynomial C(q) as an addition to the
previous model. By this polynomial, the transfer function generated by the white
noise provides a better flexibility to control the disturbance of the system [27].

(o
y(©) = 2 Bu(t —n) + 2 8e(®) (14)
where C(q) =1+ ¢;q 1 +... +c,.q ™is the noise polynomial term, and ¢; are
constant coefficients and nc represents the degree of the polynomial.

C. Output Error Model (OE)

A third linear model used in parameter estimation is the OE model (see eq.
(14)), where the only uncertainty is the additive white noise e(t) [27], a noise
generated by the data acquisition procedure.

y(®) = 28 u(t —n) +e(®) (15)

where B(q) keeps the same expression as the ARX model, and F(q) =1+
flq‘1+...+fnfq‘”fhas a polynomial degree equal to nf, and f; are constant
coefficients providing the number of zeros of the transfer function B(q)/F(q).

D. Box-Jenkins Model (BJ)

The BJ model includes in its structure the autoregressive, the moving
average and the seasonal moving average terms, [29]. The model provides a good
flexibility for the transfer function generated by the noise signal, with free
polynomials for the numerator and denominator [27].

C
y(©) = Z8u(t = m) + 5 Be(®) (16)
where B(q), F(q), C(q) are the same polynomials described previously. The noise
denominator transfer function is expressed as: D(q) = 1 + dyq~*+... +d,4q7 "%,
with d; constant coefficients and n, as the degree of the polynomial.

5. Parameter Estimation

There are different techniques applied in the parameter identification using
methods and procedures based on the available data. For input/output data
processing, in time or at every moment of time, either a non-recursive or recursive
technique of identification can be selected [28]. In this work the parameter
identification is obtained using measured data with a sampling period of 1kHz and
using a non-recursive technique based on transfer functions.

Previous works in WD model estimation used an automatic procedure for
the parameter identification and adopted the Powell algorithm for the optimization
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problem. [20] estimates the nonlinear WD model with 3 elements by adding a
pressure-dependent compliance; the idea is to separate the linear from the nonlinear
part and formulate equations dependent only on resistances even in nonlinear case.
In [31] and [11], the lumped model is studied using Matlab computing tools and
Simulink environment, which uses the state-space matrices in order to obtain the
numerical values of the unknown parameters.

A. Tools and Procedures in Parameter Identification

The strategy of choosing a method follows the theory of WD model if the
circulatory system has a linear form. In this case, our model for the pressure-flow
relationship will take the form of an ARX, ARMAX, OE or BJ linear model
respectively. One example of corresponding profiles to the blood pressure and the
blood flow velocity are shown in Fig. 3. The measurements correspond to subject
905, (a female of 32 years old). Using the transfer functions provided by the analog
electric circuit for each WD model, we begin the parameter estimation. Looking at
eq. (2), which corresponds to the first form of the WD model, the transfer function
has a single pole and no zeros. In this case, its transfer function will have only one
pole n, = 1and n;, = 1is not zero because n,;, has the ordersB(q) + 1. Resuming
for the other WD models, where there are second order transfer functions, for the
model three elements n, = 2, and n;, = 2 respectively, and for the model with four
elements n;,, = 2, and n;, = 3 respectively.
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Fig. 3. Comparison of WD model with 2-3-4th elements (Young Subject, female of 32 years old).

The identification of the transfer functions resulted from the available input-
output data is obtained using the Ident toolbox provided by MATLAB, [32].
Few steps are needed in the process of obtaining the proper form of the
transfer function. lIdent Toolbox, after declaring the type of linear model, number
of poles and zeros, and the transport delay, will provide a discrete transfer function.



118 loana-Corina Bogdan, Takashi Tarumi, Dan O. Popa

Knowing that the input-output data are continuous signals, the discrete transfer
function will be converted using the d2c Matlab function into a continuous transfer
function. By testing different transport delays, was observed that the number of
zeros of the transfer function will be increased. However, because these zeros are
at the origin of the stability plane and do not provide pertinent information, they
will be neglected. The optimization criterion used in the Ident toolbox will be
described in the next part, followed by the fitting data related to each WD model.

B. Optimization Criterion

Matlab's Ident displays the simulated or predicted model output for different
domains of input-output validation data (frequency domain, time domain or
frequency-response data) [23]. In this case, we are interested in visualizing the time-
domain validation data, which is related to the BestFit and find the percentage of
fitting between the real measurement and the estimation. The BestFit represents the
optimization criterion for the pressure-flow relation and is calculated using the
following mathematical expression:

BestFit = (1 - %) x 100 (17)
where y represents the measured output, ¥ the simulated or predicted output, and
finallyyis the mean of y. The BestFit interpretation consider 0% as having no fit
(¥ =), and 100% as being a perfect fit between the measurement and the
estimation. Its value corresponds to a Confidence interval of the output range

between 0-100 % probability value that is the output of the system [32].

C. Windkessel Models and Data Fitting

Once all steps mentioned in part B of this section are followed, the
continuous transfer functions for the three different WD models will have
expressions that can be associated with equations (18)-(20). By simple
mathematical computing the peripheral resistance, the resistance to blood flow, the
compliance of vessels and the blood inertia can be deducted from the estimated
coefficients of the denominator and numerator of the transfer functions.

_ R by
H(S) - SRC+1 - Sf1+f0 (18)

with C = 1/bjand R = by/f,, Where by, fopand f;are the coefficients of the
denominator and numerator of H(s), the transfer function corresponding to the WD
model with two elements.

H(s) =

SRCr+(r+R) __ sby+bg
SRC+1  sfi+fo

(19)
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with r =b,, C =1/fy,R and R = (by/f,) — by wWhere by, by, foand f;are the
coefficients of the denominator and numerator of H(s), the transfer function
corresponding to the WD model with three elements.

__ S2RCLr+sL(R+r)+Rr _ s?by+sbi+by
H(S) - S2RCL+s(L+RCT)+T1 - S2fo+sfi+fo (20)

With 7 =b,/f5, Lip, = (fi £fi> —41r)/2, Ci2=1/RiL,, and Ry, = (by/
L,,) —r, where by, by, b, fo, fiand f,are the coefficients of the denominator and
numerator of H(s), the transfer function corresponding to the WD model with four
elements. As it can be observed, there are two different values for the resistance to
the blood flow, compliance of blood vessels and blood flow inertia. This is due to
a second order equation we have for the numerator of the transfer function.
However, in the results only the positive values of these three parameters will be
presented for real physiological considerations.

6. Experimental Results

Using the input-output measurements from 24 subjects, the four linear
estimation models (i.e., ARX, ARMAX, BJ) for each form of WD model were
studied. Three different data set measurements were considered in this study. First,
we used the first set of measurements to check the behavior of the linear models
and found that delay of 36 ms between changes in blood pressure and blood flow
was needed for an accurate estimation of the transfer function coefficients. The
meaning of this delay can be interpreted as the time it takes for the blood pressure
to travel from the carotid artery to the middle cerebral artery where blood flow is
measured. The BJ model provided the best confidence values.

The second set of data was obtained from young subjects and strengthen the
idea that BJ model is well fitted as linear model in parameter identification, more
than that the linear model shown good confidence values for the 4-WD model. The
confidence values for the three different forms of WD model are given in the
Appendix, in Table 7. The highest confidence value is obtained in the BJ model
applied for 4-WD model being equal to 82.52% (subject 905, woman of 33 years
old), and a n;, delay of 24 ms. In the 3 WD model, BJ model provides a confidence
value of 78.36% (subject 877, man of 38 years old), and a n;, delay of 16 ms. The
confidence value of 3-WD is with almost 5% smaller than the 4-WD model. Based
on the results from the two set of data, we proposed to study in the same conditions
also old subjects and check if there is any difference between confidences values.

The third set of data was obtained from the same young subjects and from
old sub There is a small difference between BJ and OE linear models. In the
Appendix are shown the confidence values for all forms of WD model and different
linear models for old and young subjects (Tab. 8, Tab. 9). jects this time. Some of
the curves fitting of the WD model with two, three and four elements respectively
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for young and old subjects (the young subject 857, a woman of 23 years old and an
old subject 1057, a man of 72 years old), based on the BJ model can be seen in Fig.
4 and Fig. 5 respectively. It is readily apparent that 2-WD model is not the best
choice following the red curve from both figures. The corresponding confidence
values for each subject and in function of the WD model forms are given in Tab. 1

and Tab. 2 respectively.

CONFIDENCE FOR BJ LINEAR MODEL
RESULTS FOR WD MODEL, 3RD SET OF
MEASUREMENTS, YOUNG SUBJECTS.

Table 1, Table 2
CONFIDENCE FOR BJ LINEAR MODEL
Results obtained for WD model, 3rd set
OF MEASUREMENTS, OLD SUBJECTS.

Subjects/ 4-WD 3-WD 2-WD
Gender/Age [%] [%] [%]
824/M/24 82.3 78.34 57.69
839/F/22 77.85 74.13 47.68
849/F/23 79.03 73.42 54.33
873/M/22 78.84 75.63 64.91
877/M/38 74.42 71.49 58.6
857/F/23 83.84 77.06 48.85
869/F/34 79.42 77.15 44.99
882/M/26 68.15 61.76 37.52
901/M/38 76.85 74.69 64.25
905/F/32 79.18 78.36 63.29
909/F/32 77.74 76.86 53.86
913/M/24 62.8 60.3 50.98

Subjects/ 4-WD 3-WD 2-WD

Gender/Age [%] [%] [%]
546/M/70 79.62 79.04 41.00
577/M/69 81.69 78.50 58.37
585/M/70 82.07 79.60 62.78
1001/M/70 81.44 78.58 51.91

1003/F/69 77.30 72.94 47.29
1008/F/69 74.59 72.85 42.05
1021/M/71 73.84 73.08 34.77
1022/F/65 78.94 76.42 48.70

1033/F/73 72.84 72.67 64.74
1057/M/72 83.07 78.68 40.05
1059/F/80 82.83 74.39 51.19
1065/F/69 79.10 79.10 55.95

Measured and simulated Box Jenkins linear model

Measured and simulated Box Jenkins linear model

T
e

BJ 3 77.06% — B 4E 83.84% —— 857 /FI23

Flow (mi/ms)

Pressure

Fig. 4. Comparison of WD with 2-3-4th
elements. Data from a representative young
subject.

T
[——izE 40.05% —— b} 3E 78.68% —— B} 4E 83.01% —— 105TIMIT2

ressure Flow (mi/ms)

Fig. 5. Comparison of WD with 2-3-4th
elements. Data from a representative old
subject.

Because 4-WD model provided the highest confidence values than 2-WD and 3-
WD model respectively, we proceed to the next step of the study, to the parameter
identification. In this case, based on the results obtained in the first and second set
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of data, and knowing that BJ linear model describes a complete model with noise
properties modeled independent from the system dynamics [35], we decided to
estimate the numerical values of the WD model following the BJ results.

In this work the noise model was not considered in the BJ model. Thus, in
Tab. 3 and Tab. 4 are given the numerical values for all four parameters based on
the BJ linear model. The identified parameters keep the same range of values, (the
resistance to the blood and the compliance of vessels have values multiple of
103and 10~ 3respectively).

The highest confidence value for young subjects was about 84%, and 83%
for old subjects which are good fits because the noise of the measurements was not
considered, modeled, or filtered. Even in some subjects’ case the 3-WD model
shows close confidence values to that one with four elements; however, the
extended last model provided overall better results. The numerical values obtained
for 2-WD and 3-WD are comparable with results found in [5].

Table 3, Table 4

PARAMETERS FOR BJ MODEL, 4-WD PARAMETERS FOR BJ MODEL, 4-WD
Results: 4-WD, 3rd set of measurements, Results: 4-WD, 3rd set of measurements,
young subjects. old subjects.
R .
Subjects/ r L [mm C Subjects/ r . R C
Gender/  [mm -Hg [l/mm Gender/Age  [mm [mm - [mm  [l/mm
Age Hg MM -Hg] Hg g “Hg “Hg]
-1 ’ Hzg -l -s] 103 St 5] St -10°
5] s -103 -] s]
824/M/24  1.61 0.04 0.87 27.4 S46/M/70 L84 0.02 élfo 132
830/F/22  2.86 0.14 028 248 577/M/69 1.54 0.03 1.02 28.1
B40IF/23 278 003 203 143 585/M/70 1.70 0.03 1.53 20'2
873IM/22  2.65 0.05 0.96 18.8 L00L/M/T0 1'62 0'03 0'95 30'3
877/M/38  3.19 0.09 0.72 155 003/F/60 '62 0'03 0'9 30'3
857/F/23  3.83 0.06 1.43 12 1003/F L : 95 :
1022/F/65  1.83 0.04 1.08 24.3
869/F/34  2.46 0.06 0.95 18.7 1033F73 158 001 00 131
882/M/26 3.5 007 08 176 1057/M/72 2.05 0.08 0.41 32.1
901/M/38  1.88 0.03 1.66 18.2 ’ : : '
1059/F/80  2.87 0.07 0.70 21.2
905/F/32 153 0.07 0.3 43.8 L065/E/ES 211 002 5 00 6
909/F/32 175 0.04 1.18 19.8 i i i
913/M/24  1.49 0.03 1.04 28.8

7. Conclusion and Future Works

We studied WD models of human cerebral circulation with the increasing
number of elements. Based on an assumption of the linear systems, we estimated
the Windkessel parameters using the ARX model, ARMAX model, the OE model
and BJ model respectively. The hemodynamic data were collected from a group of
young adults, and into a next step from old subjects. The third data set allowed us
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to conclude that the circulatory hemodynamic can be modeled and estimated using
a 4-element model for both young and old subjects. The identified parameters of
the model may provide physiological interpretation of effects of aging of the
cerebral circulation.
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Table 7

CONFIDENCE FOR LINEAR MODELS: WD MODEL USING THE 2ND SET OF MEASUREMENTS.
Subjects/ 4WD [%] 3WD [%] 2WD [%]

Gender/

Age ARX ARMAX OE BJ ARX ARMAX OE BJ ARX ARMAX OE BJ
24/M/24 72.80 72.80 82.30 82.30 72.85 77.06 77.06 77.06 16.11 48.85 48.85 48.85
839/F/22 74.32 76.17 76.17 78.84 73.59 73.59 75.63 75.63 43.72 43.72 64.91 64.91
849/F/23 72.10 72.1 78.62 79.42 72.21 72.21 77.47 77.47 17.33 44.99 44.99 44.99
857/F/23 50.51 50.51 68.15 68.15 50.44 51.66 61.76 61.76 21.42 37.52 37.52 37.52
73IM/I22 69.1 76.89 76.89 76.89 68.96 74.73 74.73 74.73 59.53 59.53 64.31 64.31
77/M/38 72.64 79.18 79.18 79.18 72.61 78.36 78.36 78.36 51.12 51.12 63.29 63.29
82/M/26 -40 -40 61.57 61.57 33.96 33.96 21.35 66.65 1.08 19.77 19.77 19.77
01/M/38 64.33 77.74 77.74 77.47 64.39 64.39 76.86 76.86 38.54 38.86 53.86 53.86
905/F/32 58.42 62.80 61.01 62.8 57.72 57.72 60.30 60.30 44.33 44.33 50.98 50.98
906/F/33 72.91 72.91 82.52 82.52 72.68 72.68 78.34 78.34 40.30 57.11 57.69 57.69
909/F/32 67.13 67.13 80.99 80.98 67.36 67.36 74.13 74.13 26.74 26.75 47.68 47.68
913/M/24 65.15 65.15 77.74 79.12 65.18 73.42 73.42 73.42 34.11 54.11 54.11 54.11

Table 8

CONFIDENCE FOR LINEAR MODELS: WD MODEL USING THE 3RD SET OF MEASUREMENTS,

YOUNG SUBJECTS.
Subjects/ 4WD [%] 3WD [%] 2WD [%]
Gender/ ARX ARMAX OE BJ ARX ARMAX OE BJ ARX ARMAX OE BJ

Age
819/F/35 69.31 69.31 81.27 81.27 69.31 69.31 79.91 79.91 17.59 17.59 47.83 47.83
824/M/24 72.91 72.91 82.3 82.3 72.68 72.68 78.34 78.34 40.03 40.04 57.69 57.69
839/F/22 67.13 67.13 77.85 77.85 67.36 67.36 74.13 74.13 26.74 26.74 47.68 47.68
849/F/23 65.15 65.15 79.03 79.03 65.18 65.38 73.42 73.42 34.11 34.11 54.33 54.33
873/M/22 72.80 72.8 83.84 83.84 72.85 72.85 77.06 77.06 16.11 16.12 48.85 48.85
877/M/38 67.96 67.96 74.42 74.42 67.73 67.73 71.49 71.49 46.80 46.8 58.6 58.6
857/FI23 74.22 74.22 78.84 78.84 73.59 73.59 75.63 75.63 43.72 43.72 64.91 64.91
869/F/34 72.10 72.1 79.42 79.42 72.21 72.21 77.15 77.15 17.33 17.33 44.99 44.99
882/M/26 50.51 50.51 68.15 68.15 50.44 50.44 61.76 61.76 21.42 21.42 37.52 37.52
901/M/38 69.05 69.05 76.85 76.85 68.91 68.91 74.69 74.69 54.67 54.67 64.25 64.25
905/F/32 72.64 72.64 79.18 79.18 72.61 72.61 79.18 78.36 51.12 51.12 63.29 63.29
906/F/33 33.95 33.95 68.9 68.9 33.90 33.9 66.65 66.65 1.08 1.08 19.77 19.77
909/F/32 64.33 64.33 77.74 77.74 64.39 64.39 76.86 76.86 38.54 38.55 53.86 53.86
913/M/24 58.39 58.39 62.8 62.8 57.72 57.72 60.3 60.3 44.33 44.33 50.98 50.98

Table 9
Confidence for Linear Models: WD model using the 3rd set of measurements, Old Subjects.
Subjects/ 4WD [%] 3WD [%] 2WD [%]
Gender/ Age
ARX ARMAX OE BJ ARX ARMAX OE BJ ARX ARMAX OE BJ
546/M/70 58.35 58.28 79.62 79.62 58.28 58.28 79.04 79.04 21.43 21.43 40.99 41
577/M/69 71.89 81.55 81.69 81.69 76.3 71.92 61.08 78.5 36.67 58.34 53.37 58.37
585/M/70 72.45 79.41 82.07 82.07 72.66 72.66 79.6 79.6 45.57 45.57 62.78 62.78
1001/M/70 71.34 71.34 81.44 78.92 71.69 71.69 78.58 78.58 23.47 23.47 51.91 51.91
1003/F/69 62.92 62.92 77.3 77.3 63.06 65.06 72.94 72.94 25.83 25.83 47.29 47.29
1022/F/65 53.3 53.3 74.59 74.59 53.56 53.56 72.85 72.85 24.97 21.71 42.05 42.05
1033/F/73 56.96 56.96 73.84 73.84 56.98 56.98 73.08 73.08 12.55 12.55 34.77 34.77
1057/M/72 62.8 62.8 78.94 78.94 62.92 62.92 76.42 76.42 26.13 26.13 48.7 48.7
1059/F/80 66.45 66.46 72.84 72.84 66.26 72.67 72.67 72.67 60.68 60.68 64.74 64.74
1065/F/69 70.81 70.81 83.07 83.07 70.87 70.81 78.68 78.68 13.56 13.56 40.04 40.05




