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OPTIMIZATION OF INTERNAL FORCED CONVECTION
THROUGH A DUCT BASED ON THE SECOND LAW

Dorin STANCIU', Alexandru DOBROVICESCU?

In functie de solutia aleasd pentru schimbdtorul de caldurd, procesul de
convectie interioard poate fi realizat cu diferite distributii de temperaturda ale
suprafetelor de separatie dintre fluide. Atunci cdnd fluxul total de cdldura este
asociate procesului. In majoritatea cazurilor insd, calculul vitezei de generare a
entropiei este realizat cu ajutorul temperaturii medii a peretelui conductei. In acest
fel, influenta distributiei de temperaturd a acestuia este in mare parte neglijatd.

Utilizdnd drept criteriu viteza totald de generare a entropiei, obiectivul
lucrarii este acela de a identifica solutia optima a procesului convectiv de transfer
de caldura printr-o conducta in raport cu distributia de temperatura a peretelui §i
lungimea acestuia. Expresia vitezei totale de generare a entropiei este obtinuta prin
integrarea distributiei sale liniare in lungul curgerii, iar procedura de minimizare
are la baza teoria controlului optimal a lui Pontreaghin.

Depending on the heat exchanger solution, the heat transfer in internal forced
convection can be fulfilled with different wall temperature distributions. If the
overall rate of the heat flux is imposed, each of these distributions influences both,
flow friction and heat transfer irreversibilities. In most cases, the calculus of entropy
generation rate is performed with the aid of the mean temperature of the walls. In
this way, the influence of the wall temperature distribution on irreversibility is
neglected.

Using as criterion the overall rate of entropy generation, the objective of this
paper is to identify the optimal solution of internal convection heat transfer through
a duct with respect to the wall temperature distribution and the duct length. The
expression of the overall entropy generation rate is obtained by integrating its linear
distribution along the duct and the procedure of minimization relies on the optimal
control theory of Pontryagin.
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1. Introduction

Since the fundamental work of Bejan [1], many studies have been
performed in the field of thermodynamic design of external or internal forced

convection. More often, in the power-generation field, the heat rate Q is imposed,

because the thermodynamic agent must be heated or cooled in order to reach an
imposed temperature 7; at the end of the process. The thermal and viscous
irreversibilities, that accompany the heat transfer process, destroy the flow exergy

at a rate that is proportional to the system rate of entropy generation, S gen and the

rate of lost available work (or lost exergy) results from well known Gouy-Stodola
theorem:

I/i/lost = Tenngen (1)

where T,,, represents the environment temperature. The competition between
thermal and viscous irreversibilities often allow to identify an optimum size or
operating regime for which the rate of lost available work (or entropy generation
rate) has a minimum value.

The rate of entropy generation can be computed at bulk or at continuum
level. In the first case [1]-[3], the information of flow and heat transfer is obtained
with the aid of dimensionless correlations of friction factor and Nusselt or Stanton
numbers. Once they are available, this information allows the computation of
viscous and thermal component of irreversibility. For the simplest laminar or
turbulent convection heat transfer processes, occurring in boundary layers or
ducts, the bulk level model could rely on the differential equations and the linear
rate of entropy generation may be determined. But for the complex ones, like heat
exchangers, the model computes directly the overall rate of entropy generation.

The continuum level [4]-[6] is more sophisticated because it uses the
analytical or numerical solutions of velocity and temperature fields for
determining the volumetric rate of entropy generation over the entire flow
domain. At this level, the model provides a great precision of calculus and a true
understanding of the irreversibility structure. For a turbulent convection process,
the gap between the bulk and the continuum level of second law analysis can be
found in [6].

Relying on the full solution of Navier-Stokes equations, the continuum
level cannot be used in an optimization procedure which is based only on
differential equations. Therefore, for this work the bulk level method of entropy
generation calculus was retained.

There are two motivations to deal with in this paper. First, the entropy

generation rate S gen depends not only on the system size or mean temperature
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difference between fluid and wall, but also on the heat exchange solution, that
determines the temperature distribution of the wall. Second, the process
performances are always compared with the ideal case performances, for which
the heat exchange proceeds without irreversibilities. Maybe the ideal case is not
the most reasonable for comparison, because practically it can be never reached.
One believes that it is useful to find the conditions for minimum exergy
destruction first in the simplest case of internal forced convection.

2. Optimal problem formulation

Consider a mass flow rate, 2 which passes through a circular duct having
the diameter D and the length /. The wall temperature is 7,(x), while the bulk
temperature of the stream 7(x), varies from 7} in section x¢= 0, to 7], in section
x1= [ (see also Fig. I). For this internal forced convection, the following
hypotheses are considered: a) the thermodynamic agent is considered as ideal gas;
b) in the initial section x;= 0 the flow is already turbulent and fully developed.
c) the heat transfer process can be neglected in the flow direction; d) the flow is
assumed with nearly constant density p, viscosity g and thermal conductivity A.
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Fig. 1 Internal forced convection Fig. 2 Different wall and bulk
through a duct temperature distributions

Using both, the first and the second law of thermodynamics for open systems, the
following expressions can be easily obtained:

€0~ 4sile(x)-0(x) @)
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PRI RC) (ST
— S on = Nu Re 3
7 (x)0(x) " 8D2pg/tT0 o) ©

in which St, Nu, Re represents Stanton, Nusselt and Reynolds numbers, &(Re) is
the friction factor and:

x=x/D ; (X)=T,(Dx)/Ty, ; 6(X)=T(Dx)/T,

Boundaries conditions must be added to these equations. Passing through the duct,
the fluid must be heated (or cooled) from 7; until 77, so that:
00)=1 ; 6()=6 @)

Taking into account the hypotheses made above, both Nusselt and Stanton
numbers are constant in the x direction due to the similarity of the flow and heat
transfer.

If m and D are fixed, the boundary conditions (4) show that the heat
transfer rate:

0 =D [q'(}x = rirc , Ty (6, 1)
0

is imposed, while the value of the heat transfer rate per unit length ¢’ depends on

both the wall temperature distribution 7(x) and the duct length L=x;. As is can be
seen in Figure 2, two different wall temperature distributions 7;(x) and n(x)
establish two different bulk temperature distributions of the stream &,(x) and 6 (x)
through eq. (2) and two distinct values of the overall rate of entropy generation:

X1
Sgen =D [[S gen (¥)d¥ (5)
0

through eq. (3). The objective is to find the wall optimal temperature
distribution ?()?), or/and the length L=x;, which minimizes the entropy generation
rate (5) by verifying eq. (2) with boundary conditions (4).

Mathematically speaking, eq. (5) represents a functional. Therefore one
defines T as the set of partially continuous functions 7 : [0,1]—Q, which,
introduced in eq. (2), ensure the boundary conditions (4) for the functions &(x):
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Tz{r /ﬁ=45t(r—e) ;0(0)=1, 9(1):91} (6)

dx

On this set the functional J: T— R is defined as:

I BT W 9 9 . T R
e om0

There are two problems for this functional: a) the problem with fixed length for
which one finds only the optimal wall temperature distribution T €T that
minimizes the functional J at X; fixed; b) the problem with free length, for which

T €T and Xx; that realizes the absolute minimum value of J are looked for.
3. Optimal control theory applied to convection heat transfer

The solution of these problems can be found in many ways. It is useful to
consider 7(x) as the control and Hx) as the answer of thermodynamic system at
this applied control. Then, it is possible to obtain the solution to this problem by
using the optimal control theory [7].

The Hamilton Pontryagin function for the assumed problems is defined by:

(c-0)

H(z,0,p)=—Nu
or

—(aRe) é +4Sty(r—0) (8)

where « is a constant with respect to x:

a=3¢(Re)u /8D p?ATy)

and y=y(x) is an auxiliary function that satisfies the following differential system:

wo_ar oy o
& oy ~  d&x 50
which has the boundary conditions (4).

If it exists, the function 7 € T that minimizes the functional (7) is named
optimal control and the solution of eq. (2) corresponding to this function is called
optimal trajectory. The specific form of the optimal control ?()_c) is established
using Pontryagin’s principle of maximum [7]. For our problems, this principle is
equivalent to:

H(c.8,57) 6 =0 (10)
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but is essential to mention that the solution of this equation must belong to the set
T. Solving the above equation it results:
A2
~ Nub
7 2

= 11
Nu—-4Styo (1)

Using eq. (11), the differential system (9) becomes:

_ - 3
49 sl [Ny AP gl [ Ne | @Re] gy
dz Nu— 451770 d Nu-4St90 | @

and has the boundary conditions (4). There are two differential equations with two
boundary conditions so that the system (12) can be solved.

4. The problem with fixed length

Being rather complicated, the form of this system does not allow finding
an analytic solution. Of course it is possible to solve it numerically very easy, but
the numerical solution is not always able to show some important features of the
problem. This is the reason for adding a supplementary assumption that refers to
the length of the duct. If the length of the duct has a “relatively short” value, the
temperature difference 46 =7—-6@ , that must be applied to the fluid to reach at
outlet the temperature T, has a high value. In this case, thermal dissipation is very
high comparatively with viscous dissipation that can be neglected. In the opposite
case, when the length of the duct has a “relatively long” value, the temperature

differences become small and the approximation 76 = (9+ 46)9 = #*> works. These

are two specific cases for which an analytic solution can be found. It remains to
establish when a duct has “relatively short” or “relatively long” length, because its
length has to be connected with Nusselt or Stanton numbers. The form of the
system (12) suggests that the “length of the duct” must be connected with the
quantity:

M= _max_|(4St/Nu)id| (13)
we[¥),% ]

Then, using the decomposition:

N2 L N2
Nu :( 4St~j 148t 13(4St )+ (14)

——=|1-——y0 =l+——yl +—| — b
Nu—-4Styo Nul// 2Nul// 2-4 Nul//
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which is valid for M<1, the last equation of system (12) becomes:

~ 2 3 3
v _ Nu l(ﬂwj +ﬁ(@y79j e @B L s
7 wo || 2\ Nu 2-4\ Nu Nub

The duct will be “short” if:

2 3
1(4St (aRe)
—|—wo | >> = 16
2£Nuw j (16)

because the influence of viscous ireversibility can be neglected from the point of
view of entropic analisys. By contrast, if:

2 3 3
1(48t ~\" (aRe)’ _1-3 (4& N~j
—| —yl | r—=—>>—| —yb 17
2(Nuw ) Nud 24\ N (17)
the duct will be “long”, such that, from the decomposition (14) one will keep only

the first two terms. These are two extreme cases for which an analytical solution
can be found.

4.1 Optimal solution for “short duct”

As it has been shown previously, in this case, viscous dissipation is
negligible in comparison with thermal dissipation. With this assumption, the
general solutions for eqs. (12) are:

V=q /5 0=c, ezxpPSt(l/1 /1 —@cl —1}?}
Nu

The constants of integration ¢; and ¢, are determined from boundary conditions
(4) so that the solution in this case is:

2 _

1/x
- . | e/
0F)=07"" 5y # L2201+ | (18ab.c)
6!/ +ast | |0 48t

When the wall temperature distribution is ?()_c ) , the entropy generation rate can be
calculated with:
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[S ]m D% Nu (ln 911/ & )z
, . = TTADXq =
£ min 4silast+1na! ™ |

and has a minimum value. For any other wall temperature distribution, 7 #7 that
verifies the condition &1)=6, the entropy generation rate is Sgen,0 > [Sgen,0]min-
One has also to notice that the minimum entropy generation rate decreases when
the length of the duct increases due to the fact that the temperature difference
between wall and fluid diminishes.

The solution (18) must satisfy the inequality (16), that becomes:

2

2
3
O 1- {L] >> O{M} (20)

6™ +451 Nud

(19)

where O denotes the order of magnitude. Usually, the right hand side of inequality
(20) is 0(10™-0(10). Then, the validity of the optimal solution (11) is given by
O[(D/L)In6,/(451)]. Indeed if L=x;-xo is small and &>>1, one finds that
O[(D/L)In6,/(45%)]=0(10), so that the magnitude of the left hand side of inequality
(20) is O(1). In these situations the duct can be considered “short” from the point
of view of entropy analysis. In the opposite case when L is high and 6, is small, it
results that solution (11) is given by O[(D/L)In,/(45%)]. Indeed, if L=x;-x, is high
and @ is small, one finds that O[(D/L)In&,/(4Sf)]=0(10™"), so that both sides of
inequality (20) have the same order of magnitude and the condition (11) cannot be
applied. The above analysis shows that the quantity:

52% 1)

allows to identify one dimensionless parameter that gives a quantitative
understanding to “short duct” or “long duct” notion after how O(L)=0(10) or

o)=0310"".
4.2 Optimal solution for “long duct”
In this case the value of viscous dissipation becomes comparable with

thermal dissipation value and cannot be neglected. Then, keeping the first two
term of decomposition (14), the system (12) becomes:
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n 2 ~ 2 —
90 3 g, Vo B ppa—(areP 2 (22)
o Nu v Nu 0y
and the expression of optimal control (11) has the form:
~ 28t . 57 ~
T=—uwy0" +0 23
A (23)

It is easy to show that the differential system (22) corresponds to Hamilton-
Pontryagin’s function (8) in which the denominator t0 of the first term was
replaced by @7 In the beginning of this paper has been shown that this
approximation corresponds to the long duct case. This means that approximation,
when using the dimensionless quantity Iné,/(bSt), works also very well. The last
approximation is more favorable because it uses the initial values of the problem
that define both the flow and the heat transfer processes.
From system (22) one infers the following solution:

b Y b ?
0 ()_c) = (4—1J {cz exp(clf)— 2 exp(— cl)_c)} (24a)
cl )
1) exp(cl)_c)Jr b exp(— cla_c)
(7)1 - : (24b)
T b (¥)
I |ea explerx) -2 exp(—cpx)| 71
€2
N\ b _
N |Cl| () exp(clx)+c—exp(— clx) _
7(x)=0(x)* o5 b2 0(x) (24c)
¢z exp(e¥) -~ exp(- %)
)

In the above relations, the sign “+” corresponds to the heated fluid and the sign “-
” corresponds to the cooled fluid. These signs are selected taking into account that

the derivative d@ / dx must be positive when the fluid is heated and negative in
the opposite case. Using the optimal solution (24), the Hamilton-Pontyagin

function takes the form:
2 2
- Y~ St 4C1
H\7T,0,y)=—| — | >0 25
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and it is always greater than zero. The integration constant ¢; and ¢, are
established as solution of the algebraic system:

2 2 2 2
(b—lj (02 —b—z] =1; (b—lj {02 eXp(lel)—b—zeXP(—lel) =6, (20)
)

401 (&) 401
which was obtained from boundary conditions (4), where:

2 3
pSS Ly, 2k @)
Nu bl

The optimal issue has solutions only if the values of the initial conditions
ensure the compatibility of system (26), and the auxiliary functiony exists for
x €[0,X,] On the other hand, if there is a set of solutions, the one that satisfies
the maximum principle of Pontryagin (10) must be selected. Next, the solutions of
system (26) in the case of heating the fluid (6,>1) should be discussed. It is
obvious that, if (¢i’, ¢;") represents a solution of system (26), then (c/’, -¢2"), (-¢i’,
by/cy") and (-¢i', -by/cy') are also solutions, but for any of them, the form of
optimal solution (24) remains unchanged. For this reason, these solutions are
indistinct. It can be shown that, if the initial values of the problem (meaning the

fluid nature, /, 6, and Re) obey the condition:

byoJby
2

91 >1+ )?1 (28)
then the system (26) has always a solution so that ¢; >0 and c, > b;/ 2. This

solution always determines the wall optimal temperature distribution 7(X) by eq.
(24). The minimum value of entropy generation rate can be obtained from:

2 2 _
- _ St by | _ exp(cyxy)
(Sgen )mln —ﬂ'ﬂD E(C’z —gJ Xl +2Cz (I—T (29)

and it can be calculated following the resolution of the algebraic system (26). The
thermal component expression of the minimum entropy generation rate has the
form:
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2
: St by ) _ exp(ciX|)
(Sgen,Q )mln =7AD E(CZ —EJ X1 +C2 (I—T (303)

and the viscous component expresion results from:

S = miDc 1——“"("1)‘1)] (30b)
( gen,V )mln 2[ \/9—1

For this case, the thermal component of the entropy generation rate is always
greater than the viscous component.

Figure 3 presents the optimal wall and bulk temperature distribution for
three values of the Reynolds number. The air, used as thermodynamic agent, is
heated from & = 1.0 until 8, = 1.05 in a smooth duct having D = 0.03m and
L = 1m. In order to perform calculus, the Colburn analogy has been used. One
particularity of the optimal bulk temperature distribution is that it varies
approximately linear and the other is that practically it does not depend on
Reynolds number. The optimal distribution of wall temperature closely follows
the variation of the optimal bulk temperature distribution, but it depends on the
Reynolds number because the exchanged heat rate increases with the mass flow
rate of the fluid.

#(T)

8=

el

Fig. 3 Optimal temperature distribution in internal forced convection through a smooth duct

5. The problem with free length

In this case, the duct length L=x;-xo becomes one of the variables of the
problem. Because the overall heat flux is fixed by the boundary conditions (3), the
thermal entropy generation rate component decreases and the viscous entropy
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generation rate component decreases if the length of the duct grow up. For this
reason, the problem with free length will be solved in the “long duct’ hypothesis.
The additional condition for the new variable of the problem is [7]:

2 2
Hlrg.9)- S [4a | _S2(, b
i Nu{ b Nul ? c

the second equality resulting from the first ecuation of algebraic system (26).

0 (31)

From the above condition one finds that ¢; =0 and ¢, =+,/b, , but these values

lead to indeterminate operations for the second equation of the algebraic system
(26). Using the limit rule and taking into account the corresponding signs of
temperature shape for heated or cooled fluid, it results:

ﬂ:liblggxl (32)

so the optimal length of the duct has the expression:

¥ :_l 0, -1 —m 33
B +2(\/_ )Sr,/(aRe)3 .

In this condition, egs. (24) become:

5(3):[1+(\/9_1 —1)@}2 (342)

X1

#(x)=| 1+ ! (are) | (¥) (34b)

1+ (o -1 )x/m)V Nu

(_) . A Nu(aRe)3 (340)
25if1+ (Jor -1)w/5)f

The function defined by eq.(34c) satisfies the conditions of Pontryagin theorem,

so that the functions & (x)and 7(x) represent the optimal problem solution. This
solution allows finding the absolute minimum value of entropy generation rate:
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_ 1 R 3/ 2 N 1/ 2
(Sgen )min m_ MD[I B Jo J il St - (2)
> 1
for which:
(S gen,Q )min,m - (Sge”’V )min,m - %(Sgen )min,m (36)

The last relations confirm the equipartition principle of optimal dissipations,
stated by Bejan. It is obvious that Re, Nu and St are connected by thermal
correlations but their use has been avoided in order to keep the optimal solution

113 T T T T T 8
%) =115
5 ; wﬁ?ﬂ 1€
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B 4§ 4L
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0% = 1 5
T(%)
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o 0z a4 04 DE 1 1.2 a 0 1_105 2_105 3_105
Dirqensionless Length Feynolds Humber
Fig. 4a Optimal wall and bulk temperature Fig. 4b Minimum entro eneration rate
g p p g Py g
distribution for heated and cooled gas for heated gas
generality.

Figure 4 shows the optimal solution for the air flow through a circular duct
having D = 0.1 m. The inlet temperature of air is 7p=298 K and for calculus the
Colburn analogy has been used. The optimal wall and bulk temperature
distributions are quasi-linear with respect to the length of duct. As it is shown in

Figure 4a, the difference |r - 6?| increases with the Reynolds number because the

heat flux that must be transferred to fluid (or from fluid) enhances with mass flow
rate. As a consequence, the thermal dissipation increases and practically
determines the doubling of the entropy generation rate because the irreversibility
distribution ratio is equal to the one for the optimal solution (fig. 4b). This still
remains the principal reason for which the optimal length decreases when the
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Reynolds number increases. The high Reynolds numbers determine either the
augmentation of heat transfer rate per unit length or the viscous entropy
generation rate per unit length so that the length where it becomes equal to
thermal entropy generation rate becomes smaller. The values of the optimal length
(33) are very high and rather not utilizable. But it must be emphasized that an
absolute minimum value of entropy generation rate in the internal forced
convection through a duct exists and the heat transfer design that leads to it is
unique.

6. Numerical example

Table 1Analysis of the entropy generation rate for some wall temperature distribution

Tem\;]:rleltture [rl;l] Can | Sens Seen - Sge Seen
Distribution [WK] | WK | (wK] | Beerkyinm | eenl. .-
Eq. (33b) 3.92 | 00186 | 0.0186 | 0.0372 1 1
Eq. (22¢) 1.0 | 00733 | 0.00474 | 0.078 2.096 1

g, = const 1.0 | 00772 | 0.00588 | 0.0829 222 1.062
T,~const 1.0 | 0.0786 | 0.00583 | 0.0844 227 1.083

As an example the connective heat transfer of air which is heated from
00=1.0 until 6;=1.05 in a smooth duct, having D = 0.03m and L = Im is
considered. At xy section, the bulk temperature of the flow is 7p=290K. In Table I
the entropy generation rate for many wall temperature distributions are compared.
The calculus was done using the hypothesis of the “long duct”. If the wall
temperature distribution corresponds to the problem with fixed length, the overall
entropy generation rate (and obviously the lost available work) is twice larger
compared to the problem of free length. Additionally, the classical wall
temperature  distributions  ¢,, =const.  or T, =const. determines an
approximately 10% growth for the overall entropy generation rate. Finally one
notes that the wall temperature distribution induced by the boundary condition
q,, =const. seems to be more advantageous than other technical feasible
distributions.

In the case of heat exchangers design, the criterion of minimum entropy
generation is very often combined with thermo-economic optimization
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procedures. In this case, considering in on one hand the costs of investment and
on the other the lost exergy costs, the optimal length of ducts (or of heat transfer
surface) will be shorter than that resulting from (33b). From this point of view, the
entropy generation minimization has the merit of revealing the minimum costs of
lost exergy, from which one starts the thermo-economic optimization.

7. Conclusions

The analysis made in this paper shows that, in the case of internal forced
convection through a duct, energy dissipation depends on the wall temperature
distribution. This dependence allows finding the optimal conditions for which an
imposed overall heat flux is transferred with minimum energy dissipation.

For a fixed length of the duct, there is an optimal temperature distribution
of the wall that minimizes the entropy generation rate. This temperature
distribution is specified by eq. (18) only for thermal dissipation or by eq. (24)
when considering both viscous and thermal dissipation and relatively long ducts.
For these optimal distributions the entropy generation rate has a minimum value
that results from eq. (19) and (29) respectively. On the other hand, Figure 3
suggests that the counter-flow heat transfer is more favorable from the point of
view of energy dissipation.

In the case of free length, the absolute minimum value of the entropy
generation rate is given by eq. (35) which is obtained if the wall temperature
distributions correspond to eq. (34b) and the length of the duct has the value
obtained from eq. (33). At this optimal regime, the thermal component of entropy
generation rate is equal to the viscous component, which confirms the
equipartition principle of optimal dissipations. In these equations, the sign “+”
corresponds to the heated fluid and the sign”-” correspond to the cooled fluid.
Any other wall temperature distribution, that ensure the transfer of the same
overall heat flux, leads to a higher value of the entropy generation rate than the
value given by eq. (35) and (36).
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