
U.P.B. Sci. Bull., Series C, Vol. 72, Iss. 4, 2010 ISSN 1454-234x

BRIDGING THE GAP BETWEEN BUSINESS EXPERTS AND
SOFTWARE AGENTS: BPMN TO AUML

TRANSFORMATION

Andreea URZICĂ1, Claudiu TĂNASE2, Adina Magda FLOREA3

La momentul actual există o barieră între sfera de business şi cea a
dezvoltatorilor de agenţi software. Pentru a crea o legatură între cele două lumi,
trebuie găsite metode pentru simplificarea procesului de transfer al cunoştinţelor
între rolurile implicate. Acest articol propune o traducere din limbajul familiar
analiştilor de business pentru design-ul modelului de business într-unul după care
se pot ghida dezvoltatorii de software pentru implementarea proceselor. Articolul
conţine prezentarea unei metode originale pentru maparea proceselor BPMN
(Business Process Modeling Notation) în specificaţii AUML (Agent UML), precum
şi o analiză a transformărilor existente între diferite limbaje de modelare sau
specificare.

Currently, there is a gap between the business area and multi-agent oriented
software development. In order to create a bridge between the two worlds, we saw
the necessity of simplifying the knowledge transfer between the roles involved. This
paper proposes a translation between the language familiar to the business analysts
when designing a business model and the one easily understood by the developers
when implementing a process. It consists both of an original method for mapping
BPMN (Business Process Modeling Notation) processes to AUML (Agent UML)
agent specifications and an analysis on various transformations between different
modeling and specification languages, as found in research papers and implemented
mapping tools.

Keywords: business processes, agents, BPMN, AUML, interoperability

1. Introduction

The Service-Oriented Architecture Concept is very popular these days.
The promises and benefits are well known and the technology mastery of service
abstraction is already available. It is also well known that a successful Service-
Oriented Architecture (SOA henceforward) depends on business vision,
methodology, reuse initiative and an organizational structure. Business analysts

1 PhD student, Faculty of Automatic and Computers, University POLITEHNICA of Bucharest,
Romania, e-mail: andreea.urzica@cs.pub.ro
2 Eng., Faculty of Automatic and Computers, University POLITEHNICA of Bucharest, Romania,
e-mail, claudiutanase@gmail.com
3 Prof., Faculty of Automatic and Computers, University POLITEHNICA of Bucharest, Romania

50 Andreea Urzică, Claudiu Tănase, Adina Magda Florea

are those able to use business process models as the link between business
architecture and IT design, specifically SOA. They establish the optimal flow for
business processes and also the capabilities of the roles involved, the resulted
design being called a business model.

This paper focuses on the interoperability concept, a defining requirement
in the Service-Oriented Architecture context, as the need for a unified way of
representing and transferring information is present even during the development
phase. The article does not provide a unified language, but facilitates the
translation between existing ones. Along with similar translation efforts [1], we
hope to achieve interoperability and automation in the development process. This
can provide a link between the high-level concepts of the business and the
software implementation by means of translation tools and automated processes
that may significantly reduce development time and be used by a larger
community (the nature of Business Process Management dictates that its
representation must be accessible to non-technical experts). Last but not least,
shortening the distance between the idea, concept or basic design of any solution
(particularly a business process) and its implementation is part of the natural
tendency towards a more user-friendly software development.

While the most widely used standard for modelling business process is
BPMN (Business Process Modeling Notation), a promising approach for
executing them is the use of software agents. Autonomous agents offer the
coordination framework and advanced technological means that make them very
suitable to be used in the development of complex applications, such as business
processes.

The aim of this paper is twofold: to present an analysis of existing efforts
to map different modeling specification and implementation languages related to
Business Processes (BP) and agents, and to investigate the possibilities of
automatic transformation between business process diagrams and agent
interaction diagrams by proposing a mapping of BPMN [2] processes to AUML
agent specifications [3]. We consider that this mapping is needed at the moment
as there certainly is an important gap between the business experts and multi-
agent oriented software development. Taking the necessary steps towards an
automatic process would help simplifying the transfer of knowledge between the
different roles involved in the cycle.

The paper is structured as follows. Section 2 argues the perspective of
using software agents in executing business processes. In Section 3 we analyze
the existing transformations between various representation and implementation
languages of business processes and agents and we propose a new one. In order to
define the context, Section 4 and 5 present the BPMN and AUML languages. The
actual mapping between the two languages is presented in Section 6. For a better

Bridging the gap between business experts and software agents: BPMN to AUML … 51

understanding, in Section 7 we provide a simple example that illustrates the
mapping. The last section draws on conclusions and presents future work.

2. Towards executing business processes using agents

Currently there is a process oriented view of Web Services, as the business
modelling standards extend the Web Services standards. A business process is a
collection of interconnected activities following a business logic in order to solve
a problem for a client or for a market. The business logic is especially focused on
how the tasks are placed in time and space, and not on the resulting product.

Agents turn out to be very appropriate in executing business processes as
they are able, on behalf of their users, to get involved in message exchange,
auctions, negotiations, and to use services.

In 1997, Wooldridge gave the following definition of an agent: An agent is
an encapsulated computer system that is situated in some environment and that is
capable of flexible, autonomous action in that environment in order to meet its
design objectives [4]. The definition has been reshaped many times; a more
functional approach defines an agent as being a software program that
independently performs its task on behalf of its user. [5]

Many problems involve the use of multiple agents. An agent-oriented view
of the world implies focusing on the interaction between the agents. The agents
try to achieve their individual objectives or to manage the dependencies that ensue
from being situated in a common environment [6]. A community of agents that
communicate together, making decisions in order to accomplish their goals is
referred to as a multi-agent system. Also, agents can be reactive or proactive.
They are reactive in that they respond to other agents. They are proactive in that
they work to accomplish a goal. [5]

Technologically speaking, Agent Oriented Programming (AOP) may be
seen as a specialization of the Object Oriented Programming (OOP) paradigm [7].
Unified Modelling Language (UML) is gaining more and more acceptance in
representing technological artifacts in Object Oriented Programming, and it has
became the de-facto standard for analysis and design in this domain. The agents
are seen as being the next step beyond objects and that leads to the necessity in
exploring the UML extensions in order represent the agent specific features.

3. Current efforts and mapping analysis

Previous efforts concerning the design of a multi-agent framework from
the vantage point of the business user, and a mapping from the Business Process
Modeling Notation, a graphical language used to represent business processes, to
agent concepts have been developed by [1].

52 Andreea Urzică, Claudiu Tănase, Adina Magda Florea

The authors of the cited paper have chosen to use agents following the
BDI paradigm, as they consider this type of agents to be the best suited in order to
capture the whole functionality expressed with BPMN. In [1] a set of rules is
defined showing how business processes can be modeled in terms of BDI-type
agents. The first step of the algorithm is to simplify the BPMN model by putting
away all the information concerning positioning. The result is a graph-shaped
structure with various types of edges and vertices that must comply with a series
of properties in order to be a correct Business Process Diagram (BPD). The
authors define a certain formalism to describe a BPD in terms of graphs and graph
properties. In addition, they propose the usage of syntactical and semantically
verification, combined with a normalization of BPDs.

By contrast, we consider that it would be more appropriate to use general
purpose agents as the target of the transformation. We think that considering only
a particular species of agents, namely BDI agents, may bring a series of
limitations to the use cases of business processes that could be implemented.
Additionally, the agents described in [1] are not quite typical agents, but rather a
certain type adapted to the constraints imposed by the transformation algorithm.

By using general purpose agents, the transformation becomes applicable
and useful to a larger number of use cases. The agents implemented in JADE for
example, use a very general model, based on behaviors, that can be easily
specialized to realize both reactive and BDI architectures [8]. Agent interactions
are best represented by using a designated graphical language, named AgentUML.
All a developer has to do in order to implement the agents described with AUML
is to follow the interaction protocols clearly represented in the diagram.
Moreover, such an approach allows the simple integration of external software
into one of the agent tasks. The implementation of the JessBehaviour, for
example, allows the use of JESS [9] as the agent-reasoning engine. [10]

Fig. 1 – Inter-languages translation

Bridging the gap between business experts and software agents: BPMN to AUML … 53

Fig. 1 presents a synopsis of the various transformations between different
modeling and specification languages, as found in research papers and
implemented mapping tools. The number of transformations points out that these
languages are strongly connected and have a similar scope of expression, namely
the modeling of various facets for designing and implementing business ideas.
The numbered links (arrows) in the Fig. 1 are shortly discussed in what follows.

1. – The BPMN to BPEL (Business Process Execution Language [11])
mapping makes the subject of many papers, starting with a translation informally
sketched by [12], a discuss on how conceptual mismatch between business analyst
and technical analyst process models can be identified, by [13], a technique that
proposes to overcome the limitations on the structure of the source model,
especially with respect to cycles by [14] to an automatic translation from BPMN
to BPEL [15]. Other papers presenting techniques for generating BPEL code from
process models are [16], [17] which, in addition, proposes a solution for the
round-trip engineering and a case-study by [18] which is targeting four evaluation
criteria: completeness, correctness, readability and reversibility.

2. – The XMI (XML Metadata Interchange) representation of a UML
diagram is obtained using UML 2.0 tools such as Altova UModel [19].

3. – A very interesting tool is auml2bpel [20] based on [21]. This tool
takes as input a XMI file (resulted from a sequence diagram) and returns: a XML
file, a .txt file containing the AUML textual notation for the provided sequence
diagram, a .fol file containing ProLog rules that can be used in implementing
agents in JADE (Java Agent DEvelopment Framework [22]), a .wsdl and a BPEL
file – the primary purpose of the application.

4. – BPMN to Agents [1] choosing as target of their transformation the
BDI agents.

5. – Providing a mapping between BPMN and AUML is the purpose of
this paper.

6. – A paper that bridges the gap between design and implementation is
[23].

4. Business Process Modelling Notation

BPMN consists of a set of graphical elements such as shapes, icons and
line styles representing tasks, subprocesses or events, which permit the easy
development of simple diagrams that will look familiar to most business analysts.
Diagrams are essentially flowcharts. Process participants are defined by pools,
which may be subdivided into swimlanes in order to separate different processes.
The basic units of a process are tasks, subprocesses, and events. Subprocesses and
tasks are represented by rectangles, events by circles. Various icons within those
shapes indicate the particular type of event or subprocess. Solid lines called

54 Andreea Urzică, Claudiu Tănase, Adina Magda Florea

sequence flows interconnect the tasks, subprocesses, and events within a pool. In
addition, BPMN offers a diamond Gateway shape that, depending on its icon, can
be used for branching, splits, conditional splits, merges, or synchronizing joins.

In addition to sequence flows within a pool, BPMN shows message flows
exchanged between pools. These indicate the signals the process engine uses to
communicate with invoked services and partner processes. They are optional in
the BPMN diagram, but are extremely useful for translating the diagram into real-
world executable solutions.

A very important component introduced by the BPMN standard to be used
when designing a diagram are the events. Events are actions triggered by various
signals, such as receipt of a message, expiration of a timer, detection of an error,
etc. Each event has a trigger and a resulting action. The various types of triggers
and resulting actions are indicated by the placement of the event in the diagram
along with its internal icon. As a general rule, a sequence flow coming into the
event icon suggests that the process issues the event, while an outgoing sequence
flow shows that the process is triggered by the event.

5. Agent Unified Modeling Language

It has been recognized that the use of software agents is unlikely to gain
wide acceptance in industry unless it relates to de facto standards (object-oriented
software development) and supports the development environment throughout the
full system lifecycle. Therefore, an extension of the Unified Modeling language
(UML) has been proposed. The proposal is a result of the cooperation between the
Foundation of Intelligent Physical Agents (FIPA) and the Object Management
Group (OMG). The AUML notation also reflects the recommendations included
by the GAIA methodology [24] concerning the high-level summary of a protocol
as an atomic unit. [8]

5.1 General description

Bauer et. al. [25] argue that UML is sometimes insufficient for modeling
agents and agent-based systems. Basically, this is due to two reasons: Firstly,
compared to objects, agents are active because they can take the initiative and
have control over whether and how they process external requests. Secondly,
agents do not only act in isolation but in cooperation or coordination with other
agents. In a second paper, [8], a subset of an agent-based UML extension for the
specification of agent interaction protocols (AIP) is described. The definition of
an agent interaction protocol (AIP) describes a communication pattern and a
semantics that is consistent with the communicative acts within a communication
pattern. A communication pattern should have an allowed sequence of messages
between agents having different roles and constraints on the content of the
messages [8]. Messages play a central role in the overall design of a multi-agent

Bridging the gap between business experts and software agents: BPMN to AUML … 55

system and must satisfy standardized communicative (speech) acts which define
the type and the content of the messages (e.g. the FIPA Agent Communication
Language (ACL) [26], or KQML[27]) [5], [8]. AUML introduces a new type of
diagrams called Protocol Diagrams as being a combination between sequence
diagrams with the notation of state diagrams for the specification of interaction
protocols.

5.2 Elements of protocol diagrams

The top-level element of an AIP is the lifeline, just like a BPMN diagram
consists of swimlanes. The agent lifeline in protocol diagrams defines the time
period during which an agent exists, represented by dotted vertical lines. The
lifeline starts when the agent of a certain role is created and ends when it is
destroyed. The lifeline is represented as a vertical axis, on which the AUML
elements are anchored. It specifies the name of the agent to which it belongs to,
the role the agent plays in the MAS and its class.

Messages are represented as arrows between lifelines. A message must
comply to a formal specification of agent speech acts (e.g. FIPA agent
communication language or KQML), which defines the type of content of the
message and the message's “intention”, specified by the performative. The
complete description of FIPA communicative acts can be found at [28]. We will
present below some of the most frequently used speech acts:
• “Call for proposal” is a general-purpose action to initiate a negotiation process

by making a call for proposals to perform the given action. In normal usage,
the agent responding to a cfp should answer with a proposition (the “Propose”
speech act). For accepting or rejecting a previously submitted proposal to
perform an action during a negotiation “Accept Proposal” and “Reject
proposal” will be used.

• The sender requests the receiver to perform some action by sending him a
“Request”. The receiver's response can be “Agree” or “Refuse”. If the sender
gives up on his intention he will use “Cancel”.

• “Inform” and “Confirm” is used when the sender informs the receiver that a
given proposition is true, with the latter referring to a specific receiver.

• The speech acts for describing exceptions are: “Not understood”, used when
sender perceived that the receiver performed some action but didn’t understand
what action it was, and “Failure”, for a failed attempt at an action.

AUML allows agents to consider several alternatives during the
interaction based on their mental states, their intentions and the current state of the
interaction. This materializes in interaction operators, which provide modeling
support for the communication alternatives. They are represented with a box,
surrounding the involved lifelines and time frame, with an interaction operator
given in the top-left corner. Boxes can recursively contain messages and other

56 Andreea Urzică, Claudiu Tănase, Adina Magda Florea

boxes, and can be divided into a number of regions separated from each other by
heavy horizontal dashed lines (which separate the available alternatives). Each
region can include a condition depicted as text in square brackets. The types of
AUML interaction operators are: weak sequencing, alternative, option, parallel
and loop.
• Alternative operator shows that the agent has to choose at most one of many

paths to follow (similar to a 'switch' structure in programming).
• The option operator only considers one path in the region.
• The parallel operator describes the parallel execution of different paths in any

order, allowing concurrent message transmission.
• The loop operator repeats the demarcated exchange of messages as long as the

condition is satisfied.
The weak sequencing operator as defined in UML 2.0 indicates that the

ordering of the event occurrences is significant only within the same lifeline but
not also across lifelines in the same box.

6. The BPMN to AUML Mapping

The results of our research show that there are two possible methods for
transforming a business process model designed in BPMN into an interaction
protocol represented by an AUML diagram. Both languages are visual modeling
environments; the former is conceived for business people, the latter is familiar to
software developers. A mapping between the two would connect the two worlds
together. The agents executing business models offer a simulation that can
facilitate the evaluation and improvement of the models.

One alternative would be transforming the BPMN models in BPEL
(originally intended as a back end to BPMN) and then representing BPEL in
AUML by reversing the existing AUML to BPEL mapping (see Fig. 1). Such an
approach implies some shortcomings concerning mainly the difference between
the abstraction levels of the two languages. The AUML to BPEL mapping,
described in [21] is a more natural one, as AUML is a high level modeling
language that can be mapped to an execution language as BPEL. The reverse
transformation, although possible with some amount of human assistance, lacks of
a real meaning because of the executable nature of the BPEL code.

Our proposal for obtaining an AUML protocol diagram from a business
process model consists in a direct mapping of the BPMN components into AUML
interaction sequences.

6.1 The need for a textual notation

As BPMN is a visual language, we need to establish a textual notation in
order to handle and sketch some equivalence between its elements and those of

Bridging the gap between business experts and software agents: BPMN to AUML … 57

AUML. Although AUML was conceived to be used by humans, and not by the
machines, there are papers proposing a syntax that would facilitate an automatic
process. In his paper, M. Winikoff, [29], presents two primary reasons for
defining a textual format for AUML: the simplicity and the usefulness in writing
down AUML interaction protocols.

6.2 A textual notation for AUML

M. Winikoff, [29], defines a textual notation meant to capture every aspect
of an AUML protocol in a sequence of commands (one per line). The authors of
[29] propose an extension to this syntax, by adding new elements and constraints.
Our transformation uses the Winikoff textual notation for AUML. A detailed
description of the method can be found in [29].

6.3 A textual notation for BPMN

This paper provides a new and original textual notation for BPMN. The
textual notation for a BPMN model consists of a sequence of component names
(one per line) preceded by the name of the swimlane where it belongs and
followed by the list of components towards which it points to. The “:” symbol
separates the name of the swimlane and the name of the BPMN element. In order
to keep the right order of the elements, the successors of each element (i.e. all the
constructs towards he points to) are enumerated between brackets. If the current
component is a decision element, the first “parameter” will be the construct
corresponding to the satisfied condition branch. If the current component is a
message event, then the first chosen successor will be the destination of the
message. Please consult Section 7 for examples. A BPMN element is identified by
its type (ExclusiveGateway, MessageEvent, etc.) along with a unique number
inside its swimlane. Here is the BNF description of the syntax:
<bpmn> :== <line>*
<line> :== <element> <EOL>
<element> :== <decision_element> | <message_element> |

<flow_element> | <end_element>
<flow_element> :== <swimlane>":"<flow_element_type>

element_number> "(" <element> ")"
<!-- parameter value: the next activity in the flow -->

<decision_element> :== <swimlane> ":" <decision_element_type>
<element_number> "(" <element> "," <element> ")"

<!-- first parameter: flow if condition is met, second parameter:
flow if condition is false -->

<message_element> :== <swimlane> ":" <message_element_type>
<element_number> "(" <element> "," <element> ")"
<!-- first parameter: message reciever, second
parameter: next element in flow-->

<end_element> :== <swimlane> ":" <end_element_type>
<element_number>

58 Andreea Urzică, Claudiu Tănase, Adina Magda Florea

<flow_element_type> :== "StartEvent" | "ServiceTask" |
"MessageIntermediateEvent" | "TimerIntermediateEvent"
<!-- the MessageIntermediateEvent is a "flow" element if
it is the receiving element of the message -->

<decision_element_type> :== "DataBasedExclusiveGateway"
<message_element_type> :== "MessageIntermediateEvent"

<!-- the MessageIntermediateEvent is a "message" element
if it is the sending element of the message -->

<end_element_type> :== "EndEvent"
<swimlane> :== <capital_letter>*
<element_number> :== <digit>*

6.4 The mapping between the BPMN and the AUML textual notations

The following section presents the translation rules, written in the order of
precedence (the first having the highest priority), in a CLIPS-style syntax [30].
The rules are not written in a rigorous language, but are meant to demonstrate the
translation mechanism.

Swimlanes. Each swimlane in a BPMN model represents the activity flow
assigned to an entity. Thus a swimlane can be seen to be the equivalent of a
lifeline in an AUML diagram protocol. Generally, the name given to a swimlane
is the same with the entity executing the process. The agent specified in AUML
may have the same name. Using the textual notation, each swimlane, starting with
the uppermost, is declared as an agent, on a new line. The syntax for agent
definition, according to [29] is: “agent shortname longname”.
(
(swimlane ?swimlane_sn1 ?swimlane_ln1 <EOL>)
(swimlane ?swimlane_sn2~?swimlane_sn1 ?swimlane_ln2 <EOL>)
=> (write ("agent" ?swimlane_sn1 ?swimlane_ln1 <EOL>))
 (write ("agent" ?swimlane_sn2 ?swimlane_ln2 <EOL>))
)

Task. A task is executed internally by the entity. This is the reason why it
should not be visible in an interaction protocol.

Events. We have selected only the BPMN events that are meaningful in
the AUML context.

The EndEvent is the terminal for the translation:
(
 (?swimlane_sn ":EndEvent" ?nr <EOL>)
=> (write ("stop" ?swimlane_sn)).
)

MessageEvent. The start, stop or intermediate events indicating the receipt
or sending of a message are the most relevant in the context of interaction
diagrams. The first parameter of the SendMessageEvent textual represented is the
corresponding ReceiveMessageEvent. The AUML textual notation for this
construct is: “message <the name of the sender’s swimlane> <the name of the
destination’s swimlane>”.

Bridging the gap between business experts and software agents: BPMN to AUML … 59

(
 (?src_sn ":MessageEvent" ?nr "(" ?dest_sn ":" ?element ","

?next_element ")" <EOL>)
=> (write ("message" ?src_sn ?dest_sn <EOL>))
)

TimerEvent. This event is not meaningful in the context of agent
interaction, as it denotes a single agent's individual state (same as the Task
above).

Gateways. The transformation acts on the Parallel Gateway and Data-
Based Exclusive Gateway.

Parallel Gateway. This element corresponds to the parallel AUML
construct. The transformation takes place as follows: the parallel flows are
recursively transformed (using a stack operator) up until the flows are rejoined
(both flows end up in one single joining element), and the AUML syntax elements
for the parallel construct are inserted between them:
(
 (?src_sn ":ParallelGateway" ?nr "(" ?elem1 "," ?elem2 ")" <EOL>)
 ($?elem1 <EOL> ?joinGateway)
 ($?elem2 <EOL> ?joinGateway)
=> (write ("box parallel"))

 (push $?elem1)
 (write ("next"))
 (push $?elem2)
 (write ("end parallel"))

)
Data-Based Exclusive Gateway. This gateway routes the sequence flow

according to a logical expression, towards exactly one following element. When
two or more arrows enter the gateway, at least one has to be active in order to
open the gate (the gateway does acts as a barrier). The equivalent element in
AUML is an alternative region. An alternative region is represented by an “alt”
labeled box and includes the interactions that depend on the evaluation of the
logical expression. For each branch there is one region limited by a dotted line.
The AUML textual description of this element is a zone starting with “box
alternative”, ending with “end alternative”, the options being separated by a
“next” line. If the Gateway's elements are both situated after the Gateway itself in
the BPMN, the “alternative” box in AUML will follow the pattern similar to the
Parallel Gateway presented above. If one of the Gateway outputs leads to an
element situated left (before) of the gateway, we have a loop, which iterates until
the condition is met. However, distinguishing between the two is non-trivial. After
all the other transformation steps have been taken, the remaining gateways form a
Finite State Machine, with the transition characters corresponding to the translated
AUML portions, and the terminal states represented by the EndEvent. We can
then analyze the corresponding regular expression, using the algorithm described
in [31] and substitute the regexp operators as such:

60 Andreea Urzică, Claudiu Tănase, Adina Magda Florea

A* => "box loop" A "end loop" ; A+B => "box alternative" A "next"
B "end alternative"

7. Example

In order to properly illustrate the usage of generic agents for business
process execution in BPMN and their following implementation in AUML, we
have chosen a simple example.

The scenario used is the well-known interaction during a medical visit,
between the patient, requesting a prescription, and the doctor. From each patient,
upon receiving a prescription request, the doctor verifies whether the patient is
registered in his database. In order to append the database, if the patient is new,
the doctor must ask him, in addition, some personal details while, if the patient is
already registered, the doctor just asks about the symptoms and updates the
patient’s chart. In the end, the doctor releases the prescription and calls for another
patient.

7.2 The BPMN representation

In order to model the business process, we have used the ActiveVOS
Designer application [32], and we obtained the result depicted by Fig. 2. For the
reader's convenience, we have abbreviated the names for some of the BPMN flow
objects according to the following rule: each DataBasedExclusive Gateway is
represented by “D.B.E.G” followed by its corresponding number, the name for

each MessageIntermediate Event is abbreviated to “M.I.E” followed by a number
and for the Inclusive Gateway we have used “G” as a short name.

Fig. 2 The BPMN representation

Bridging the gap between business experts and software agents: BPMN to AUML … 61

7.3 BPMN textual description

Based on the activity flow and applying the methodology presented in
Section 6.3, we have obtained the following BPMN textual representation.

Patient:StartEvent (Patient:MessageIntermediateEvent1)
Patient:MessageIntermediateEvent1

(Doctor:MessageIntermediateEvent1,
Patient:DataBasedExclusiveGateway1)

Patient:DataBasedExclusiveGateway1
(Patient:MessageIntermediateEvent2
(Patient:MessageIntermediateEvent4)

Patient:MessageIntermediateEvent2
(Patient:MessageIntermediateEvent3)

Patient:MessageIntermediateEvent3
(Doctor:MessageIntermediateEvent3,
Patient:InclusiveGateway2)

Patient:MessageIntermediateEvent4
(Patient:MessageIntermediateEvent5)

Patient:MessageIntermediateEvent5
(Doctor:MessageIntermediateEvent5,
Patient:InclusiveGateway2)

Patient:MessageIntermediateEvent6 (Patient:EndEvent)

Doctor:StartEvent (Doctor: MessageIntermediateEvent1)
Doctor:MessageIntermediateEvent1 (Doctor:ServiceTask1)
Doctor:ServiceTask1 (Doctor:DataBasedExclusiveGateway1)
Doctor:DataBasedExclusiveGateway1

(Doctor:MessageIntermediateEvent2,
Doctor:MessageIntermediateEvent4)

Doctor:MessageIntermediateEvent2
(Patient:MessageIntermediateEvent2,
Doctor:MessageIntermediateEvent3)

Doctor:MessageIntermediateEvent3 (Doctor:ServiceTask2)
Doctor:ServiceTask2 (Doctor:InclusiveGateway2)
Doctor:MessageIntermediateEvent4

(Patient:MessageIntermediateEvent4,
Doctor:MessageIntermediateEvent5)

Doctor:MessageIntermediateEvent5 (Doctor:ServiceTask3)
Doctor:ServiceTask3 (Doctor:InclusiveGateway2)
Doctor:InclusiveGateway2 (Doctor:ServiceTask3)
Doctor:ServiceTask3 (Doctor:MessageIntermediateEvent6)
Doctor:MessageIntermediateEvent6(Patient:MessageIntermediateEvent6

Doctor:MessageIntermediateEvent1)

7.3 AUML textual representation

We have transformed the textual representation of the BPMN model into
the textual description of the AUML interaction diagram (presented in Section
6.2) using the mapping described in Section 6.4.

62 Andreea Urzică, Claudiu Tănase, Adina Magda Florea

start ms MedicalService
agent p Patient
agent d Doctor
box loop

message p d
box alternative

 message d p
 message p d
 next
 message d p
 message p d
 end alternative
 message d p
end loop
finish

7.4 AUML representation

The diagram shown in Fig. 3 represents the AUML interaction protocol
corresponding to the AUML textual description presented in Section 7.3.

Fig. 3 AUML representation
An example illustrating a more complex loop handling in agent interaction

can be found in [33], the model presented by this paper representing a refinement
of the model described by the referred work.

8. Conclusions

This paper presents some alternatives that would increase the interest of

using software agents in executing business process. In order to achieve a greater
impact from using software agents, the emphasis must fall on the interoperability

alt

loop

Patient Doctor

Bridging the gap between business experts and software agents: BPMN to AUML … 63

concept. This paper provides the first steps towards an automatic process of
mapping a BPMN model to an AUML diagram. The flexibility and dynamic
behavior of software agents in conjunction with the wide acceptance of the BPMN
and AUML standard notations strongly justify the need for such an approach.

After providing an analysis of the existing efforts, the paper proposes an
original translation from BPMN to AUML. In order to handle the constructs of the
two graphical languages, we introduce a new textual notation for BPMN and use
the existing textual notation for AUML.

Having defined the basic rules of the transformation, we plan to extend our
approach to an automatic translator based on the specifications in Section 6.4.
Other points of investigation aim at taking advantage of interconnecting the
shared concepts between AUML and BPMN, concepts shared as well by other
representational language, and create a more general conversion system that
would allow various translations between languages belonging to a wider set.

Acknowledgments

This research was supported by project PNII - Parteneriate Nr. 12118/2008
and Grant POSDRU ID 7713.

R E F E R E N C E S

[1] H. Endert, T. Kuster, B. Hirsch and S. Albayrak. Mapping BPMN to Agents: An Analysis.
Agent, Web Services, and Ontologies Integrated Methodologies, 2007

[2] http://www.bpmn.org , accessed Feb 2009
[3] http://www.auml.org/ , accessed Feb 2009
[4] M. Wooldridge. Agent-based software engineering. IEEE Proc. Software Engineering, vol.

144, no. 1, 1997, pp. 26-37
[5] J. Bisschop and M. Roelofs. “AIMMS” in The Multi Agent and Web Services User’s Guide

AIMMS 3.8 July 15, 2008, Paragon Decision Technology B.V.
[6] N.R. Jennings. On agent-based software engineering. Artificial Intelligence, vol. 117, 2000,

pp. 277-296
[7] Y. Shoham, Agent-oriented programming. Artificial Intelligence, vol. 60, 1993, pp. 51-92
[8] B. Bauer, J.P. Muller, J. Odell. Agent UML: A Formalism for Specifying Multiagent

Interaction. Agent-Oriented Software Engineering, Springer-Verlag , vol. 1957, 2001, pp.
91-103

[9] http://www.jessrules.com/links/ , accessed Feb 2009
[10] F. Bellifemine, A. Poggi and G. Rimassa. JADE - A FIPA-compliant agent framework.

Proceedings of PAAM, 1999
[11] http://en.wikipedia.org/wiki/Business_Process_Execution_Language , accessed Feb 2009
[12] S. White. Using BPMN to Model a BPEL Process. BPTrends, vol. 3, no. 3, 1999, pp. 1-18
[13] J. Recker, J. Mendling. On the Translation between BPMN and BPEL: Conceptual Mismatch

between Process Modeling Languages. Proceedings 18th International Conference on
Advanced Information Systems Engineering , 2006, pp. 521–532

[14] C. Ouyang, W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede. Translating BPMN to
BPEL. BPM Center Report BPM-06-02, 2006

64 Andreea Urzică, Claudiu Tănase, Adina Magda Florea

[15] C. Ouyang, W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede. From Business Process
Models to Process-oriented Software Systems: The BPMN to BPEL Way, 2006

[16] C. Ouyang, M. Dumas, S. Breutel, A. Hofstede. Translating Standard Process Models to
BPEL. Lecture Notes in Computer Science, Springer, vol. 4001, 2006, pp. 417

[17] Y. Gao. BPMN-BPEL transformation and round trip engineering, URL: http://www. eclarus.
com/pdf/BPMN BPEL Mapping. pdf, March 2006

[18] M. Dumas. Case Study: BPMN to BPEL Model Transformation. 4th International Workshop
on Graph-Based Tools: The Contest, 2008

[19] www.altova.com, accessed Feb 2009
[20] http://www.disi.unige.it/person/MascardiV/Software/AUML2WS-BPEL.html, accessed Jan

2009
[21] Casella, V. Mascardi, From AUML to WS-BPEL, Technical report, Computer Science

Department, University of Genova, Italy, 2001
[22] http://jade.tilab.com., accessed Feb 2009
[23] T. Doi, N. Yoshioka, Y. Tahara, S. Honiden, Bridging the Gap Between AUML and

Implementation Using IOM/T, 2005
[24] M. Wooldridge, N.R. Jennings, D. Kinny, The Gaia Methodology for Agent-Oriented

Analysis and Design, Springer, Autonomous Agents and Multi-Agent Systems, vol. 3, no.
3, 2000, pp. 285-312

[25] J. Odell, H.V.D. Parunak, B. Bauer, Extending UML for Agents, Ann Arbor, vol. 1001, 1999,
pp. 48–103

[26] http://www.fipa.org/repository/aclspecs.html , accessed Feb 2009
[27] http://www.cs.umbc.edu/research/kqml , accessed Feb 2009
[28] http://www.fipa.org/specs/fipa00037/SC00037J.html#_Toc26729689 , accessed Feb 2009
[29] M. Winikoff, Towards making Agent UML practical: A textual notation and a tool. Proc. of

the 1st International Workshop on Integration of Software Engineering and Agent
Technology (ISEAT 2005), 2005

[30] *** CLIPS Reference Manual, Basic Programming Guide. 2006
http://clipsrules.sourceforge.net/documentation/v624/bpg.htm, accessed Feb 2009

[31] J.E. Hopcroft, R. Motwani, J.D. Ullman. Introduction to Automata Theory, Languages, and
Computation 2nd, Addison-Wesley, 2001, pp 96

[32] www.activevos.com, accessed Feb 2009
[33] A. Urzica, C. Tanase, Mapping BPMN to AUML: Towards an automatic process,

Proceedings of the 17th International Conference of Control Systems and Computer
Science, MASTS 2009 Workshop, 2009, pp. 539—547.

