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SOLUTION COMPUTATION FOR RESISTIVE CIRCUITS 
CONTAINING COMPANION MODELS  

Alexandru Gabriel GHEORGHE1, Florin CONSTANTINESCU2 

Se propune rezolvarea în precizie long double a circuitului liniar care 
conţine modele companion. Acest algoritm, care dă rezultate mult mai bune decât 
iteraţiile GMRES, a fost implementat într-un program de analiză tranzitorie care 
alege pasul de timp pe baza unor erori de bilanţ energetic. Sunt prezentate două 
exemple în care acest program dă rezultate mai bune decât SPICE. 

The long double precision solving of the linear circuit containing companion 
models is proposed. This algorithm, giving much better results than GMRES 
iterations, is implemented in a transient analysis program which chooses the time 
step on the basis of energy balance errors. Two examples, for which this program 
gives better results than SPICE, are presented. 

Keywords: transient analysis, time step choice, errors. 

1. Introduction 

The transient response of a nonlinear circuit is computed using numerical 
methods as backward Euler, trapezoidal, or Gear methods. These methods have 
been developed to compute the solution of the state equations in the normal form 

),( txfx = , where x is the state vector. Nevertheless, no commercial software for 
circuit analysis uses the state equations due to the tedious computations needed to 
reach their normal form. All known circuit simulators working in the time domain 
use the companion models [1] which are resistive circuits as those shown in Fig. 1 
and Fig. 2, which correspond to the backward Euler method.  

The solution of the dynamic circuit at the time instant tn+1 is computed solving the 
circuit in which each dynamic element is replaced by its companion model. If the 
backward Euler method is used, the independent sources parameters depend only 
on the state in the previous time instant tn The voltage and current subscripts in 
Fig. 1 and Fig. 2 point out the corresponding time instant. It can be observed that 
some resistance magnitudes increase as the time step h increases while other 
resistance magnitudes decrease as h increases. Using other numerical methods 
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similar dependences of the resistance values on h are obtained [1]. This is because 
the resistive circuit containing companion models has resistances with order of 
magnitudes which is extended over some decades. In the case of RF circuits, 
containing both high frequency carrier signals and low frequency modulator 
signals, h must take very small values in order to compute high frequency details 
of the circuit response. For example if h=10-10 s a broad range of resistance values 
(between 10-6Ω and 107Ω) can be obtained. In this case a linear algebraic equation 
system which may have an ill-conditioned matrix must be solved. The main 
contribution of this paper is related to the solving of this system. 
 

 
a 

 
a 

 

1
1

1
ˆ

)( +
+

+ ⋅= n
n

n i
dq
udhif  

b 

 

1
1

1

ˆ
)( +

+

+ ⋅= n
n

n u
d

idhuf
ϕ

 

b 
Fig.1. Companion models of a capacitor a) 

linear, b) charge controlled )(ˆ quu =  
Fig. 2. Companion models of an inductor a) 

linear b) flux controlled )(ˆ ϕii =  
 

Sweeping a time step in transient analysis of a circuit involves solving of a 
resistive circuit whose parameters are computed depending on a certain value of h 
followed by an error computation and a decision to accept or reject the assumed 
value for h. Three kinds of errors are known to estimate the correctness of the 
value of h; these errors are presented in Section 2. Section 3 deals with solving of 
linear systems with ill-conditioned matrices and includes our new approach. Two 
examples are presented in Section 4, while Section 5 contains the conclusions. 
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2. Errors in transient analysis 

The time step magnitude in transient analysis of electrical circuits is 
chosen depending on certain errors. Three types of errors are used in transient 
analysis of circuits. The first one is the local truncation error (LTE), which is 
employed in SPICE-like circuit simulators (SPICE, PSPICE, HSPICE, SPECTRE, 
SPECTRE RF). Both the LTE of each state variable and the LTE of its time 
derivative are used. The LTE is estimated in the worst case corresponding to a 
relative error and to an absolute error. For example, the error of the time 
derivative of a state variable is: 
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nx  is the current through a capacitor or the voltage of a inductor. A 
similar error is defined for 1+nx . 

For each time step, the maximum allowed LTE is given by: 
 ),max( •=

x
xE εε  (2) 

Starting from this value, a maximum time step is computed as: 
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This algorithm for time step computation includes a “cut and try” 
procedure based on the previous relationships [1]. 

The main drawback of this algorithm is the relation (3) which is based on 
the remainder estimation in Taylor formula [2]. The LTE of the trapezoidal 

algorithm is estimated as )(
12

'''
3

τxh
−  where τ  is an unknown value in the vicinity 

of 1+nt . Moreover, the third derivative can only be approximated knowing only the 
sample values given by a numerical method (the form of the solution between the 
samples is not known).  

Another algorithm for time step choice, based on an energy error, is 
proposed in [3]. The energy accumulated by a nonlinear capacitor in the time step 
[tj, tj+1] can be computed exactly as: 
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where q is the capacitor charge, vj is the capacitor voltage at tj and vj+1 is the 
capacitor voltage at tj+1. 
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For this capacitor, the energy balance in this time step is the difference 
between the accumulated energy and the energy fed by circuit into capacitor: 

 ( ) ( )∫
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−−=Δ +

1
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t
jj dviEEE τττ  (5) 

where i is the capacitor current.  
If 0≠ΔE , the integration algorithm gives an erroneous estimate of the 

solution. While the accumulated energy depends only on vj and vj+1, the energy 
fed by circuit into capacitor depends on the functions ( )τi  and ( )τv  too. 

An algorithm for the computation of the time step based on EΔ  control is 
developed in [3]. The maximum allowed 1+Δ jE  in the time interval [tj, tj+1] is 
computed in a similar manner to (1): 
 ajrj EE εε +Δ<Δ +1  (6) 

The energy balance for a time step may be computed taking into account 
the energies accumulated by all dynamic elements and the energies absorbed by 
resistors and sources 
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The absolute energy balance error is defined as: 
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and the relative energy balance error is defined as: 
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where n is the number of circuit elements including sources. 

The time step is chosen computing rEΔ  and the assumed time step is 
accepted if EEREr ≤Δ , where EER is the imposed relative energy balance error 
margin. The algorithm for the time step choice can be outlined as follows [4]: 
 

nnn htt +=+1  
solve for 1+nt  
compute rEΔ  
if 10EEREr <Δ  

accept 1+nt  

nn hh ⋅=+ 5.11  
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( )TMAXhh nn ,min 11 ++ =  
continue 

else if EEREEER r <Δ<10  
accept 1+nt  

nn hh =+1  
continue 

else if EEREr >Δ  
reject 1+nt  

5.11 nn hh =+  
if min1 Hhn <+  print TIME STEP TOO SMALL; 

analysis is aborted 
 

This algorithm allows simple computation of a global estimate of the 
correctness of the transient analysis for the whole circuit and for the whole time 
interval (from tstart to tstop). The global error ∑Δ=Δ atotal EE , where aEΔ  are 
given by (8), and the sum is considered for all accepted steps, is computed to this 
end. 

3. Solving of linear systems with ill-conditioned matrices 

Consider the linear system Ax=b corresponding to the resistive circuit 
containing companion models. This system can be solved, for example, using LU 
decomposition. If the time step used to integrate the circuit equations is very 
small, the numerical values of the entries in the A matrix are orders of magnitude 
apart and the problem becomes ill-conditioned. Due to this fact, the system 
solution is affected by numerical errors. To improve the system solution, some 
iterative refinement algorithms are known, the most used being GMRES [8]. This 
algorithm can be outlined as: 

Repeat 
Compute the residual xAbr ⋅−=  
Solve rdA =⋅  
Update the solution dxx +=  

Until {r or d is small enough or stops decreasing, or a maximum iteration 
count is exceeded}.  

This algorithm compensates, up to a point, for bad row-scaling. The 
residual is never worsened but the solution x, though usually improved, frequently 
gets worse if the condition number is very big [9].  

In order to estimate the correctness of the solution of this linear system, 
the following power balance errors are used:  
• the absolute power balance error 
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• the relative power balance error 
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It seems that using an extra precision, a more accurate solution than that 
corresponding to the GMRES refinement can be obtained using a shorter CPU 
time. Our approach is to use long double precision computation for solving the 
resistive circuits containing companion models. The two examples presented 
below show that our approach gives better results than the SPICE one, which uses 
diagonal pivoting combined with Markowitz criterion for minimum fill-in 
number. 

3. Examples 

The LU decomposition for solving the linear system occurring in the 
transient analysis has been implemented in a program using the time step choice 
algorithm in [4]. 

The first example contains a nonlinear element and a resonant branch (Fig. 
3 a). The circuit is driven by a sinusoidal excitation of 1 MHz, the resonance 
frequency of the RLC branch being 100 MHZ. The nonlinear element is a diode 
modeled by a PWL resistor in series with a voltage source (Fig. 3 b). 

 
The inductor voltage detail given in Fig. 4 shows the difference between 

the double precision and the long double solutions. 
 

 
  

Fig. 3 a. The nonlinear circuit Fig. 3 b. Nonlinear resistor 
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Fig. 4. The inductor voltage 

 
Using double precision, with or without GMRES refinement, the evolution 

of the relative power balance error is almost the same (Fig. 5). 
 

 
Fig. 5. Relative power balance error – double 

precision 

 
Fig.6. Absolute power balance error – double 

precision 
 

The same evolution can be observed and for the absolute power balance 
error (Fig. 6). 

If instead of double precision we use long double precision to solve the 
system, both the relative power balance (Fig. 7) and the absolute power balance 
(Fig. 8) are significantly improved even without GMRES refinement. 
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Fig. 7. Relative power balance error - long double precision 

 

 
Fig. 8. Absolute power balance error – long double precision 

 
The results are summarized in Table 1: 

 
Table 1 

precision GMRES maxrelPΔ  maxabsPΔ  CPU time 
double yes 5.5E-5 2E-9 0.54s 

long double no 1.7E-8 1.05E-12 0.43s 
 

It can be observed that with double precision we cannot obtain the error 
limit obtained with long double precision, no matter how many GMRES iteration 
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are made (even 100). Using double precision with GMRES refinement is more 
time consuming than long double precision without GMRES refinement. 

The second example is a band-pass filter built with two bulk acoustic wave 
resonators and was analyzed with SPICE and the proposed algorithm. A nonlinear 
circuit model having elements with polynomial nonlinearities in the motional 
branch [7] is used for each resonator (Fig. 9). This circuit is driven by a sinusoidal 
excitation of 2.025 GHz (the series resonance frequency of the first resonator).  

The first resonator has the following implementation: 
( ) ( )3

1
2

1111 65.055.056.4 RmRmRmRmRm ieieiiu ⋅−+⋅−+⋅=  
( ) ( )3

1
2

1111 5135991.69 LmLmLmLmLm ieieiei ⋅−+⋅−+⋅−=ϕ  
( ) ( )3

1
2

1111 106861529.88 CmCmCmCmCm ueueueuq ⋅−+⋅−+⋅−=  
while that of the second one is: 

( ) ( )3
2

2
2222 65.055.056.4 RmRmRmRmRm ieieiiu ⋅−+⋅−+⋅=  

( ) ( )3
2

2
2222 5135970 LmLmLmLmLm ieieiei ⋅−+⋅−+⋅−=ϕ  

( ) ( )3
2

2
2222 1068615166.93 CmCmCmCmCm ueueueuq ⋅−+⋅−+⋅−=  

 
Fig. 9. Bandpass filter 

 
After sweeping 100 excitation periods the output voltage V(2) computed 

with the proposed algorithm is practically the same with that computed with 
SPICE (Fig. 10). 
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Fig. 10. Output voltage of the bandpass filter - detail 

 
The error limits in these two algorithms have been set so that the number 

of accepted steps to be similar. Using the same numerical method (trapezoidal 
rule) for the integration of circuit equations, similar waveforms have been 
obtained as expected. The waveforms V(2) obtained using these two algorithms 
have the properties in Table 2. 

Table 2 
Waveform properties 

 PROPOSED SPICE 
IMPOSED ERROR LIMIT EER=9E-5 RELTOL=5.5E-6 

ACCEPTED STEPS 7863 7816 
REJECTED STEPS 448 3031 

totalEΔ  3.906E-15 1.04E-14 
CPU TIME 0.25S 0.32S 

 
It follows that the proposed algorithm is better from the viewpoint of the 

rejected steps number, the global error totalEΔ , the relative energy balance error 
and CPU time. It is interesting to observe the evolution of the relative energy 
balance error for the SPICE solution and to compare it with the relative energy 
balance error of the proposed algorithm (Fig. 11). 
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Fig. 11. Relative energy balance error for SPICE solution and for the proposed algorithm 

 
The evolution of time step for the SPICE solution and for the proposed 

algorithm is given in Fig. 12. 

 
Fig. 12. Time step evolution for the SPICE solution and for the proposed algorithm 

5. Conclusions 

It was shown that transient analysis of RF circuits may lead to ill-
conditioned systems of linear equations. Their solutions are computed with errors 
even though GMRES iterations are used. The computation of these solutions 
without GMRES refinement using long double precision leads to more accurate 
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solutions than that corresponding to the GMRES refinement using double 
precision. Moreover, a shorter CPU time is needed in the first case. 

This algorithm was implemented in a transient analysis program which 
chooses the time step on the basis of energy balance errors. Two examples, for 
which this program gives better results than SPICE, have been presented. 

6. Acknowledgment  

The authors would like to thank prof. Angelo Brambilla from Politecnico 
di Milano and prof. Mihai Iordache from Politehnica University, Bucharest, for 
helpful discussions. 
 

R E F E R E N C E S 

[1] L.W. Nagel, SPICE2: A computer program to simulate semiconductor circuits, 
Memorandum No. UCB/ERL M520, 1975 

[2] L.O. Chua, P.M. Lin, Computer aided analysis of electronic circuits, Prentice Hall, 1975. 
[3] A. Brambilla, D. A’Amore, Energy-Based Control of Numerical Errors in Time-Domain 

Simulation of Dynamic Circuits, IEEE Transactions on Circuits And Systems – I: 
Fundamental Theory And Applications, Vol. 48, No.5, May 2001 

[4] F. Constantinescu, A.G. Gheorghe, M. Nitescu, A time step choice algorithm for transient 
analysis of circuits, Proceedings of AFRICON 2009, September 23-26 2009, Nairobi, 
Kenya 

[5] A. Brambilla, Private communication, March 2007 
[6] F. Constantinescu, A.G. Gheorghe, M. Nitescu, Large signal analysis of RF circuits – an 

overview, Proceedings of ATEE 2006 
[7] F. Constantinescu, A.G. Gheorghe, M. Nitescu, “New Circuit Models of Power BAW 

Resonators”, Revue Roumaine des Sciences Technique – Electrotechnique et Energetique, 
no.1, 2008 

[8] Y. Saad, M.H. Schultz, GMRES: A Generalized Minimal Residual Algorithm for Solving 
Non-symmetric Linear Systems, SIAM J. Sci. Stat. Comput., Vol. 7, No. 3, July 1986 

[9] X.S. Li, J.W. Demmel, D.H. Bailey, Greg Henry, et.al, Design, Implementation and Testing 
of Extended and Mixed Precision BLAS, October 20, 2000, 
http://repositories.cdlib.org/lbnl/LBNL-45991. 

 


