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STOCHASTIC MODEL FOR EVALUATING THE PRECISION
LANDING OF REENTRY VEHICLE

Teodor-Viorel CHELARU', Adrian CHELARU?

The paper presents a random calculus model for calculating the precision of
guided flight during terminal phase and automatic landing of a reentry vehicle. The
proposed method is based on canonical decomposition of the random inputs, which
allows us to obtain directly the output dispersion of the coordinates of the vehicle
from the dispersion of any kind of random input signal, which passes through the
differential equations of motions by using a decomposition of input signal on
pulsation domains (PD) and by integrating the differential equation system for each
PD. The novelty of the paper results from the theoretical method of random functions
theory, applied to solve the technical problem of precision for guided flight during
terminal phase and automatic landing of a reentry vehicle.

Keywords: reentry vehicle, guidance precision, landing, stochastic model,
random functions.

Nomenclature

a - Attack angle (tangent definition); B - Sideslip angle (tangent definition); 3, -
Aileron deflection; §, - Elevator deflection; 6, - Rudder deflection; y - Azimuth
angle; O - Inclination angle; ¢ - Bank angle; p - Air density; Q - Body angular
velocity; 4,B,C,E - Inertia moments; C/;C;;C - Aerodynamic coefficients of
force in the body frame; C,';C/;C - Aerodynamic coefficients of momentum ;
C{;C,;C] - Thrust coefficients in the mobile frame; C/;C,;C, - Thrust
momentum coefficients in the mobile frame; F, =0.5pV>S - Reference
aerodynamic force; H,=F,/ - Reference aerodynamic couple; 7, - Reference
thrust force; U, =T,/ -Reference couple thrust; /- Reference length; m — Mass;
p.q,r - Angular velocity components along the axes of body frame; § -
Reference area; + - Time; V - Velocity vector; u,v,w - Velocity components in
body frame; ¥ ¥ ¥ _-Velocity components in local frame; 0X,Y,Z, - Normal
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local-fixed frame (inertial frame); oxyz — Body frame (mobile frame); x,y,z, -
Coordinates in local-fixed frame . Ox,Y,z, - Ground fixed frame (inertial frame);

1. Introduction

One of the current areas of development in the field of space programs is the
reentry vehicle. These vehicles are intended to achieve different space missions,
from transport of human crew to the space station, till interventions on the
orbiting satellites. After the success of the US space shuttle program, the major
space agencies are considering the development of reentry vehicles, mostly
without crew, which performs automatic flight. At European level, European
Space Agency intends that starting from IXV (Intermediate eXperimental
Vehicle) vehicle, which is a parachuting re-entry vehicle, to achieve a fully
automatic re-entry vehicle, PRIDE (Programme for the Reusable In-orbit
Demonstrator for Europe), which will have a guided landing phase [9]. For these
types of vehicles there are many problems of study, starting with aero-
thermodynamic issues specific to high speed, heat transfer, accuracy of guidance,
and others, each of them can be the subject of separate studies. This paper is
proposing to address one of these issues, namely the one of precision landing,
when vehicle velocity is low and we can use usual aerodynamic theory for
ordinary aircrafts. To address this, the paper proposes the determination of the
landing dispersion zone by developing a stochastic model in which the random
input values are the flight parameters measured by the sensors, while the output is
represented by the values that describe the vehicle states (velocity, position).

For solving this, there are two possibilities. One of them, developed in work
[3], consists in the introduction of certain random input in the system that will
simulate, in the context of classic hypothesis, the noises of the signals introduced
by the sensors. The determination of the landing dispersion is achieved by
building a beam of possibilities for the evolution of the vehicle, in so call “Monte
Carlo” methods. Unfortunately, this method, due to finite number of realizable
possibilities, gives only a roughly result.

Another method consists in the canonical decomposition of the random functions.
This method was founded in paper [1] and developed in papers [2] and [5]. The
method separates the problem of vehicle dynamic into two sub-problems: one
consisting in the determination of average evolution, which is a deterministic
problem, and the second, to obtain the states dispersion. The second problem can
be solved through the integration of the supplementary equations obtained from
the canonical separation of random terms from the dynamic equations. This
method leads to a better quantitative appreciation of the landing dispersion in the
case of guided vehicle. Next, in the paper we try to apply the method of canonical
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separation for evaluating the precision automatic landing for a reentry vehicle
(Fig. 1).

Fig. 1. The reentry vehicle general view (1-body; 2- flaps; 3 —rudders)
2. Equations of Motion

2.1. General Motion Equations for Reentry Vehicle

As shown in the paper [3] the vehicle’s dynamic equations are the translation
equations, which are achieved from the impulse theorem and the rotation
equations, which come from the kinetic moment theorem.

The translation equation can be written in local frame which is an inertial frame
as:

V0 :Blmil(FOCF+II)CT)+g0' (1)
where:
c.=let ¢ alic =l o df @)
are the aerodynamic coefficients and trust coefficients in body frame, and the
matrix B, is defined using the Euler’s angles:
cosycosf —siny cos@d+cosysinfsing siny sin ¢+ cos iy sin 6 cos ¢
B, =| —sinycosd —cosycosg—sinysinfsing cosy sing—siny sinfcosg 3)
sin @ —cos@sing —cosfcos¢
The rotation equation around the center of the mass, written in the body frame
is:
Q=J"'(H,C,+UC,)+J'AJIQ, (4)
where:
c,=lct cr ¢fie=lq a cf )
are aerodynamic and thrust moment coefficients in body frame, and J' is the
inverse matrix for the inertia moment .
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The kinematical equations are additional equations, which allow us to obtain the
linear coordinates in local frame:

[)C J'/O Z'O ]T = [Vv Vy Vz ]T ° (6)
For Euler’s angle when the angular velocity components are known we have:
b ol =wlp ¢ T, ()

where:
1 singtgfd cosgtgl
W,=0 cos¢ —sing |» (®)
0 singsecd cosg@sect

2.2. Guidance Command

Resuming [3], the guidance commands for vehicle flight are:
u,=-u,+u,sind,

a

U, =u, + uy(sin(écosr// —cos¢@sinfsin 1//)— u, cospcosf —u, cosg—u,, sinpcos;

u =u, (cos¢cosy/ +sin ¢sin @sin 1//)+ u, singcos+u,sing—u, cosgcos, ©)
Uy, =i, —kiu.

where, angular signal command are u; - Roll command; u,- Pitch command; u,,

- Yaw command, u,u_-Linear command; u, - Thrust command;

Roll command assure roll control by following imposed yaw angle:

u, =kip+kip—k!"ycost. (10)
Pitch command assures longitudinal attitude control:
u, =k°9 +k°0 + k'I,, (11)
and Yaw command assure heading control:
u, =kl +ky, (12)

Linear command terms are:
_ LA hy . _ 1Az hz
u, =k A, +k h,;u =k A +kh, (13)

The guidance commands are applied through the actuators which are
approximated in the paper [3] by relations:

ST :_8_T+k§xi’ Sa :_8_a+kgaua ,
T T T T
oT jT Sa uga (14)
8 = —6_e+ k5€ue ’ 6 — —i-l- ksrur

”

T6e T6e TSr ’CBr
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u -,

where 77,7575 are the time constants and kj;;k; ;k sk, are the gain
constants.
Also, we use integral term, defined as:

i,=d. (15)

2.3. Particularities Equation of Motion for Symmetrical Evolution

Next, starting from dynamic translation equations rewritten in quasi-velocity
frame [3] we will analyse the particular case of a symmetric evolution, which
ensure the separation of the longitudinal equation of motion by lateral equation of
motion and finally allow convenient linearization of the motion equation.

For consistence of lateral motion equation, specific parameters of this motion
will be considerate small, but different from zero. Based on these approximations,
we can evaluate for the beginning the expression of aerodynamics angles,
obtaining:

y=0-a. (16)
respectively:
PBeosa =y — y)cosy—gsina. (17)
Doing as in paper [3], if we consider the flight in a vertical plane and we neglect
the influences of the small terms, from (7) we obtain:
d=p+righ+qptgd; O=gq; vy =rsecd+qpsect (18)
In this case, as shown in the same paper [3], we can separate the longitudinal

and lateral motion. Hence, the lateral equations of motion are written in the
following form:

. FC, P
p=r—-——-ptga--gcosb;
mu u
F= et e v L, U AR pg - g
19)

. Hy o, Uy v, E 4 r _ E (

=—2C/+——L2C +—\H,C'+U,C, )+ +—=pq;
p Vi 1! CA(On On) qr Cpq

p=p+rtgh+qotgd; y=rsecld+qpsect;
Vo =V(fcosa—ycosy+gsina),
to which we add the relation (17).

These equations represent the lateral decoupled equations of motion written in the
specific case of the vehicle evolution in vertical plane.
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3. The linearized form of equation of motion

3.1. Linear Form of Lateral Equation
The equations (19), presented in the previous section can be linearized and
together with (17) obtaining:
AB =aljAB+ayAr+aiAp+alAp+a,AB+biAS, +byAS, +
+ agw ABy, +AY, [(mu)
A =al AP +alAr+a’ Ap +al AB+bTAS, +bFAS, +a" AB, + AN’ /C  (20)
Ap=alAB+a’Ap+al Ar+al AB+bYAS, +b¥AS, +a” AB, + AL,/ 4
Ap=a,Ar+Ap+ajAp; Ay =aAr+alAp; Avy =alAB+a’Ap+a’ Ay .

where : g, - Wind sideslip angle (Cross win influence); v, - Lateral perturbation
force except wind influence; L N, - Perturbation roll and yaw moments except

wind influence; All the coefficients are described in work [3].
From relation (20) we can obtain immediately the stability matrix and the
command matrix for lateral motion of vehicle.

3.2. Lateral Extended Stability, Command and Control Matrices

Besides the general motion equations in linear form as outlined above, flight
vehicle needs other relationships to be added. Among them, the most important
and which can not be neglected are the actuator equations and the guidance
equations. For the autonomous flight, as is case of a reentry vehicle, the guidance
equation is necessary to introduce integrated terms specific to PID (Proportional-
Integrative — Derivative) -type controllers.

Starting from (14) linear form of the actuator equation for lateral motion becomes:
L@+ kgyAu, A75,+ kyAu, @1

; AS, =-
Ts Ts Ts Ts

Using linear relation (20) and (21) we can build extended stability and command

matrices indicated in paper [5] . Also, by linearizing the relation (9) for lateral

commands we obtain control matrix:

AS, =~

Table 1
Lateral control matrix (controller) K

112131 415161718

| | | | | | | |
L B 0y iy 18,18,
1|u, | RN AR AR A L
o e e e e e SR
2 u, kb ko Tk ke Tk
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where:
ki =—kisin® ;k” =kl; kb =k?; k" =—(ksin@+k) cos0) ;

> ua

kP =—klVcosa; k! =k} cosO; kb =—klVsina;k! =klV cosy+kycos0;

ur

k) =—k!.
In this case, we have the system that describes lateral controlled motion in form:
X =Ax+Bu; u=-Kx (22)
where:

A:[I_Al]_]Ao B:[I_Al]_lBo

The stability and command matrices A ,A,,B, are indicated in paper [5]

4. Canonical decomposition method

In the following, we present a numerical method, based on canonical
decomposition of the random variables to solve this class of problems, which can
be easily implemented in calculus software. The method consists of integrating
the equations (22) using the canonical decomposition of random functions,
according to the method presented in work [1].

This method allows obtaining the output signal dispersion from the input signal
dispersion for any kind of differential linear unsteady equations. For that, we use a
decomposition of input signal in a number of pulsation domains (PD) and
integrate differential equation system for each of them.

The method is an approximation, because the number of PD is limited.
Theoretically, if we use an infinite number of PD we can obtain the exact
solutions. To evaluate the accuracy of the method firstly we analyse a simple case,
like a test case, with known analytical solutions.

4.1 Calculus Example, Dispersion Evaluation

Therefore, we choose, as example, the well known linear stationary equation with
constant coefficients:

dy/dt=-y/t, +x/t,. (23)
After the Laplace transformation, the equation can be put as a transfer function:
1
y= X. (24)

75 +1
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Considering as input random variable x , similarly with “white noise™, centred in
zero, to output will be a random signal y also centred in zero. The analytical link

between spectral densities of the signals is given by:

R
S _|7:1iu)+1| * o’ +1

S., (25)

The dispersion of the output signal can be obtained through integration of the
spectral density related to the pulsation o:

D, = ZJ‘;S‘}; dw=lim 25, arctantm = S, 5 (26)

eme T g

where it was taken in the consideration that spectral density of the input signal
does not depend by pulsation. As numerical example we took the time
constant t, = 0,5[s], and as input the signal S_=0.00394[s] with dispersion D, =1 for
a maximum pulsation o, =127[1/s] . Using the analytical relation (26) we
obtained D, =0,02468

For the calculus example, we noticed that the PD for the spectral density of the
output signal is limited, transfer function (24) working as a “low band” filter (cut
the high frequencies). In this case, in our example we could approximate the
spectral density of the input signal with a rectangle, which contains PD in which
the output spectral density has values.

In work[1] it is shown that for an unsteady random function x(¢) it can be used a

canonical decomposition:

X(t)=mx(t)+x6t)=mx(t)+in(0k(t), (27)

where: x(¢) is a centred unsteady function; m_(¢) is an average function, ¥, are
the random quantities and ¢, (¢) are the coordinate deterministic functions. Also,

in this work it is shown the link between coordinate functions of the input
separated signal and the output separated signal. This link allows building the
spectral density and dispersion of the output signal using spectral density of the
input signal. If the input signal is stationary, the coordinate functions have a
particular form: ¢, (¢)=¢'* . In this case, supposing that the input signal is

stationary and centred we can use the following decomposition:

x = ZVVkeiwkt , (28)

k=-n
k#0

? Different from “white noise”, the input used is defined over a finite frequencies domain.
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where W, it is complex random centred quantity with the dispersion
D, =2D, =2D[W,] obtained from the spectral density for the input signal
S (»,)=2S:(»,) corresponding a pulsation band Ae, centred in pulsation ®, .
Because input signal is even, we can write:

D, = kZﬂD,j = ;Dk : (29)

k#0

If the coordinate functions for the input signal are ¢, (r) = ¢/, and the coordinate
functions for output signal are y, (¢), the dispersion for the output signal can be
obtained with relation:

D, (0)=23 Dy, (1) » (30)

where coordinate functions of the output signal can be obtained from coordinate
functions of the input signal through equation (23). We can build an equation
system, containing an equation for each pulsation ®, :
V(@O =—y,@)/t+e, )/, (31)
where: k=1..n.
Because the functions ¢, (¢) , v, (¢),, are complex, the solution of the system (31)

can be obtained by separating the imaginary part from real part:

V(@O ==y @)/ T+cos(@ )/ T 5 yy, (1) ==y ()T +sin(ey 1)/ T, (32)
where: y,, =Rey, (¢); y,, =Imy,(t),and k=1..n.
Together with the system solution we obtained the square of the coordinate
function corresponding the pulsation®,: y; = y;, + y3,, and also the dispersion
corresponding to the pulsation band Aw, : D, =S Aw, . Using relation (30) until
maximum pulsation @, =127 , for a pulsation number n =500 and time
t... =5 we obtained the output signal dispersion, which for numerical application
has the value D, =0,02443 . For this application, we directly evaluated the

relative error between analytical result and numerical result:
D, -D -
AV = Do N 100 = 0.002468 — 0.02443 100 = 1% (33)
D,, 0.002468

4.2 Dispersion of Flight Parameters for reentry vehicle

For the re-entry vehicle case, we can put linear system (22) in a form similarly
with (23):
dY/dt =AY -BKX, (34)
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where X is a random input signal and Y is a random output signal. Because the
system describes an autonomous motion where states ¥ follows reference
values Y, , the input and output signals can by considerate in form:

X=Y-Y,+DX,Y=V+Y (35)
where X is a noise introduced by sensors that measure the system states. The Y

means the average of random states variables and Y is output unsteady random
centred signal. D matrix allows us to choose the sensors that introduce the noise.
In this case, the equation (34) can be separate in two equations. First is a
determistic one, in average of states:

dY/dt = (A -BK)Y +BKY,, (36)
and the second an equation in random variables:

dY/dt = (A-BK)Y—BKD X | 37)
The solution Y of equation (37) means getting the dispersion of the system state

when we know the dispersion of the input X, namely the disperion of the signal
measured by sensors. In order to obtain the solutions we proceed similarly to
previou calculus example, by building an equations sistem in coordinate functions
and separate the real part from the imaginary part for each equation:
Vrik (1) = (aii - bi[k/ )ijk (t) - bilkligj cos( @,t) ,
Vg (0 = (@] =LK/ vy (1)) = b/ S  sin( ,0) G8)
where:

o. =

J

=1 if sensor]j is working
=0 if sensorj isnotworking

Taking into account the number of the states (8) the number of frequencies (200)
and the fact that each equation must be solved in real and in imaginary parte,
finaly we have a system on 3200 ordinary differential equations, system which
can be solved by numerical methods.

5. Input Data, Results

5.1 Input Data for the Model

Geometrical data
As input data, we use the geometrical elements of the vehicle from figure 2.
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Fig. 2. The reentry vehicle geometry (all dimensions in m)

Geometrical characteristics for the model are: Reference length — body
length/ = 3.94m ; Reference area — cross body area S =1.131m";

Mechanical data
Mass characteristics of the model are: m =1000kg ;

Centre of mass position: x,, =2.4 m.
Inertial moments: A =512kgm”; B=827kgm’; C =1191kgm’ ; E =1.4kgm’

Aerodynamic data

For the configuration from Fig 2, considering a Taylor series expanding around

the origin and by taking into account the parity of the terms, we obtain the

following polynomial form of the aerodynamic coefficients in a body frame:
Cl=a +a,a" +a, B’ +al. +a,0. +a0" +a,a+a,,go, +a,a’ +a,a’

C;l =b+byi +bsy 6, + b0, + bgz,é +byop

C! =b, +b,a+b,§+b,, 5, +b,d& +b,a’ +b,a’ (39)
Cl =P+ st +ce S, +¢,0, + ¢
Cl=d,+d a+d,g+d05, +dya
C: =d,B+d,r+d,8, +dd, + dozB +dyp,
where the coefficients a,, a,, ... generally are depending on Mach number. and,
by definition[7]
o = —arctan(v/u), f=arctan(w/u). (40)
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Stability, command and control matrices

Using aerodynamical and mechanical data we can obtain stbility and command
derivatives as well as controler parameter. For descending flight with velocity
V' =300m/s and climb angle y =-30°, at altitude of H =1000m we obtain the

following values:
ag =-0.5;a; =1; a; =-0.04; “Z =-0.03; b;f“ = —0.09;b§’ =0.09;
a’ =-24.9; a’ =0.0004; a” =0.09; b* =-212; b =212
af =24.7; a; =0.33; a, =-0.37, b;f“ =129.2; bl‘f’ =447,
a, =-031a} =1 a), =1.05; a) =300.; af =12.3; a’ =-284.5. 75, =10,;
7, =10,
After controller sithesys using the gradient modified technicque [4] we obtain
followin optimale values:

k' =027 ;k?=0.86; k! =2.4 ;k" =-0.17; k/ =-13.7; k/, =0.84;
kS =-0.55; k! =14.7; k,=-0.04.

5.2 Results

Because we have chosen to analyse the lateral motion, as results we will
present the influence of the noice of diferent sensors to the lateral coordinate y .

We will consder a constant standard deviation (STD) of the input signal the time
evolution of the STD of the lateral coordinate y .

030 L ——
r 0.10 Kr=0.84
E yb 04 B kr=0.59
0.25 - ky;-D:OZ I e
- ky=-0.0/ 0.08 -
020 L /
g — | B«
w>o.15 > E /
0.04 N
0.10 B / / i //
0.05 J 0.02 ,/
0.00 bemtt 1 000 b==24 . N N
1 2 3
t[s] ! t[s] 2 :
Fig. 3. Influense of the sesor noise by lateral Fig. 4. Influense of the sesor noise by yaw
coordinate ), angular velocity 7

on lateral coordinate ), . on lateral coordinate ).
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Figure 3 presents STD of the lateral position y, due by the noice of the y,

sensor, for diferent gain values k; =[-0.04;-0.02;—0.01]. STD input signal for
y sensor is ¢ =2.23m. It can be seen that increasing the gain module values
leads to increased lateral deviation.

Figure 4 presents STD of the lateral position y, due by the noise of the sensor for
angular velocity r for diferent gain values £ =[0.84;0.59;0.42]. STD input
signal for r sensor iso =2.23 [deg/s]. It can be seen that increasing the gain
module values leads to decreased lateral deviation.

Figure 5 presents STD of the lateral position y, due by the noice of the sensor for
yaw angle y, for different gain values &/ =[14.7;14.0;13.2]. STD input signal
for w sensor iso =1 [deg]. It can be seen that increasing the gain module values
leads to increased lateral deviation.

Figure 6 show influence of all sensors on lateral deviation y,. In order to obtain

this synthetic diagram, we consired:
All angular sizes read by the sensors have STD 1 degree.
All angular velocity sizes read by the sensors have STD 1 degree.

o}

All linear sizes read by sensors have STD 1 m.

1.0
0.8 / 4 /
0.6 3
0.4 —— kps=14.7
I ——— kps=14.0 2
F kps=13.2
0.2 .
W 1
1

2 3
t[s] 0

sy [m]
sy [m]

0.0 ===

-

1
. . t
Fig. 5. Influense of the sesor noise by yaw [l
angle W on lateral coordinate Y, Fig. 6. The noise influence of all sensors on
0 lateral coordinate

6. Conclusions

As we showed in the introduction, for solving problems of accuracy guided
flight, such as the automatic landing of reentry vehicle, there are two possibilities:
the first one is based on random number generators, leading to methods of the
"Monte Carlo" type; the second, based on canonical decomposition of random
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variables and integration of equations by coordinated functions. In the sense of the
second choices, the paper makes an assessment of the landing precision of the
reentry vehicle, by evaluating the lateral deviation due to the noise introduced by
the sensors. For this purpose, first we built a calculus linearized model for the
vehicle and we determined the stability matrix, command matrix and control
matrix. After that, was presented some calculation methods based on the
canonical decomposition along with a sample calculation to verify the accuracy of
the method. Finally, the calculation method was applied to the system of
equations associated with reentry vehicle and we obtained some results
concerning the influence of sensor noise on the lateral deviation during landing.
Considering preliminary stage of this type of project, with a configuration which
is to be defined, the results are not final and may be resumed during the evolution
of the project.

What is actually important, and is the novelty of the work, is the proposed
method, which is less used in current technical applications, but can even be used
to cross check the results with the most popular methods of "Monte Carlo" type.
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