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A NOTE ON THE STABILITY ANALYSIS OF A CLASS

OF NONLINEAR SYSTEMS - AN LMI APPROACH

Mircea Olteanu1 and Radu Ştefan2

The main goal of the paper is to study the equilibria of a nonlinear sys-

tem, proving the existence and uniqueness of an equilibrium point in the positive

ortant. We also provide numerically tractable conditions (by using Linear Matrix

Inequalities techniques) to check the asymptotic stability of the equilibrium point.

An illustrative numerical example is closing the paper along with some conclusions.
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1. Introduction

Consider the following nonlinear system

dX

dt
= b− dX −

 M∑
j=1

k+j Yj

X +

M∑
j=1

k−j Zj ,

dYj
dt

= βj − δjYj − k+j YjX + (k−j +Kj)Zj , j = 1,M (1)

dZj
dt

= −(σj + k−j +Kj)Zj + k+j YjX, j = 1,M

Here X, Yj , Zj (j = 1,M) denote concentrations in an enzymatic reaction, which

appears in the study of micro RNA - messenger RNA dynamics (for further details

see [5], [2], [7], [4], [10], [6]). The coefficients b, d, βj , δj , k
+
j , k

−
j ,Kj and σj are all

positive.

In this paper we study the positive ortant equilibria of the system, proving

existence and uniqueness (Theorem 2.1). Further, in Section 3, we provide numeri-

cally tractable conditions (by using Linear Matrix Inequalities techniques), to check

the asymptotic stability of the equilibrium point. An illustrative numerical example

is closing the paper along with some conclusions.

1Professor, Department of Mathematical Methods and Models, Faculty of Applied Sciences,

University ”Politehnica” of Bucharest, Romania, E-mail: mirolteanu@yahoo.co.uk

2Professor, Department of Automatic Control and Systems Engineering, Faculty of Auto-

matic Control and Computer Science, University ”Politehnica” of Bucharest, Romania, E-mail:

radu.stefan@acse.pub.ro (corresponding author)

3



4 Mircea Olteanu, Radu Ştefan

2. Problem statement

The system can be rewritten as

dΦ

dt
= F (Φ), where Φ :=



X

Y1
...

YM
Z1
...

ZM


and F is the appropriate vector field defined on R2M+1 and associated to the system

(1). For every Φ0 = (X0, Y 0
i , Z

0
i ) ∈ R+×R2M

+ , denote by Φ(t; t0,Φ0) the solution of

the Cauchy problem

dΦ

dt
= F (Φ), Φ(t0) = Φ0.

Remark 2.1. Obviously, the Existence and Uniqueness Theorem applies to the sys-

tem (1); moreover, the positive ortant R2M+1
+ is a positively invariant set for the

system - see [8].

The first main result is:

Theorem 2.1. For every positive set of parameters b, βj, d, δj , σj, k
+
j , k

−
j ,Kj, j =

1,M , the system (1) has an unique equilibrium point (X̃, Ỹj , Z̃j) in R2M+1
+ , j = 1,M ;

moreover

X ∈
(

0 ,
b

d

)
, Yj ∈

(
βj

δj +Bj
b
d

,
βj
δj

)
,

Bj =
k+j σj

σj+k
−
j +Kj

.

Proof. From (1) we get the following equilibria 2M + 1 algebraic equations

b− dX −

 M∑
j=1

k+j Yj

X +

M∑
j=1

k−j Zj = 0, (2)

βj − δjYj − k+j YjX + (k−j +Kj)Zj = 0, j = 1,M (3)

−(σj + k−j +Kj)Zj + k+j YjX = 0, j = 1,M (4)

From the last M equations (4) we get

Zj =
k+j YjX

σj + k−j +Kj
, j = 1,M.
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Replace Zj in the first M + 1 equations (2)-(3) and obtain

b− dX −

 M∑
j=1

k+j (Kj + σj)

σj + k−j +Kj
Yj

X = 0

βj − δjYj −
k+j σj

σj + k−j +Kj
YjX = 0, j = 1,M

or, equivalently,

X

d+

M∑
j=1

k+j (Kj + σj)

σj + k−j +Kj
Yj

 = b

Yj

(
δj +

k+j σj

σj + k−j +Kj
X

)
= βj , j = 1,M.

With the notations below

Aj =
k+j (Kj + σj)

σj + k−j +Kj

Bj =
k+j σj

σj + k−j +Kj
,

the previous system of equations becomes

X

d+

M∑
j=1

AjYj

 = b (5)

Yj (δj +Bjm) = βj , j = 1,M. (6)

Take Yj =
βj

δj +BjX
, j = 1,M , and replace Yj in (5):

X

d+
M∑
j=1

Aj
βj

δj +BjX

 = b.

Let f : R+ → R, f(X) = X

d+

M∑
j=1

Aj
βj

δj +BjX

.

Then f ′(X) = d+

M∑
j=1

Ajβjδj
(δj +BjX)2

> 0, which shows that f is increasing.

Noticing that f(0) = 0 < b and f( bd) = b
d

(
d+

∑M
j=1Aj

βj
δj+Bj

b
d

)
> b, one gets that

the equation f(X) = b has a unique solution X̃ ∈
(
0 , b

d

)
. A straight computation

shows that

Ỹj =
βj

δj +BjX̃
∈

(
βj

δj +Bj
b
d

,
βj
δj

)
.
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3. LMI stability conditions

In order to investigate the asymptotic stability of the equilibrium point, we

will use Lyapunov’s stability theorem in first approximation and obtaining an LMI

(Linear Matrix Inequality) sufficient condition.

Let us first translate the system (1) to the origin. Define the deviations with respect

to the equilibrium point in Theorem 2.1 by

x = X − X̃, yj = Yj − Ỹj , zj = Zj − Z̃j , j = 1,M,

x = X − X̃, y = Y − Ỹ and z = Z − Z̃, respectively. Then, with this change of

variables, the dynamics of the deviations’ system are given by

ẋ =
dx

dt
= −

d+
M∑
j=1

k+j Ỹj

x−
M∑
j=1

k+j X̃ yj +
M∑
j=1

k−j zj −
M∑
j=1

k+j xyj ,

ẏj =
dyj
dt

= −k+j Ỹjx− (δj + k+j X̃) yj + (k−j +Kj)zj − k+j xyj , j = 1,M (7)

żj =
dzj
dt

= k+j Ỹjx+ k+j X̃yj − (σj + k−j +Kj)zj + k+j xyj , j = 1,M

Obviously the origin is an equilibrium point for (7), exhibiting the same stability

and topological properties as (X̃, Ỹj , Z̃j) for the system (1) - see [9], Ch.4.

The translated system (7) rewrites now as

ẋ

ẏ1
...

ẏM

ż1
...

żM


=



−(d+
∑M

j=1 k
+
j Ỹj) −

[
k+1 . . . k+M

]
X̃

[
k−1 . . . k−M

]

−

 k
+
1 Ỹ1
...

k+M ỸM

 − diag(δj + k+j X̃) diag(k+j +Kj)

 k
+
1 Ỹ1
...

k+M ỸM

 diag(k+j X̃) −diag(σj + k−j +Kj)





x

y1
...

yM

z1
...

zM



+



−
∑M

j=1 k
+
j xyj

−k+1 xy1
...

−k+MxyM

k+1 xy1
...

k+MxyM


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or, equivalently,

ξ̇ = Aξ + g(ξ). (8)

Here ξT =
[
x y1 . . . yM z1 . . . zM

]
, A = A0 +

∑M
j=1Aj ,

g(ξ) =
∑M

j=1 ajyjx,

A0 =


−d O

[
k−1 . . . k−M

]
O −diag δj diag(k+j +Kj)

O O −diag(σj + k−j +Kj)

 , Aj = ajv
T
j ,

aj = k+j



−1

0
...

0

−1

0
...

0

0
...

0

1

0
...

0



and vj =



Ỹj

0
...

0

X̃

0
...

0

0
...

0

0

0
...

0



.

Then the Jacobian matrix associated to the system (7) in a point ξ ∈ R2M+1 is

J(ξ) = A+
M∑
j=1

aj(yj + x),

hence

J(0) = A = A0 +

M∑
j=1

Aj . (9)
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Remark 3.1. The Jacobian matrix associated to the system (7) does not depend

on Z̃j. In order to investigate the stability of the origin for the ”translated” system,

we will make use of Lyapunov first Theorem. For proving that the origin is an

asymptotically stable equilibrium point for (7), it is sufficient to check that J(0) is

a Hurwitz matrix, or equivalently, there exists a symmetric positive definite matrix

P such that

ATP + PA < 0⇐⇒ AT0 P + PA0 +

M∑
j=1

vjp
T
j +

M∑
j=1

pjv
T
j < 0, pj = Paj . (10)

One can show that

vjp
T
j + pjv

T
j < vjv

T
j + pjp

T
j ≤ λmax(vjv

T
j )I2M+1 + Paja

T
j P.

Since

λmax(vjv
T
j ) = X̃2 + Ỹ 2

j ≤
b2

d2
+
β2j
δ2j
,

it follows that the LMI (10) is satisfied whenever the following (Riccati) matrix

inequality

AT0 P + PA0 +
M∑
j=1

(
b2

d2
+
β2j
δ2j

)
I + PBBTP < 0, where B =

[
a1 a2 . . . aM

]
(11)

holds. Equivalently, by using a Schur complement argument and denoting by

ρ =

M∑
j=1

(
b2

d2
+
β2j
δ2j

)
> 0, the above inequality becomes

[
AT0 P + PA0 + ρI2M+1 PB

BTP −IM

]
< 0. (12)

From the above considerations the next important result follows.

Proposition 3.1. If there exists a symmetric positive definite matrix P satisfying

the above LMI (12), then the origin is an asymptotically stable equilibrium point for

the translated system (8).

This last relation is an LMI in the unknown P and can be solved by using

existing semidefinite programming software packages.

As we will show in the next section, we have used the cvx programming envi-

ronment developed by Boyd et. al [3] and run the SDPT3 semidefinite programming

package.

4. Numerical examples

Consider M = 2 and the following parameters (coefficients): b = 4, β1 =

1.5, β2 = 0.1; d = 12, δ1 = 14, δ2 = 11; k+1 = 10, k+2 = 5; k−1 = 3, k−2 = 0.1;

K1 = 0.8,K2 = 1 and σ1 = 1.5, σ2 = 10.
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In this case the feasibility problem (12) has a positive definite solution

P =


4.6996 −2.9796 −2.2656 2.0782 2.1960

−2.9796 1.9734 1.4191 −1.3454 −1.3977

−2.2656 1.4191 2.0419 −1.0036 −0.8466

2.0782 −1.3454 −1.0036 0.9881 0.9665

2.1960 −1.3977 −0.8466 0.9665 1.3968

 ,
and the spectrum of P is ΛP = {0.0475, 0.0625, 0.2566, 0.9745, 9.7586}. Further-

more, the spectrum of the left-hand side in (12) is

Λ = {−242.7839, −19.0743, −2.1913, −0.9617, −0.2660, −0.1102, −0.0011}

confirming that the LMI is fulfilled.

This approach does not necessary replace the direct verification of the fact

that the Jacobian matrix (9) is stable. Such a verification implies the numerical

calculation of the equilibrium point (X̃ = 0.3206, Ỹ1 = 0.1006, Ỹ2 = 0.0084) and

also that of the eigenvalues of the Jacobian matrix

A =


−13.0481 −3.2059 −1.6030 3.0000 0.1000

−1.0062 −17.2059 0 10.8000 0

−0.0419 0 −12.6030 0 6.0000

1.0062 3.2059 0 −5.3000 0

0.0419 0 1.6030 0 −5.3000

 ,
that is,

ΛA = {−20.4212, −12.2267, −13.8016, −2.8432, −4.1643} .

All these eigenvalues are in the left half of the complex plane.

5. Conclusions

For those studying the micro RNA - messenger RNA dynamics our approach

offers a sound numerical tool for checking the asymptotic stability of the system

equilibrium in the positive ortant. It is worthwhile to mention that the proposed

stability test is independent of the values of the equilibrium point, depending exclu-

sively on the system coefficients.

Since Proposition 3.1 only provides a sufficient condition for verifying the

asymptotic stability of the equilibrium point, a certain degree of conservatism is

implicitly present in the numerical procedure; if the LMI (12) proves to be infeasible,

this does not mean that the Jacobian matrix A is unstable. Numerical experiments

show that this conservatism becomes to be present for larger values of ρ.

Future work will be dedicated to the extension of the procedure to the situation

N > 1 and to a better exploitation of the system’s structure.
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