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OPTIMIZATION OF INTERNAL FORCED CONVECTION 
THROUGH A DUCT BASED ON THE SECOND LAW  

Dorin STANCIU1, Alexandru DOBROVICESCU2 

In funcţie de soluţia aleasă pentru schimbătorul de căldură, procesul de 
convecţie interioară poate fi realizat cu diferite distribuţii de temperatură ale 
suprafeţelor de separaţie dintre fluide. Atunci când fluxul total de căldură este 
impus, fiecare din aceste distribuţii influenţează ireversibilităţile viscoase şi termice 
asociate procesului. În majoritatea cazurilor insă, calculul vitezei de generare a 
entropiei este realizat cu ajutorul temperaturii medii a peretelui conductei. In acest 
fel, influenţa distribuţiei de temperatură a acestuia este in mare parte neglijată. 

Utilizând drept criteriu viteza totală de generare a entropiei, obiectivul 
lucrării este acela de a identifica soluţia optimă a procesului convectiv de transfer 
de căldură printr-o conductă în raport cu distribuţia de temperatură a peretelui şi 
lungimea acestuia. Expresia vitezei totale  de generare a entropiei este obţinută prin 
integrarea distribuţiei sale liniare în lungul curgerii, iar procedura de minimizare 
are la bază teoria controlului optimal a lui Pontreaghin.  

Depending on the heat exchanger solution, the heat transfer in internal forced 
convection can be fulfilled with different wall temperature distributions. If the 
overall rate of the heat flux is imposed, each of these distributions influences both, 
flow friction and heat transfer irreversibilities. In most cases, the calculus of entropy 
generation rate is performed with the aid of the mean temperature of the walls. In 
this way, the influence of the wall temperature distribution on irreversibility is 
neglected.  

 Using as criterion the overall rate of entropy generation, the objective of this 
paper is to identify the optimal solution of internal convection heat transfer through 
a duct with respect to the wall temperature distribution and the duct length. The 
expression of the overall entropy generation rate is obtained by integrating its linear 
distribution along the duct and the procedure of minimization relies on the optimal 
control theory of Pontryagin.  
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1. Introduction 

Since the fundamental work of Bejan [1], many studies have been 
performed in the field of thermodynamic design of external or internal forced 
convection. More often, in the power-generation field, the heat rate Q  is imposed, 
because the thermodynamic agent must be heated or cooled in order to reach an 
imposed temperature T1 at the end of the process. The thermal and viscous 
irreversibilities, that accompany the heat transfer process, destroy the flow exergy 
at a rate that is proportional to the system rate of entropy generation, genS  and the 
rate of lost available work (or lost exergy) results from well known Gouy-Stodola 
theorem: 
                                                   genenvlost STW =                                                 (1) 
 
where Tenv represents the environment temperature. The competition between 
thermal and viscous irreversibilities often allow to identify an optimum size or 
operating regime for which the rate of lost available work (or entropy generation 
rate) has a minimum value.  

The rate of entropy generation can be computed at bulk or at continuum 
level. In the first case [1]-[3], the information of flow and heat transfer is obtained 
with the aid of dimensionless correlations of friction factor and Nusselt or Stanton 
numbers. Once they are available, this information allows the computation of 
viscous and thermal component of irreversibility. For the simplest laminar or 
turbulent convection heat transfer processes, occurring in boundary layers or 
ducts, the bulk level model could rely on the differential equations and the linear 
rate of entropy generation may be determined. But for the complex ones, like heat 
exchangers, the model computes directly the overall rate of entropy generation. 

The continuum level [4]-[6] is more sophisticated because it uses the 
analytical or numerical solutions of velocity and temperature fields for 
determining the volumetric rate of entropy generation over the entire flow 
domain. At this level, the model provides a great precision of calculus and a true 
understanding of the irreversibility structure. For a turbulent convection process, 
the gap between the bulk and the continuum level of second law analysis can be 
found in [6].  

Relying on the full solution of Navier-Stokes equations, the continuum 
level cannot be used in an optimization procedure which is based only on 
differential equations. Therefore, for this work the bulk level method of entropy 
generation calculus was retained.  

There are two motivations to deal with in this paper. First, the entropy 
generation rate genS  depends not only on the system size or mean temperature 
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difference between fluid and wall, but also on the heat exchange solution, that 
determines the temperature distribution of the wall. Second, the process 
performances are always compared with the ideal case performances, for which 
the heat exchange proceeds without irreversibilities. Maybe the ideal case is not 
the most reasonable for comparison, because practically it can be never reached. 
One believes that it is useful to find the conditions for minimum exergy 
destruction first in the simplest case of internal forced convection. 

2. Optimal problem formulation 

Consider a mass flow rate, m  which passes through a circular duct having 
the diameter D and the length l. The wall temperature is Tw(x), while the bulk 
temperature of the stream T(x), varies from T0 in section x0= 0, to T1, in section 
x1= l (see also Fig. 1). For this internal forced convection, the following 
hypotheses are considered: a) the thermodynamic agent is considered as ideal gas; 
b) in the initial section x0= 0 the flow is already turbulent and fully developed.  
c) the heat transfer process can be neglected in the flow direction; d) the flow is 
assumed with nearly constant density ρ, viscosity μ and thermal conductivity λ.   
  

 
              Fig. 1 Internal forced convection                    Fig. 2 Different wall and bulk                          
                                through a duct                                         temperature distributions  
 
Using both, the first and the second law of thermodynamics for open systems, the 
following expressions can be easily obtained: 
 

                                                   ( ) ( )[ ]xxSt
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θτθ
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d
d                                          (2)  
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in which St, Nu, Re represents Stanton, Nusselt and Reynolds numbers, ξ (Re) is 
the friction factor and: 
 
                    ( ) ( ) ( ) ( ) 00 x     ;    x    ;      TxDTTxDTDxx w === θτ  
 
Boundaries conditions must be added to these equations. Passing through the duct, 
the fluid must be heated (or cooled) from T0 until T1, so that: 

                                              ( ) 1=(1)    ;        10 θθθ =                                       (4) 
 
Taking into account the hypotheses made above, both Nusselt and Stanton 
numbers are constant in the x direction due to the similarity of the flow and heat 
transfer. 
 If m  and D are fixed, the boundary conditions (4) show that the heat 
transfer rate: 

                                           ( ) ( )∫ −=′=
1

0
10 1d

x

pTcmxxqDQ θ  

 

is imposed, while the value of the heat transfer rate per unit length q′ depends on 
both the wall temperature distribution τ(x) and the duct length L=x1. As is can be  
seen in Figure 2, two different wall temperature distributions τ1(x) and τ2(x) 
establish two different bulk temperature distributions of the stream θ1(x) and θ2(x) 
through eq. (2) and two distinct values of  the overall rate of entropy generation: 
 

                                           ∫ ′πλ=
1

0
)(

x

gengen xdxSDS                                            (5)  

 
through eq. (3). The objective is to find the wall optimal temperature 
distribution ( )xτ~ , or/and the length L=x1, which minimizes the entropy generation 
rate (5) by verifying eq. (2) with boundary conditions (4).  
 Mathematically speaking, eq. (5) represents a functional. Therefore one 
defines T as the set of partially continuous functions τ : [0,1]→ Ω, which,  
introduced in eq. (2), ensure the boundary conditions (4) for the functions θ(x):  
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On this set the functional J: T→R is defined as:                 
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There are two problems for this functional: a) the problem with fixed length for 
which one finds only the optimal wall temperature distribution ~τ ∈T that 
minimizes the functional J at 1x  fixed; b) the problem with free length, for which 
~τ ∈T and 1x  that realizes the absolute minimum value of J are looked for. 
 3. Optimal control theory applied to convection heat transfer 
 

The solution of these problems can be found in many ways. It is useful to 
consider τ(x) as the control and θ(x) as the answer of thermodynamic system at 
this applied control. Then, it is possible to obtain the solution to this problem by 
using the optimal control theory [7].  
 The Hamilton Pontryagin function for the assumed problems is defined by: 
   

                         ( ) ( ) ( ) ( )θτψ
θθτ

θτψθτ −+−
−

−= StaNuH 41Re,, 3
2

                   (8) 
 
where a is a constant with respect to x: 
 

                                          ( )   )8(Re3 0
223 TDa λρμξ=  

 

and ψ=ψ(x) is an auxiliary function that satisfies the following differential system: 
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which has the boundary conditions (4). 
 If it exists, the function τ~ ∈Τ  that minimizes the functional (7) is named 
optimal control and the solution of eq. (2) corresponding to this function is called 
optimal trajectory. The specific form of the optimal control ( )xτ~  is established 
using Pontryagin’s principle of maximum [7]. For our problems, this principle is 
equivalent to: 
                                                      ( ) 0~,~, =∂τψθτ∂H                                          (10) 
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but is essential to mention that the solution of this equation must belong to the set 
T. Solving the above equation it results: 
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Using eq. (11), the differential system (9) becomes: 
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and has the boundary conditions (4). There are two differential equations with two 
boundary conditions so that the system (12) can be solved. 

 4. The problem with fixed length 
 
 Being rather complicated, the form of this system does not allow finding 
an analytic solution. Of course it is possible to solve it numerically very easy, but 
the numerical solution is not always able to show some important features of the 
problem. This is the reason for adding a supplementary assumption that refers to 
the length of the duct. If the length of the duct has a “relatively short” value, the 
temperature difference Δθ = τ−θ , that must be applied to the fluid to reach at  
outlet the temperature T1, has a high value. In this case, thermal dissipation is very 
high comparatively with viscous dissipation that can be neglected. In the opposite 
case, when the length of the duct has a “relatively long” value, the temperature 
differences become small and the approximation ( ) 2θθθΔθτθ ≅+=  works. These 
are two specific cases for which an analytic solution can be found. It remains to 
establish when a duct has “relatively short” or “relatively long” length, because its 
length has to be connected with Nusselt or Stanton numbers. The form of the 
system (12) suggests that the “length of the duct” must be connected with the 
quantity: 
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which is valid for M<1, the last equation of system (12) becomes: 
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The duct will be “short” if: 
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because the influence of viscous ireversibility can be neglected from the point of 
view of entropic analisys. By contrast, if: 
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the duct will be “long”, such that, from the decomposition (14) one will keep only 
the first two terms. These are two extreme cases for which an analytical solution 
can be found. 
 
 4.1 Optimal solution for “short duct” 
 

As it has been shown previously, in this case, viscous dissipation is 
negligible in comparison with thermal dissipation. With this assumption, the 
general solutions for eqs. (12) are: 
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The constants of integration c1 and c2 are determined from boundary conditions 
(4) so that the solution in this case is: 
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When the wall temperature distribution is ( )xτ~ , the entropy generation rate can be 
calculated with: 
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and has a minimum value. For any other wall temperature distribution, ττ ~≠  that 
verifies the condition θ(1)=θ1, the entropy generation rate is Sgen,Q > [Sgen,Q]min. 
One has also to notice that the minimum entropy generation rate decreases when 
the length of the duct increases due to the fact that the temperature difference 
between wall and fluid diminishes. 
 The solution (18) must satisfy the inequality (16), that becomes: 
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where O denotes the order of magnitude. Usually, the right hand side of inequality 
(20) is O(10-1)-O(10-3). Then, the validity of the optimal solution (11) is given by 
O[(D/L)lnθ1/(4St)]. Indeed if L=x1-x0 is small and θ1>>1, one finds that 
O[(D/L)lnθ1/(4St)]=O(10), so that the magnitude of the left hand side of inequality 
(20) is O(1). In these situations the duct can be considered “short” from the point 
of view of entropy analysis. In the opposite case when L is high and θ1 is small, it 
results that solution (11) is given by O[(D/L)lnθ1/(4St)]. Indeed, if L=x1-x0 is high 
and θ1 is small, one finds that O[(D/L)lnθ1/(4St)]=O(10-1), so that both sides of 
inequality (20) have the same order of magnitude and the condition (11) cannot be 
applied. The above analysis shows that the quantity: 
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allows to identify one dimensionless parameter that gives a quantitative 
understanding to “short duct” or “long duct” notion after how )10()~( OO =L  or 

)10()~( 1−=OO L . 
 

 4.2 Optimal solution for “long duct”  
 

In this case the value of viscous dissipation becomes comparable with 
thermal dissipation value and cannot be neglected. Then, keeping the first two 
term of decomposition (14), the system (12) becomes: 
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and the expression of optimal control (11) has the form:      
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It is easy to show that the differential system (22) corresponds to Hamilton-
Pontryagin’s function (8) in which the denominator τθ of the first term was 
replaced by θ 2. In the beginning of this paper has been shown that this 
approximation corresponds to the long duct case. This means that approximation, 
when using the dimensionless quantity lnθ1/(bSt), works also very well. The last 
approximation is more favorable because it uses the initial values of the problem 
that define both the flow and the heat transfer processes. 
 From system (22) one infers the following solution: 
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In the above relations, the sign “+” corresponds to the heated fluid and the sign “-
” corresponds to the cooled fluid. These signs are selected taking into account that 
the derivative xddθ~  must be positive when the fluid is heated and negative in 
the opposite case. Using the optimal solution (24), the Hamilton-Pontyagin 
function takes the form: 
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and it is always greater than zero. The integration constant c1 and c2 are 
established as solution of the algebraic system: 
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which was obtained from boundary conditions (4), where: 
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 The optimal issue has solutions only if the values of the initial conditions 
ensure the compatibility of system (26), and the auxiliary function ψ~ exists for 

]x ,0[x 1∈  On the other hand, if there is a set of solutions, the one that satisfies 
the maximum principle of Pontryagin (10) must be selected. Next, the solutions of 
system (26) in the case of heating the fluid (θ1>1) should be discussed. It is 
obvious that, if (c1′, c2′) represents a solution of system (26), then (c1′, -c2′), (-c1′, 
b2/c2′) and (-c1′, -b2/c2′) are also solutions, but for any of them, the form of 
optimal solution (24) remains unchanged. For this reason, these solutions are 
indistinct. It can be shown that, if the initial values of the problem (meaning the 
fluid nature, l, θ1 and Re) obey the condition: 
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then the system (26) has always a solution so that   01 >c and 21
22c b> . This 

solution always determines the wall optimal temperature distribution ( )xτ~  by eq. 
(24). The minimum value of entropy generation rate can be obtained from: 
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and it can be calculated following the resolution of the algebraic system (26). The 
thermal component expression of the minimum entropy generation rate has the 
form:  
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and the viscous component expresion results from: 
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For this case, the thermal component of the entropy generation rate is always 
greater than the viscous component. 

Figure 3 presents the optimal wall and bulk temperature distribution for 
three values of the Reynolds number. The air, used as thermodynamic agent, is 
heated from θ0 = 1.0 until θ1 = 1.05 in a smooth duct having D = 0.03m and  
L = 1m. In order to perform calculus, the Colburn analogy has been used. One 
particularity of the optimal bulk temperature distribution is that it varies 
approximately linear and the other is that practically it does not depend on 
Reynolds number. The optimal distribution of wall temperature closely follows 
the variation of the optimal bulk temperature distribution, but it depends on the 
Reynolds number because the exchanged heat rate increases with the mass flow 
rate of the fluid.  

 
Fig. 3  Optimal temperature distribution in internal forced convection through a smooth duct 

 

5. The problem with free length 
 

In this case, the duct length L=x1-x0 becomes one of the variables of the 
problem. Because the overall heat flux is fixed by the boundary conditions (3), the 
thermal entropy generation rate component decreases and the viscous entropy 
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generation rate component decreases if the length of the duct grow up. For this 
reason, the problem with free length will be solved in the “long duct’ hypothesis.   

The additional condition for the new variable of the problem is [7]: 
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the second equality resulting from the first ecuation of algebraic system (26). 
From the above condition one finds that  01 =c and 22 bc ±= , but these values 
lead to indeterminate operations for the second equation of the algebraic system 
(26). Using the limit rule and taking into account the corresponding signs of 
temperature shape for heated or cooled fluid, it results:  
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so the optimal length of the duct has the expression: 
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In this condition, eqs. (24) become: 
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The function defined by eq.(34c) satisfies the conditions of Pontryagin theorem, 
so that the functions ( )xθ~ and ( )xτ~  represent the optimal problem solution. This 
solution allows finding the absolute minimum value of entropy generation rate: 
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for which: 
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The last relations confirm the equipartition principle of optimal dissipations, 
stated by Bejan. It is obvious that Re, Nu and St are connected by thermal 
correlations but their use has been avoided in order to keep the optimal solution 

generality.  
 
 

Figure 4 shows the optimal solution for the air flow through a circular duct 
having D = 0.1 m. The inlet temperature of air is T0=298 K and for calculus the 
Colburn analogy has been used. The optimal wall and bulk temperature 
distributions are quasi-linear with respect to the length of duct. As it is shown in 
Figure 4a, the difference  θτ −   increases with the Reynolds number because the 
heat flux that must be transferred to fluid (or from fluid) enhances with mass flow 
rate. As a consequence, the thermal dissipation increases and practically 
determines the doubling of the entropy generation rate because the irreversibility 
distribution ratio is equal to the one for the optimal solution (fig. 4b). This still 
remains the principal reason for which the optimal length decreases when the 

 
        
     Fig. 4a Optimal wall and bulk temperature            Fig. 4b Minimum entropy generation rate 
              distribution for heated and cooled gas                                  for heated gas 
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Reynolds number increases. The high Reynolds numbers determine either the 
augmentation of heat transfer rate per unit length or the viscous entropy 
generation rate per unit length so that the length where it becomes equal to 
thermal entropy generation rate becomes smaller. The values of the optimal length 
(33) are very high and rather not utilizable. But it must be emphasized that an 
absolute minimum value of entropy generation rate in the internal forced 
convection through a duct exists and the heat transfer design that leads to it is 
unique. 
 

 6. Numerical example  
 

As an example the connective heat transfer of air which is heated from 
θ0=1.0 until θ1=1.05 in a smooth duct, having D = 0.03m and L = 1m is 
considered. At x0 section, the bulk temperature of the flow is T0=290K. In Table 1 
the entropy generation rate for many wall temperature distributions are compared. 
The calculus was done using the hypothesis of the “long duct”. If the wall 
temperature distribution corresponds to the problem with fixed length, the overall 
entropy generation rate (and obviously the lost available work) is twice larger 
compared to the problem of free length. Additionally, the classical wall 
temperature distributions  .constqw =′  or .constTw =  determines an 
approximately 10% growth for the overall entropy generation rate.. Finally one 
notes that the wall temperature distribution induced by the boundary condition 

.constqw =′  seems to be more advantageous than other technical feasible 
distributions. 

In the case of heat exchangers design, the criterion of minimum entropy 
generation is very often combined with thermo-economic optimization 

 
       Table 1Analysis of the entropy generation rate for some wall temperature distribution 
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Eq. (22c) 
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1.0 

 
0.0772 

 
0.00588 

 
0.0829 

 
2.22 
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Tw=const 

 
1.0 

 
0.0786 

 
0.00583 

 
0.0844 

 
2.27 

 
1.083 
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procedures. In this case, considering in on one hand the costs of investment and 
on the other the lost exergy costs, the optimal length of ducts (or of heat transfer 
surface) will be shorter than that resulting from (33b). From this point of view, the 
entropy generation minimization has the merit of revealing the minimum costs of 
lost exergy, from which one starts the thermo-economic optimization. 
   

 
7. Conclusions 

 
 The analysis made in this paper shows that, in the case of internal forced 
convection through a duct, energy dissipation depends on the wall temperature 
distribution. This dependence allows finding the optimal conditions for which an 
imposed overall heat flux is transferred with minimum energy dissipation. 

For a fixed length of the duct, there is an optimal temperature distribution 
of the wall that minimizes the entropy generation rate. This temperature 
distribution is specified by eq. (18) only for thermal dissipation or by eq. (24) 
when considering both viscous and thermal dissipation and relatively long ducts. 
For these optimal distributions the entropy generation rate has a minimum value 
that results from eq. (19) and (29) respectively. On the other hand, Figure 3 
suggests that the counter-flow heat transfer is more favorable from the point of 
view of energy dissipation.   

In the case of free length, the absolute minimum value of the entropy 
generation rate is given by eq. (35) which is obtained if the wall temperature 
distributions correspond to eq. (34b) and the length of the duct has the value 
obtained from eq. (33). At this optimal regime, the thermal component of entropy 
generation rate is equal to the viscous component, which confirms the 
equipartition principle of optimal dissipations. In these equations, the sign “+” 
corresponds to the heated fluid and the sign”-” correspond to the cooled fluid. 
Any other wall temperature distribution, that ensure the transfer of the same 
overall heat flux, leads to a higher value of the entropy generation rate than the 
value given by eq. (35) and (36).  
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