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ADAPTIVE CONTROL ALGORITHM FOR SENSORLESS 

SWITCHED RELUCTANCE MOTOR 

Honglin WANG1* 

Nowadays, sensorless switched reluctance motors are popular due to their 

unique advantages. However, the current method of controlling switched reluctance 

motors without position sensors has the problem of low accuracy. To optimize the 

capability of sensorless switched reluctance motor control, this study suggested an 

enhanced backpropagation neural network algorithm that combined genetic 

algorithm, adaptive learning rate algorithm, additional momentum term algorithm, 

and backpropagation neural network. Moreover, the enhanced algorithm was 

combined with a proportional integral derivative controller to construct an adaptive 

proportional integral derivative control system for sensorless switched reluctance 

motors. The average running time and average accuracy of this method were 0.79 

seconds and 97.9%, respectively, which were significantly better than the compared 

algorithms. In addition, a performance comparison analysis was conducted on the 

control system based on this method, and it was found that the system outperformed 

the comparison system in terms of load torque, motor speed response, and rotor angle 

estimation error. The adaptive control algorithm for sensorless switched reluctance 

motors proposed in the study has strong robustness, adaptability, and feasibility, 

which helps to improve the accuracy of sensorless control of switched reluctance 

motors. 
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1. Introduction 

Currently, the Switched Reluctance Motor (SRM) is popular in industrial 

applications and the automotive industry due to its simple structure, high efficiency, 

and energy-saving capabilities [1]. However, the current method of using sensorless 

control for SRM has a problem of low accuracy [2]. Although many experts have 

conducted relevant research, the results are still unsatisfactory [3]. Dejamkhooy A 

and Ahmadpour A proposed an optimization control model to solve the problem of 

reduced efficiency of SRM in discrete mode under high-speed applications, but the 

control effect was poor [4]. To address the issue of the excessive number of position 

sensors in SRM systems, Fang C et al. proposed a current estimation method for 

SRMs. Although this method showed some effectiveness, the results were not 

satisfactory [5]. Sun X et al. proposed an improved SRM driver position signal 

evaluation method to improve the SRM’s fault tolerance in intricate settings, which 

was effective [6]. Meanwhile, Kumar MN and Chidanandappa R proposed a control 
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algorithm based on particle swarm optimization combined with Proportional 

Integral Derivative (PID) controller to solve the problem of large torque ripple and 

inaccurate speed response of SRM. Through the algorithm comparison experiment, 

the results indicated that this algorithm showed good performance under all load 

conditions and was superior to the comparison algorithm [7]. Similarly, aiming at 

the influence of SRM parameter uncertainty on electromagnetic torque, Jing B et 

al. set up a neural network sliding mode controller based on parametric online 

learning. Simulation experiments showed that this method could effectively learn 

SRM parameters, reduce torque ripple, and improve system stability [8]. 

At present, sensorless SRM uses a PID controller to detect the rotor position, 

thereby achieving precise control of the Switched Reluctance Motor Drive (SRD) 

system and improving system reliability, which has become a research hotspot. 

Back Propagation Neural Network (BP) has the advantages of strong self-learning 

adaptability, high flexibility, and the ability to automatically extract features, and is 

widely used in fields such as system control. However, due to the use of gradient 

descent to correct the weights according to the negative gradient direction of the 

error function, it has drawbacks related to local minima and lacks a guarantee of 

convergence. Genetic Algorithm (GA) has advantages such as strong global 

optimization ability. The additional momentum term algorithm is an improved BP 

algorithm, which can help the network maintain a certain memory during the 

learning process, allowing the network to consider previous information when 

adjusting weights, thereby accelerating convergence speed and reducing the 

possibility of falling into local minima [9]. The adaptive learning rate algorithm is 

a strategy for dynamically adjusting the learning rate in real time based on the error 

changes during network training, effectively improving the adaptive learning ability 

of the BP algorithm. Many scholars conducted relevant research. For example, Li 

C et al. proposed a GA-BP method to find the proper parameters for the cladding 

process, which was effective [10]. In addition, Shen W et al. proposed a BP 

optimization model with polynomial decay learning rate to handle the limitations 

of traditional BP. The model improved evaluation accuracy, but the improvement 

was relatively low [11]. 

The above research indicates that although the adaptive control methods 

currently applied to sensorless switched reluctance point sets have some 

effectiveness, their control accuracy is still relatively low. Therefore, this study 

combines GA, additional momentum term algorithm, adaptive learning rate 

algorithm, and BP to construct an improved BP and apply it to PID, thereby 

constructing an adaptive PID control model for sensorless SRM based on the 

improved BP. The innovation lies in the combination of GA, additional momentum 

term algorithm, adaptive learning rate algorithm, and BP, aiming to improve the 

system operation stability of SRM. It is expected that this method can contribute to 

enriching the adaptive control theory of sensorless SRM. 
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2. Methods and Materials 

2.1 Construction of the Improved BP Model Integrating Adaptive 

Learning Rate, Additional Momentum, and GA 

The speed regulation of switch magnet group motors is often controlled 

without position sensors, but their doubly salient structure gives them high 

nonlinear characteristics, resulting in a decrease in PID control performance [12]. 

Finding a solution to improve the adaptive control performance of sensorless SRM 

is significant for enhancing the stability of motor systems [13]. Therefore, this study 

utilizes the adaptive learning ability of BP to adjust the parameters of PID, and 

introduces adaptive learning rate, additional momentum method, and GA to 

improve the shortcomings of BP algorithm. Finally, the improved BP and PID are 

combined to construct a PID adaptive control system for sensor SRMs based on the 

improved BP. Before building the system, it is necessary to construct an improved 

BP. BP neural network is a kind of neural network model that optimizes its own 

threshold and weights through learning. It has advantages such as strong nonlinear 

ability and approximation ability and is widely used in fields such as control [14-

15]. However, BP is prone to getting stuck in local minima and lacks a guarantee of 

convergence when using the gradient descent method to adjust weights based on 

the error function's negative gradient direction. To solve its slow convergence speed 

defect, adaptive learning rate is introduced to adaptively adjust and optimize it, and 

the calculation equation is shown in equation (1). 
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In equation (1),   is the learning rate, SSE  is the mean square error; z  is 

the iteration. To make BP avoid the local minimum, the additional momentum 

algorithm is introduced, and the calculation equation is shown in equation (2). 
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In equation (2), mc   is the momentum factor. However, BP suffers from 

training instability due to its random input of weights and thresholds. The GA 

demonstrates robust global optimization capabilities, enabling effective 

optimization of weights and thresholds in BP. Fig. 1 illustrates the fundamental 

process of the GA [16]. 



498                                                                   Honglin Wang 

Determine the real problem 

parameter set

Encode

 the parameters
Initial population

Calculate 

Individual fitness values

Meet the stop criteria?Select

Cross Mutation Group +1 End

N

Y

 

Fig.1 The Basic Flow Chart of GA 
 

In Fig. 1, GA first encodes the parameters using applicable methods such as 

binary or real numbers and performs initialization operations to randomly generate 

the initial population. Secondly, the fitness value of each individual is calculated 

and searched for. Then, the population is evolved and genetically manipulated to 

generate a new generation of population. Finally, the fitness values of individuals 

in the population are determined to meet the conditions. If they meet the conditions, 

the algorithm is terminated. The calculation equation for GA is shown in equation 

(3). 

0( , , , , , , , ) =SGA f E P N H Q V                                               (3) 

In equation (3),   represents the encoding method of individuals; E  

represents the evaluation function of individual fitness; 
0P  represents the initial 

population; N  represents the population size;   is the operator; H  is the crossover 

operator; Q  is the mutation operator; V  represents the termination condition. 

Based on the above content, the adaptive learning rate algorithm, GA, additional 

momentum algorithm, and BP are combined to construct an improved BP algorithm, 

as shown in Fig. 2. 
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Fig. 2 Improved BP algorithm flow chart 
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In Fig. 2, the weights and thresholds of BP are encoded with real numbers 

and randomly selected in the range of 0 to 1 to generate the initial population. 

Secondly, the population evolves through selection, crossover, and mutation 

operations, generating a new generation of genes and calculating fitness values for 

individuals to select the optimal value. The selected optimal value is judged, and if 

it meets the conditions, the initial weight and threshold for BP are determined by 

this measure; If not met, the above operations are carried out until the conditions 

are met. Next, the obtained initial weights and thresholds are used as input values 

for BP training, and the error value of the network is calculated through forward 

propagation. Finally, the error values are allocated through BP and updated as new 

weights and thresholds for the network. In this process, the learning rate of the 

network is automatically selected using an adaptive learning rate. Finally, whether 

the value meets the additional momentum criteria and setting conditions is 

determined. If it does, the result is outputted and the training is ended; If not met, 

the error is recalculated until the condition is met. 

2.2 Design of Adaptive PID Control System for Position sensorless 

SRM Based on Improved BP 

Due to the difficulty of achieving good control effects with traditional 

sensorless PID control, and the fact that most commonly-used neural network 

control systems consist of two networks, the system is too complex. Therefore, this 

study combines an improved BP with traditional PID to construct an adaptive PID 

controller. Before building an adaptive PID controller, it is necessary to understand 

the expression of PID, and its classical incremental calculation equation is shown 

in equation (4). 

( ) ( 1) [ ( ) ( 1)] ( ) [ ( ) 2 ( 1) ( 2)]     = − + − − + + − − + −p I Du c u c U c c U c U c c c      (4) 

In equation (4), 
DU   is the differential coefficient; 

IU   is the integral 

coefficient; 
pU   is the proportional coefficient;    is the error; u   is the optimal 

control quantity; c  is the number of iterations. Therefore, it is substituted into the 

3-layer BP to obtain the PID parameter structure controlled by the improved BP, as 

shown in Fig. 3. In Fig. 3 the three layers of BP correspond their output nodes to 

the three coefficient parameters of PID control: 
DU  , 

IU  , and 
pU  .    is the input 

value. Since the parameter value cannot be negative, the activation function of the 

HL and OL are Sigmoid and logarithmic. 
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Fig. 3. PID Parameter Structure of Improved BP Control 

 

The improved BP adjusts the PID parameter IL calculation equation as 

shown in equation (5). 
1 ( )= −jO c j  (5) 

In equation (5), 1 J
  is the IL control of PID parameters. The calculation 

equation for the HL control is shown in equation (6). 
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In equation (6), 2

inet  is BP; 2

ijw  is the weight of HL neurons; 2l
 is the HL 

control of PID parameters. Equation (7) shows the control calculation equation for 

the OL. 
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In equation (7), 3

ijw  is the weight of each neuron in the OL; 3

lO , 3

0O , 3

1O ， 

and 3

2O   are the thresholds of each neuron in the OL, and 0,1,2=l  . Equation (8) 

shows the equation for adjusting the weight of the OL. 
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In equation (8),   is the learning algorithm;   is the slope of the neuron. 
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The calculation equation for adjusting the weight of the HL is shown in 

equation (10). 
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Thus, an adaptive control algorithm based on improved BP can be obtained, 

and Fig. 4 shows the algorithm flow. 
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Fig. 4 Flow Chart of Adaptive Control Algorithm Based on Improved BP 

 

In Fig. 4, the initialization operation first sets the optimal weights and 

thresholds through GA, and the adaptive learning algorithm is set, with the initial 

iteration times also set. Secondly, by collecting samples to obtain input and OV, the 

error value at that moment is calculated. Next, the output and input values are 

calculated, and the obtained OV are the 
DU , 

IU , and 
pU  adjustment parameters of 

the PID controller, and the OV of the adaptive PID controller are calculated. Then, 

the weights are controlled and adjusted online to achieve the goal of PID adaptive 

control. Finally, this study will combine improved BP, adaptive PID, SRM, and 

sensorless to construct an adaptive PID with improved BP and sensorless SRM, as 

shown in Fig. 5. 
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Fig. 5 Adaptive PID Control System Based on Modified BP with Positional Sensorless SRM 

 

In Fig. 5, the system is a closed-loop control that adjusts PID parameters 

adaptively through BP according to the operating state of the SRM, so that the 

weight and threshold of the system output and the expected output reach the 

minimum, thereby achieving the expected control effect. In addition, ( )u n   and 

( )u n  in Fig. 5 represent the optimal control increment and optimal control quantity, 

while 1−Z  is the parameter. 

3. Results 

3.1 Performance Analysis of Algorithms 

To verify the superiority of the improved BP (Algorithm 1), it was 

experimentally compared with PSO-BP algorithm (Algorithm 2), Adaptive 

Network Based Fuzzy Inference System (ANFIS) algorithm (Algorithm 3), and 

RBF-RLS algorithm (Algorithm 4) in Matlab simulation software. Experimental 

indicators included fitness and accuracy. Table 1 shows the specific experimental 

environment. 
Table 1 

Specific experimental environment of this study 

Parameter names Parameter 

Processor Intel Core i9-13900K 

Main frequency 5.8Hz 

Internal memory 32GB 

Hard disk capacity 500GB 

Operating system Windows 10 64 

Matlab version Matlab 2022a 

Data analysis software Spss26.0 

 

In the above environment, first, a comparative experiment was conducted 

on the accuracy and loss values of the four algorithms, as shown in Fig. 6. 
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Fig. 6 Loss and accuracy Curves for Each Algorithm 

 

In Fig. 6 (a), the average accuracy of Algorithm 1, Algorithm 2, Algorithm 

3, and Algorithm 4 were 97.9%, 90.4%, 93.6%, and 86.7%, respectively, with 

Algorithm 1 having the highest average accuracy. In Fig. 6 (b), the loss curve of 

Algorithm 1 began to converge at iteration 58, with an average loss value of 0.03, 

which was lower than Algorithm 2's 0.04, Algorithm 3's 0.08, and Algorithm 4's 

0.17. The above results indicated that Algorithm 1 outperformed the compared 

algorithms in terms of both quasi average accuracy and loss value. The fitness 

curves and running time comparison results of each algorithm are shown in Fig. 7. 
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Fig. 7 Fitness Curve and the Run Time Comparison Results of the Algorithms 

 

In Fig. 7 (a), the fitness curves of Algorithm 1, Algorithm 2, Algorithm 3, 

and Algorithm 4 began to converge around the 83rd, 121st, 128th, and 158th 

generations, respectively, with Algorithm 1's fitness curve converging first. In Fig. 

7 (b), the average running time of Algorithm 1 was 0.79 seconds, Algorithm 2 was 

2.13 seconds, Algorithm 3 was 1.37 seconds, and Algorithm 4 was 2.91 seconds. 

Among them, Algorithm 1 had the shortest average running time. From the 

dimensions of runtime and fitness, Algorithm 1 performed best. The fitting results 

of each algorithm are shown in Fig. 8. 
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Fig. 8 Results of Fit Degree of Each Algorithm 

 

In Fig. 8, R2 is the coefficient of fit. The fitting coefficient is a statistical 

indicator used to measure the degree to which a model fits the data. The closer its 

value is to 1, the better the fitting effect of the model on the data is, that is, the 

independent variable can better explain the changes of the dependent variable. 

Conversely, the closer the R² value is to 0, the worse the fitting effect of the model 

is. In Fig. 8 (a), Algorithm 1 had the most concentrated scatter points, with a fitting 

coefficient of 0.93. In Fig. 8 (b), Algorithm 2 had scattered points with a fitting 

coefficient of 0.84. In Fig. 8 (c), the scatter points of Algorithm 3 were relatively 

concentrated, with a fitting coefficient of 0.89. In Fig. 8 (d), the scatter of Algorithm 

4 was the most scattered, with a fitting coefficient of 0.79. From the perspective of 

fit dimension, Algorithm 1 performed better than the comparison algorithms. Based 

on the above results, from the dimensions of fitting degree, fitness, accuracy, 

running time, and loss value, Algorithm 1 had significantly better performance than 

the compared algorithms and was effective. 

3.2 Performance Analysis of Adaptive PID Control System 

This study compared the performance the proposed model (System 1), an 

adaptive PID control system based on PSO-BP sensorless SRM (System 2), an 

adaptive PID control system based on ANFIS sensorless SRM (System 3), and an 

adaptive PID control system based on RBF-RLS sensorless SRM (System 4). The 

comparative indicators included motor response speed, load torque, and rotor angle 

estimation error. The comparison results of the motor response speed of each system 

before and after external interference are shown in Fig. 9. 
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Fig. 9 Comparison Results of Motor Speed Response of Each System Before and After External 

Disturbance 
 

In Fig. 9 (a), when no external interference was added, the motor speed 

response of System 1 was the fastest, with the smallest overshoot, and the speed 

was the smoothest after startup. The motor speed response curve of System 2 

quickly reached around 1753 revolutions per minute at 0.12 seconds, and then 

rapidly dropped and stabilized at 1500 revolutions per minute after 0.15 seconds, 

indicating poor stability. The motor speed response curve of System 3 reached 1570 

revolutions per minute at 0.13s, and began to stabilize after 0.15s, reaching 1500 

revolutions per minute, which was relatively stable. System 4 had the worst stability, 

reaching 1768 revolutions per minute at 0.14s, dropping to around 1490 revolutions 

per minute at 1.5 s, and then stabilizing at 1500 revolutions per minute. In Fig. 9 

(b), when external interference was added, System 1 quickly adjusted its own motor 

speed and had the best stability. Its adaptive dynamic adjustment performance was 

higher than System 2, System 3, and System 4. From the perspective of motor 

response speed, System 1 performed better than the comparative system, with good 

adaptability and robustness. The comparison results of rotor angle estimation error 

and load torque for each system are shown in Fig. 10. 
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Fig. 10. The System Load Torque and Rotor Comparison Estimation Error 
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In Fig. 10 (a), the fluctuation range of the rotor angle estimation error of 

System 1 was the smallest, which was smaller than other systems, indicating that 

the motor can perform steering operation within a certain accuracy. In Fig. 10 (b), 

the load torque fluctuation of System 1 was the smallest, the load torque of System 

2 was larger than that of System 1, the fluctuation of System 3 was higher than that 

of System 2, and the fluctuation of System 4 was the largest. From the perspective 

of rotor estimation error and load torque, compared to the comparative system, 

System 1 had the best performance. From the perspective of rotor angle estimation 

error, load torque, and motor speed response dimensions, System 1 performed the 

best, indicating the feasibility of the sensorless SRM adaptive control algorithm. 

4. Discussion 

This study compared and analyzed the performance of improved BP and an 

adaptive PID with improved BP for sensorless SRM. Improved BP algorithm had 

significant advantages in terms of running time, accuracy, and loss value. In the 

accuracy comparison experiment, the average accuracy of the improved BP, PSO-

BP, ANFIS, and RBF-RLS algorithms were 97.9%, 90.4%, 93.6%, and 86.7%, 

respectively, with the proposed improved BP algorithm having the highest average 

accuracy. This indicated that the introduction of GA algorithm optimized the 

algorithm's ability to find the optimal solution and improved its performance from 

the perspective of accuracy. This result was in line with the improved BP algorithm 

suggested by Zhu J et al. [17]. In the loss value comparison experiment, the average 

loss values of the improved BP, PSO-BP, ANFIS, and RBF-RLS algorithms were 

0.03, 0.04, 0.08, and 0.17, respectively. Among them, the improved BP algorithm 

had the lowest loss rate, indicating that the introduction of adaptive learning rate 

algorithm and additional momentum algorithm improved the algorithm 

performance and enhanced the computing power of BP. Meanwhile, in the 

comparison experiment of running time and fitting degree, the fitting coefficient 

and average running time of the proposed model were 0.93 and 0.79 seconds, 

respectively. This result indicated that the performance of the improved BP was 

significantly improved, further verifying the superiority. Kumar R reached similar 

conclusions in his research on improving the BP algorithm [18]. Secondly, in the 

comparative analysis of the performance of adaptive PID control systems, the 

proposed system showed good performance in terms of rotor angle estimation error, 

load torque, and motor speed response dimensions. In terms of motor speed 

response, compared to the comparative system, this system had the best 

performance, with good adaptability and robustness. In terms of load torque and 

rotor angle estimation errors, this system had the smallest error estimation and the 

smallest load torque fluctuation, both of which were superior to the comparison 

system. This result indicated that the introduction of adaptive learning algorithm, 
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additional momentum algorithm, and GA improved the performance of the system, 

resulting in good control effect. This conclusion is aligned with the findings from 

relevant studies conducted by Kaveh M and Mesgari M.S. in 2023 [19]. This result 

indicated that the adaptive PID control system based on improved BP for sensorless 

SRM could effectively enhance the reliability of SRM system operation and reduce 

costs. 

5. Conclusion 

In view of the current problem of low accuracy in SRM control using 

sensorless methods, the research introduced adaptive learning rate algorithm, 

additional momentum term algorithm, and GA to improve BP. Moreover, an 

adaptive PID with improved BP for sensorless SRM is constructed. Through 

comparative analysis of algorithms, it was found that the improved BP performed 

significantly the best in terms of running time, loss value, accuracy, and fitting 

degree. Subsequently, the adaptive PID control system of sensorless SRM based on 

improved BP were compared and analyzed with other systems in terms of load 

torque, motor speed response, and rotor angle estimation error dimensions. 

Compared with the comparison system, the proposed system had the best 

performance. The above results indicated that the improved BP algorithm proposed 

in the study has strong adaptability and robustness. The limitation of this study is 

that it did not consider the noise of SRMs, and noise constraints are a further 

direction for research. 

R E F E R E N C E S 

[1] Sun X, Zhu Y, Cai Y, Xiong, Y., Yao, M., Yuan, C. Current fault tolerance control strategy for 

3-phase switched reluctance motor combined with position signal reconstruction. IEEE 

Transactions on Energy Conversion, Vol. 38, Iss. 3, 2023. 

[2] Ananda Padmanaban L, Saravanan P. Design, analysis and comparison of switched 

reluctance motors for electric vehicle application. Automatika: časopis za automatiku, 

mjerenje, elektroniku, računarstvo i komunikacije, Vol. 64, Iss. 2, 2023. 

[3] Feng L, Sun X, Yang Z, Diao, K. Optimal torque sharing function control for switched 

reluctance motors based on active disturbance rejection controller. IEEE/ASME Transactions 

on Mechatronics, Vol. 28, Iss. 5, 2023. 

[4] Dejamkhooy A, Ahmadpour A. Torque ripple reduction of the position sensor-less switched 

reluctance motors applied in the electrical vehicles. Journal of Operation and Automation in 

Power Engineering, Vol. 11, Iss. 4, 2023. 

[5] Fang C, Chen H, Wang X, Zhang, J., Li, Y., Torkaman, H. Current estimation of switched 

reluctance motor based on piecewise model and iteration calculation. International Journal of 

Circuit Theory and Applications, Vol. 51, Iss. 4, 2023. 

[6] Sun X, Xiong Y, Yao M, Wu, J. High fault-tolerance evaluation on position signal for switched 

reluctance motor drives. IEEE Transactions on Energy Conversion, Vol. 37, Iss. 3, 2022. 



508                                                                   Honglin Wang 

[7] Kumar M N, Chidanandappa R. Particle swarm optimization technique for speed control and 

torque ripple minimization of switched reluctance motor using PID and FOPID controllers. 

International Journal of Information Technology, Vol. 16, Iss. 2, 2024. 

[8] Jing B, Dang X, Liu Z, Wang, J, Jiang, Y. Torque Ripple Reduction Of Switched Reluctance 

Motor Based On Neural Network Sliding Mode Parameter Online Learning. Journal of 

Applied Science and Engineering, Vol. 27, Iss. 6, 2024. 

[9] Yang E, Pan J, Wang X, Yu, H., Shen, L., Chen, X. Adatask: A task-aware adaptive learning 

rate approach to multi-task learning. Proceedings of the AAAI conference on artificial 

intelligence. Vol. 37, Iss. 9, 2023. 

[10] Li C, Jia T, Han X, Jiang, X. Study on parameter optimization of laser cladding Fe60 based 

on GA-BP neural network. Journal of Adhesion Science and Technology, Vol. 37, Iss. 18, 

2023. 

[11] Shen W, Li G, Wei X, Fu, Q., Zhang, Y., Qu, T. Assessment of dairy cow feed intake based 

on BP neural network with polynomial decay learning rate. Information Processing in 

Agriculture, Vol. 9, Iss. 2, 2022. 

[12] Zhou D, Chen H, Wang X, Pires, V. F., Martins, J. Synthetic sensorless control scheme for 

full-speed range of switched reluctance machine drives with fault-tolerant capability. IEEE 

Transactions on Transportation Electrification, Vol. 8, Iss. 4, 2022. 

[13] Choudhuri S, Adeniye S, Sen A. Distribution Alignment Using Complement Entropy 

Objective and Adaptive Consensus-Based Label Refinement For Partial Domain Adaptation. 

Artificial Intelligence and Applications. Vol. 1, Iss. 1, 2023. 

[14] Zhao J, Yan H, Huang L. A joint method of spatial–spectral features and BP neural network 

for hyperspectral image classification. The Egyptian Journal of Remote Sensing and Space 

Science, Vol. 26, Iss. 1, 2023. 

[15] Wang D, Luo H, Grunder O, Lin, Y., Guo, H. Multi-step ahead electricity price forecasting 

using a hybrid model based on two-layer decomposition technique and BP neural network 

optimized by firefly algorithm. Applied Energy, Vol. 190, Iss. 3,2017. 

[16] Doerr B, Echarghaoui A, Jamal M, Krejca, M. S. Runtime Analysis of the (μ+ 1) GA: 

Provable Speed-Ups from Strong Drift towards Diverse Populations, Proceedings of the 

AAAI Conference on Artificial Intelligence. Vol. 38, Iss. 18, 2024. 

[17] Zhu J, Zheng H, Yang L, L., Li, S., Sun, L., Geng, J. Evaluation of deep coal and gas outburst 

based on RS-GA-BP. Natural Hazards, Vol. 115, Iss. 3, 2023. 

[18] Kumar R. Double internal loop higher-order recurrent neural network-based adaptive control 

of the nonlinear dynamical system. Soft Computing, Vol. 27, Iss. 22, 2023. 

[19] Kaveh M, Mesgari M S. Application of meta-heuristic algorithms for training neural networks 

and deep learning architectures: A comprehensive review. Neural Processing Letters, Vol. 

55, Iss. 4, 2023. 

 


