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In this article, we review few-body systems by analytical methods. As we 
know, solve equations related to few-body systems for reasons such as the Tensor 
forces and the coupling between the equations is difficult. Therefore, to describe the 
motion of nucleons in the nucleus, such as forces modeling techniques must be used. 
To do this, we examined the Schrödinger equation for a few-body system using, Jacobi 
coordinates and hyper-spherical functions. We used the improved Hult'en plus 
Yukawa potential for interactions between nucleons. The D-dimensional Schrödinger 
equation in the case of Ɩ ≠ 0 had discussed by using Parametric Nikiforov–Uvarov 
method. And we obtained relations energy values and wave function. The dependence 
of the few-body binding energies on the potential parameters has been investigated. 
Also, the energy state of two- and three-body systems have been compared. Finally, 
the energy of the ground state of some of the isotopes of oxygen was obtained. 
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1. Introduction  

As we know, full resolution of the equations for few-body systems is very difficult 
for reasons such as tensor forces and coupling between the corresponding 
equations. Therefore, methods such as force modeling should be used to describe 
the motion of nuclei in the nucleus non relativistic Schrödinger equation, Klein-
Gordon (K-G) and relativistic Dirac equation have long been recognized as 
essential tools for the study of atoms, nuclei, molecules and their spectral behaviors. 
Different methods have been used to solve these equations with central and non-
central potentials. Some of these methods are supersymmetric quantum mechanics 
[1,2], path integral [3,4], factorization method [5,6]. In recent years, there has been 
a great desire to solve quantum mechanical systems in the framework of the 
Parametric Nikiforov–Uvarov (PNU) method. This algebraic technique is used to 
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solve second-order linear differential equations. Which has been successfully used 
to solve the Schrödinger, Dirac, Klein-Gordon, and Duffin-Kemmer-Petiau (DKP) 
wave equations in the presence of central and non-central potentials [7,8].  
The study of nuclei under extreme conditions has always been a necessity to 
understand the nuclear forces. As early as 1934, Elsasser [9] noticed the existence 
of special numbers of neutrons and protons which confer a particularly stable 
configuration to the corresponding nuclei. In analogy with atomic electrons, he 
correlated these numbers with closed shells in a model of non-interacting nucleons 
occupying energy levels generated by a potential well. Using the macroscopic-
microscopic (M-M) model with isospin-dependent spin-orbit potential Qijun Zhi et 
al. showed that systematic calculation of the ground state properties of nuclei with 
proton number Z = 8–20. The calculated binding energies agree well with the 
experimental data. [10-11]. 
Understanding the evolution of the shell structure from the valley of stability to 
neutron-rich extremes represent a key challenge in nuclear structure. With a closed 
proton shell, the 17O, 18O, 19O and 20O isotopes provide an ideal region to investigate 
the shell formation and evolution in medium mass nuclei from nuclear forces 
[12,13]. These isotopes have a double magic number with 1, 2, 3 and 4 neutrons on 
top of the closed core. For example, the nuclei 17O and 19O can be modeled as a 
doubly magic 17O=n+ (N=Z=8) and 19O=3n+ (N=Z=8), with additional (valence) 
nucleons in the ld5/2 level. The ground state spin and parity of 17O and 19O are 𝐽𝐽𝜋𝜋 = 
5/2+, which corresponds to the spin and parity of the level where the valence 
nucleon resides [14].  
We use non-relativistic shell model for calculation of the energy levels for 17-20O 
isotopes. Since these isotopes have some nucleons out of the core, Schrödinger 
equations in D-dimensional is utilized to investigate them in non-relativistic shell 
model. We apply the improved Hult'en plus Yukawa potential between the core and 
additional (valence) nucleons because these potentials are important nuclear 
potentials for a description of the interaction between single nucleon and whole 
nuclei. 

2. Review of Parametric Nikiforov–Uvarov Method 

Nikiforov–Uvarov (NU) method is based on reducing the second-order 
differential equation to a generalized equation of hyper-geometric type. This 
powerful mathematical tool solves second order differential equations. Let us 
consider the following differential equation 

( ) ( )
( ) ( ), , ,2
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Where σ (s) and σ˜ (s) are polynomials, at most of the second degree, and τ˜ (s) is a 
first-degree polynomial. Also, n and l are the radial quantum number and the orbital 
angular momentum quantum numbers, respectively. 
The application of the NU method can be made simpler and direct without the need 
to check the validity of the solution. We present a shortcut for the method. So, at 
first, we write the general form of the Schrödinger -like Eq. (1) in a more general 
form as [15,16]: 

22
2 1 01 2

n,2 2 2
3 3

( χ s χ s χ )ε ε sd d Ψ (s) 0
ds s(1 ε s) ds s (1 ε s)
 − + −−

+ + = − − 
 .                                       (2) 

For the Schrödinger equation, in the presence of potentials that can be written as in 
Eq. (2), the relation of energy Eigen-values and wave function is given by the 
following relationships, respectively: 
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n, n, 3 n 3Ψ (s) N s (1 ε s) P (1 2ε s)= − −  .                                                 (4) 
In these relations ψ(s) the wave function and εi are constant coefficients which are 
obtained with respect to the initial parameters χi (i = 0,1,2) in Eq. (5). Also, n is the 
quantum number of the system, Nn,l is the normalization coefficient and the 
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The parametric method NU can solve the second-order differential equations with 
the conditions mentioned. We can study the Dirac, Klein Gordon and Schrödinger 
equations and other similar equations with the help of this method for some specific 
potentials. However, this method can only be solved for some of the potentials 
summarized in Eq. (1) [17,18]. 

3. The energy Eigen-values and wave functions 

 
The many-body forces are more easily introduced and treated within the hyper-
spherical harmonics formalism. For N-particle system after eliminating the center-



     Khosravi Bijaeim, Jamshid Shojaei, Mohammad Reza And Mousavi, Mohsen                  254  

  

of-mass motion becomes a D-dimensional one where D=3N−3. When the particles 
are nucleons, it is possible to ignore the difference in mass between protons and 
neutrons. For such as system, we can define the N Jacobi vector as follows [19]. 
 

i

i i+1 i
j=1

i 1=   r - r  , i=1,2,...,N-1
i+1 i

 
ξ  

 
∑ .                                      (6)  

 
Where The iξ  is the location of each point relative to the center of mass of the 
previous points, and the ri is the coordinates of the particles in the laboratory 
system. The volume element in this coordinate is as follows: 

3
N N-12
i =1 i j=1 idr =N  dR d =dx   ∏ ∏ ξ .                                               (7) 

 
In the hyper-spherical method, a point in the (D=3N-3)-dimensional configuration 
space is represented as lying on a (D-1)-dimensional hypersphere of radius x. The 
variable x is called the hyper-radius [19]. The potential V(x) is assumed to depend 
on the hyper-radius x only. The potential V(x) is called hyper-central in the sense 
that it is invariant for any rotation in the D-dimensional space. The Schrödinger 
equation in D-dimension [20] is given as follows. 
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where D=3N-3 and μ is the mass reduced of the N-particle system. In this study, 
we consider the improved Hult'en plus Yukawa potential [21-22] follows: 
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where the parameters v0 and v1 are real parameters, these are strength parameters, 
and the parameter α is related to the range of the potential.  

Using the change of variables,
D 1

2 D 3U(x) x R(x),
2

− −
= λ = +  and putting the 

potential in the Schrödinger equation, Eq. (10) is given as: 
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Eq. (10) can be precisely solved only for λ= 0, -1. We consider the approximation 
proposed by Greene and Aldrich to solve the analytical Eq. (10) [23]. This 
approximation is valid for αx<<1. The main characteristic of these solutions lies in 
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the substitution of the centrifugal term by an approximation so that one can obtain 
an equation, normally hyper-geometric, which is solvable [24]. 
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Using the change of variable s exp( x)= −α , the Eq. (10) is written as follows: 
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where the parameters χ2, χ1 and χ0 are considered as follows: 
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Now, by comparing Eq. (12) with Eq. (2), the coefficients εi (i = 1, 2, 3) are easily 
obtained. 

ɛ1= ɛ2= ɛ3=1.                                                              (14) 
 

The coefficients εi (i = 4, 5 ... 13) are also obtained according to Eq. (5), which is 
given in Eq. (15) as following: 
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Applying PNU method, we obtain the energy equation (with referring to Eq. (3)) 
as: 
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The energy equation with referring to Eq. (13) summarized as: 
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(17) 
In the following, we can obtain the wave function according to Eq. (4) and Eq. (15): 
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where Nn,l is the normalization coefficient. 

4.  Results: 

 
According to Eq. (17), the energy eigenvalues depend on the hyper-central potential 
parameters. We carried out calculations for the ground state of two- and three-body 
bound systems. Having fixed parameter values of α=0.08fm-1,    m=8fm-1 and 
ħ=c=1 in the natural units we have investigated the dependence of the two- and 
three-body binding energies on the parameter v0, by performing calculations for 
several v1, in Fig. 1a–b, respectively. These parameters are taken for the good 
behavior of energy values. For a particular v1, few-body binding energies are found 
to decrease with increasing v0, as it should be. Similarly, the dependence of the two- 
and three-nucleon binding energies on the parameter v1 has been investigated in 
Fig. 2a–b. It can be seen that for a particular v0, few-body binding energies increase 
with increasing v1.  

Fig. 1. The variation of the ground state binding energy of the Schrödinger equation on the 
parameter v0 with different values of v1 for the fixed value of α =0.08fm-1, m=8fm-1and ħ=c=1 in 

the natural units, for two-body (a), three-body (b) systems 
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Fig.2. The variation of the ground state binding energy of the Schrödinger equation on the 

parameter v1 with different values of v0 for the fixed value of α =0.08fm-1, m=8fm-1and ħ=c=1 in 
the natural units, for two-body (a), three-body (b) systems. 

With referring to Eq. (17), the binding energy for the 2, 3, and 4 body systems are 
also compared. This comparison is shown in Fig. 3 for different values of potential 
parameters in v0 and v1.  

Fig. 3. Comparison between the Schrödinger ground state binding energy for the two-body, three-
body and four-body systems versus different values of (a) v1 and (b) v0 for the fixed value of 

α=0.08fm-1, m=8fm-1and ħ=c=1 in the natural units. 

 
Finally, as an application of this argument, we have obtained the ground state 
energy by using the Eq. (17) for some of the oxygen isotopes. We have investigated 
energy levels these isotopes in Non-Relativistic Shell model. These isotopes can be 
considered as a doubly-magic close shell 16O with additional nucleons (valence) at 
the ld5/2 level. The results are compared with experimental results and other tasks 
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as shown in Table (1). We have considered the parameters α=0.014fm-1, n=1, l=2 
(in 1d5/2) and N= 2, 3,... in Eq. (17) for nuclei 17O, 18O, 19O, 20O in the proposed 
mathematical model. The α parameter was considered by fitting the potential 
parameters for the specific nucleus. 

Table 1:  
The ground state energy values of some oxygen isotopes (α=0.014fm-1). Column (Our) 

contains our calculation, Column (Other) contains other calculation and column (Exp) 
contains the experimental data. 

 
According to Figures 1 to 3, the parameter v1 is smaller than v0, and given that the 
binding energies values are different for each isotope, it is logical that the values of 
the potential parameters for each isotope are different. These values are calculated 
according to the experimental values and the solving process for oxygen isotopes. 
 

5. Conclusion 
 
In this paper, we investigated a Non-Relativistic few-body bound system 

problem by presenting the analytical solution of D-dimensional Schrödinger 
equation by using Jacobi coordinates and improved Hult'en plus Yukawa potential. 
Applying Parametric Nikiforov–Uvarov method, the hyper-radial wave functions, 
expressed in terms of the hypergeometric functions, and the energy equation are 
obtained. We investigated the dependence of the binding energies for the systems 
of two and three Non-Relativistic nucleons interacting by the improved Hult'en plus 
Yukawa potential, on the potential parameters. Finally, the ground state energy of 
the some of the oxygen isotopes was obtained. We can say that our proposed 
approach can be useful in investigating the Non-Relativistic corrections relevant to 
the observable characterizing the properties of few-body nuclear systems, within a 
simple treatment. 

 
 
 
 
 
 
 

Oxygen 
Isotopes 

Potential parameters (MeV) n,lE 

( MeV.fm)0v )2( MeV.fm1v Our Other Exp[26] 
17O 82.4235 3.2182 -132.1423 -132.880[11] -131.7624 
18O 94.4301 0.5387 -140.1993 -139.909[25] -139.8087 
19O 206.4566 4.1022 -145.0045 -146.870[11] -143.7600 
20O 153.5082 2.1093 -152.2033 -152.300[25] -151.3714 
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