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This research investigates the time-series dynamics of the Earnings per share 

(EPS) Radio Bearer Setup Failure Rate and the applicability of certain commonly 

used Time-Series prediction models. The regular part-time series prediction and the 

outliers’ prediction are two major issues of proactive network management that 

have been explored. We have utilized Holt-Winters Exponential Smoothing, extreme 

Gradient Boosting (XGBoost), Support Vector Regression (SVR), Python Bayesian 

dynamic linear mode (PyDLM), and Seasonal Auto-Regressive Integrated Moving 

Average with exogenous factors, (SARIMAX) to predict the regular component. 

Median Absolute Error, Mean Absolute Error, Mean Square Error, and Root Mean 

Square Error were used to examine the error performance. The prediction of 

outliers has been suggested as a two-stage process. 
 

Keywords: Support Vector Regression (SVR), Bayesian Dynamic Linear Mode 

(PyDLM), Operation Support System (OSS), Hidden Markov Model (HMM), 

Seasonal Auto-Regressive Integrated Moving Average with Exogenous 

Factors (SARIMAX). 

1. Introduction 

The rapid increase in user-plane and control-plane traffic, together with 

the ongoing progress in technology, has made the implementation easier and has 

led to the development of crucial new capabilities based on predictive data 

analysis. The Operation Support System (OSS) is the most important component 

of mobile networks. The following entities [1] demonstrate the interconnected 

nature of an OSS for cellular communication systems up to Long Term Evolution 

Advance (LTE-A) [2], a group or organization responsible for compiling 

quantitative data on characteristics of network deployment such as performance, 

fault tolerance, incident rate, alternatives for network management (cellular 
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network element interaction), database management system (DBMS), Graphical 

User Interface (GUI) for Admins and Techs in the Networking Industry. Fig. 1 is 

a graphic representation of the aforementioned system design. Opportunities to 

expand OSS capabilities through the predictive function that can provide the 

capacity to predict different mobile network Key Performance Indicators (KPIs) 

are the focus of this study [3]. 
 

 
 

Fig. 1. Long term evolution and long-term evolution advance operation support system (OSS) 

architecture 

Network performance indicators are typically collected by cellular network 

operators as time series, with aggregated data from the Returns Authorization 

Number (RAN) and Core Network (CN) often having their own unique 

periodicity. Third-order arrays can be used to express key performance indicators, 

with each direction corresponding to either a different Key Performance 

Indicators (KPI) value, a different time instant [4], or a different data aggregation. 

By simplifying the data structure into a matrix, we may integrate KPIs over 

aggregation objects to achieve network-level performance [5]. 

2. Methodologies and Research Materials 

2.1 Models with  Continuous State Space   

The continuous state-space model and its partial application, the dynamic 

linear model (DLM) [6], are two of the most abstract methods for characterizing 

time-dependent time series. DLM is a special case of Hidden Markov Mode, 

(HMM) [7], which is also a definition of DLM.The following is how the model of 

time series data is expressed due to the presence of strict linearity constraints: 

𝑦𝑡 = 𝑥𝑡 + 𝑣𝑡                                               (1) 
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In this formula, random fluctuations are denoted by  𝑣𝑡 ~𝑁(0. 𝑣𝑡) , is a component 

of current state represented by 𝑥𝑡,  [8]: 

       𝑥𝑡 = 𝜃𝑡
𝑇𝑓                                                (2) 

Using the following definitions for f (a regression vector) and 𝜃𝑡 (a vector of the 

states), 

𝜃𝑡 = 𝐺𝑡𝜃𝑡−1 + 𝑤𝑡                                       (3) 

Where 𝐺𝑡 is a matrix representing transitions between states. and S is a vector 

representing random changes in state.  𝑤𝑡~𝑁(0. 𝑊𝑡) . By combining the 

regression vectors into a matrix and the transition matrices into a block-diagonal 

form, the DLMs allow for the superposition of numerous simple models into a 

complex [9]. 

                                                           (

𝑓1(𝑡)
𝑓2(𝑡)
𝑓𝑘(𝑡)

)                                                 (4) 

 

 

     𝐺𝑡 = (

𝐺1(𝑡) 0 0
0 𝐺2(𝑡) 0
0 0 𝐺𝑘(𝑡)

)                                   (5) 

 

where k is the total amount of unique DLMs the following parts are often 

represented by separate DLMs, as illustrated in Fig 2.[10]: 

 
Fig. 2.  Separate Bayesian dynamic linear mode (DLM)   

 

Two phases make up DLM model training,as divided in below.[11]: 

1) First step: filtering step, kalman filter coefficients, and gernerated    

independently of any previously predicted states.  
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2) Second step : smoothing step,raunch-tung-striebel algorithm, and 

prevoius estimates of states are refined in light of the latest computations. 
 

 These models, which are grounded in Bayesian theory, serve as a standard 

against which other time-series models with Markovian dynamics can be 

evaluated[12]. 
 

2.2 A Holt-Winter Technique  

Exponential smoothing is an example of a traditional linear European 

Telecommunication Standard (ETS) technique. Due to the needs for seasonal 

component analysis, we explore the triple exponential smoothing, commonly 

known as Holt- Winter's during this study. An additive decomposition is preferred 

here, as stated by [13]. At each given instant t, the value of the time series can be 

expressed as:  

𝑦̂𝑡+ℎ = 𝑙𝑡(𝜑 + 𝜑2 + ⋯ + 𝜑ℎ)𝑏𝑡 + 𝑆𝑡+ℎ−𝑚(𝑘+1)            (6) 

Where0 < 𝜑 < 1 is the trend damping parameter (for undamped trends, this 

parameter is equal to 1), St seasonal component, 𝑏𝑡 the slope of the trend is; h is 

the integer value that shows, how many samples ahead the forecast should be 

done; m is the number of samples per one period (seasonality); and k is the integer 

part of (h - 1) / m, that guarantees usage of the belonging to one year only 

seasonal indexes estimations [14]. At instant t, the time series level is:  

𝑙𝑡 = 𝛼(𝑦𝑡 + 𝑠𝑡−1) + (1 − 𝛼)(𝑙𝑡−1 + 𝑏𝑙−1)                    (7) 
 

Where 0 ≤ 𝛼 ≤ 1   is a smoothing parameter of the baseline: 

  𝑏𝑡 = 𝛽(𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽)𝑏𝑡−1                        (8) 
 

The seasonal component can be expressed as: where 0≤β≤1 is a trend 

smoothing parameter [15].  

𝑆𝑡 = 𝛾 = (𝑦𝑡 − 𝑙𝑡−1 − 𝑏𝑡−1) + (1 − 𝛾)𝑆𝑡−𝑚              (9) 

Where0 ≤ 𝛾 ≤ 1 is the seasonal component smoothing. During the model training 

phase, one of the maximum likelihood estimation methods (MLE) [16] can be 

utilized to determine the unknown coefficients,𝛼. 𝛽 𝑎𝑛𝑑 𝛾 similarly, this model 

can be viewed as an illustration of DLM [17], suggesting that it was trained using 

Bayesian filtering and smoothing techniques. 

2.3 Calculation SARIMAX Scheme 

The seasonal autoregressive integrated moving average (SARIMAX) is 

another popular linear method, described by the (p.d.q) X (P.D.Q.s) form, where p 

and P are the necessary number of backward samples and periods of the non-

seasonal and seasonal components of the time series, d and D are the orders of 
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differentiation necessary to reduce to a stationary form of observation and 

seasonal component, and q and Q are the necessary number of backward samples 

The following equation describes the connection between the observation value 

and the approximation error: 

𝜑𝑝(𝐵𝑠)𝜑𝑝(𝐵)∇𝑠
𝐷∇𝑑𝑦𝑡 = 𝜃𝑞(𝐵)𝜃𝑄(𝐵𝑠)𝜀𝑡                            (10) 

Where is the seasonal 𝜑𝑝(𝐵𝑠)=(1 − 𝜑1𝐵𝑠 − ⋯ − 𝜑𝑝𝐵𝑠𝑃) part of the 

autoregressive (AR) model’s component of the order 𝑃. 𝜑𝑝(𝐵)=(1-𝜑1𝐵 − ⋯ − 𝜑𝑃𝐵𝑃) 

is the non-seasonal part of the AR component of the order 𝑃,𝛻𝑠
𝐷 = (1 − 𝐵𝑠)𝐷 and 

𝛻𝑑 = (1 − 𝐵)𝑑 is nabla operators for seasonal and non-seasonal components of the 

orders D and d respectively, 𝜃𝑄(𝐵𝑠) = (1 − 𝜃1𝐵𝑠 − ⋯ − 𝜃𝑄𝐵𝑄𝑠) is the seasonal 

component of the moving average (MA) of the order Q, 𝜃𝑞(𝐵𝑠) = (1 − 𝜃1𝐵 − ⋯ −

𝜃𝑞𝐵𝑞) is the non-seasonal component of the MA of the order 𝑞, and B is the lag 

operator. 𝜑 is the trend damping parameter. Each iteration of the algorithm 

described in [18], sets of unknown coefficients of the AR and MA polynomials 

are calculated using one of the maximum likelihood estimation (MLE) 

optimization algorithms, allowing for automatic selection of the parameters p, 

d.q.P.D Q. This technique is an example of a DLM model, and it can be expanded 

to include more exogenous variables (the SARIMAX model) [19]. 
 

2.4 Traditional Methods of Machine Learning Prediction 

               Instead of using a predetermined statistical model, like in the 

aforementioned method, a regression tree can be used as a more heuristic 

approach to anomaly detection. Extreme Gradient Boosting (XGBoost) [20] is a 

popular technique for classification and regression applications, and we employ it 

in our study. The approach relies on CART, which is an implementation of a tree-

based model for classifying and predicting data. The following benefits can be 

derived from this analysis, a lightning-fast execution, there is no requirement for 

normalizing data, and handling non-linear dependencies. The CART's drawbacks 

stem from the fact that a fixed number of dependent variables must be used in 

order to do a regression analysis, as illustrated in Fig.3. 

 
Fig. 3. The CART's drawbacks stem   
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The Support Vector Regression (SVR) technique can be utilized. SVR's 

fundamental notion is to find the minimum possible error bound for a regression.  

From what we can gather in the literature [21], we might gain as shown in Fig 4: 

 

Fig. 4.  Support vector regression (SVR) technique   
 

This approach, however, is found to have the following drawbacks as illustrate in 

Fig.5:  
 

 
Fig. 5.  Drawbacks of support vector regression (SVR)  

 

2.5 Techniques for Identifying and Predicting Abnormal Events 

            Predicting potential events based on KPI is a significant difficulty in 

cellular network performance analysis. The available literature provides a wide 

variety of methods for accomplishing this. Defining internal dependencies and 

patterns in the data is one such thing. Here are some examples of such methods: 

XGBoost's non-linear models based on regressive trees [22], long short-term 

memory (LSTM) networks, Trans- formers [23], and artificial neural network 

(ANN) auto encoders [24]. In this research, we present a two-pronged strategy for 

anticipating anomalies as shown in Fig.6:   
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Fig. 6. Forecasting strategy for different situations 

 

So, rather of trying to foretell the future shape of the time series, we're more 

interested in pinpointing critical junctures when accidents are more likely to 

occur, as illustrate in Fig. 7. 
 

 

Fig. 7. The block scheme of outliers’ investigation approach 
 

The notion that statistical properties of data of any kind may be represented by a 

Gaussian Mixture motivates the use of Gaussian Mixture Hidden Markov Model 

(HMM) in the implementation of the pretrained classifier. Therefore, the Gaussian 

Hidden Markov Model (HMM) is the best option, with its parameters determined 

by the Baum-Welsh Expectation-Maximization (EM) technique [25]. 

3 Prediction of the Regular Distribution Based on the Results of 

Developing Methodological 

           Table 1 display the outcomes of regular-part prediction experiments using 

the models presented above. We use the following free and open-source Python 3 

librairies in our study, module (Holt-Winter’s model), module (Hidden Markov 
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Model), Pmdarima (SARIMAX), X boost  (XGBoost), PDLM (Continuous State-

Space Model). XGBoost, Bayesian dynamic linear mode (PyDLM), 

Seasonal Auto-Regressive Integrated Moving Average with eXogenous factors 

SARIMAX, and SVR all take into account the current time of day and year as 

exogenous variables. Auto ARIMA is used to get the SARIMA model's super 

parameters [26]. Some common measures of efficiency include the Mean 

Absolute Error, the Mean Squared Error (MSE), and the Root Mean Squared 

Error (RMSE). The cross-validation procedure is divided into 12 sub-steps. There 

are 2019 values in the data collection. 

Table 1 

Results of the predictions of the regular part 

 

         Model name 

Median 

Absolute 

Error 

Mean 

Absolute 

Error 

 

MSE 

 

E 

Holt-Winter’s 

(additive trend, additive 

seasonality) 

 

0.040 

 

0.074 

 

0.055 

 

0.173 

SVR 0 0.087 0.057 0.179 

XGboost      - 0.043 0.052 0.163 

PyDLM 0.074 0.105 0.068 0.198 

SARIMAX (2, 0, 1) x 

(1, 0, 2, 24) 

0.064 0.098 0.060 0.189 

 

The outlier prediction issue makes use of the same features, and the dataset has 

been updated to include 2017. A true positive rate is used as a measure of the 

algorithms' efficacy [27]. The outcomes are shown in tables 2 and 3. Because no 

adequately detectable outliers were found, SARIMAX model results are not 

presented. When implementing a discrete-state HMM, we turned to the 

pomegranate module for Python 3. 

Table 2 

Results of predictions of day and hour of outliers’ occurrence 

Model name 

No. 

detected 

outliers 

No. 

predicted 

outliers 

 True 

positive  

 alarms 

No. 

false 

alarms 

No. 

missed 

alarms 

Train years: 2017, 

2018; test year: 2019. 

Holt-Winter’s 551 524 523 1 23 

SVR 551 2504 551 1953 0 

XGboost 551 392 392 0 1 

DLM 551 3174 325 2849 226 

Train years: 2017, 

2019; test year: 2018. 
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Holt-Winter’s 1760 2157 1759 398 1 

SVR 1760 4186 283 3903 1477 

XGboo t  254 1759 695 1 

PyDLM 1760 539 38 501 1722 

Train years: 2018, 

2019; test year: 2017. 

Holt-Winter’s 1419 1015 1014 1 405 

SVR 1419 4228 0 4228 1419 

XGboost 1419 1342 1341 1 78 

PyDLM 1419 855 2 853 1417 

Table 3  

Results of predictions of the day of outliers’ occurrence 

Mode l name 

No. 

detected 

outliers 

No. 

predicted 

outliers 

True 

positive  

 alarms 

No. false 

alarms 

No. 

missed 

alarms 

Train years: 2017, 

2018; test year: 2019. 

Holt- Winter’s 82   0 4 

SVR 82 2 82 155 0 

XGboost 82   0 20 

PyDLM 82 3 81 235 1 

Train years: 2017, 

2019; test year: 2018. 

Holt-Winter’s 170 195 170 25 0 

SVR 170 351 164 187 6 

XGboost 170 220 170 50 0 

PyDLM 
170 90 44 46 126 

Train years: 2018, 

2019; test year: 2017. 

Holt-Winter’s 134 111 110 1 24 

SVR 134 363 132 231 2 

XGboost 134 130 129 1 5 

PyDLM 134 152 57 95 77 

 

Table 4 displays the average cross-validation set results, rounded to the 

nearest integer. To begin, it is generally agreed that the regular component 

prediction results are comparable among models. Second, Holt-model Winter's 

and the XGBoost algorithm can be seen as the most suitable options for the task 

of outliers prediction since they produce the highest number of correctly 

anticipated alarms while generating the fewest false alarms. 
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Table 4 

Summarized results of outliers prediction 

Model  name 
No. detected 

outliers 

No. 

predicted 

outliers 

True positive 

alarms 

No. false 

alarms 

No. missed 

alarms 

Holt-Winter’s 1243 1232 1099 133 145 

SVR 1 3639 278 3361 965 

XGboost  1396 1164 232 79 

PyDLM 1243 1523 121 1401 1122 

Holt-Winter’s 127 128 119 9 9 

SVR 127 317 126 191 3 

XGboost  137 120 17 9 

PyDLM 127 186 60  68 

 

4. Predictive Functionality in Communication Systems: A Discussion of 

Results, Development, and Implementation 
 

As we've seen, there are two possible routes for incorporating predictive 

capability into existing LTE/LTE-A networks. 
 

• First possible, adding new features and entities into the preexisting OSS 

framework. New tendencies in the development of Database Management 

System (DBMS) engines justify this strategy (distributed storage, insertion of 

artificial intelligence AI) [28]. Fig 8 provides a graphic representation of this 

method. 

 
Fig. 8. System Architecture of OSS with Embedded Predictive Analysis Tool 
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• Second Possible, making new, separate systems on top of existing open 

source ones Fig. 9. The implementation of OSS would benefit more from 

this method. In addition, the progress being made in network function 

virtualization makes such an implementation attractive. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9. System architecture of OSS with additional predictive analysis subsystem 

All of these approaches aren't limited to standalone 5G systems (New Radio and 

LTE core). 3GPP [29] has already advocated including such features as part of the 

system architecture for standalone 5G. Because of the need for increased data 

rates and lower latency for essential 5G applications, this feature, known as 

Network Data Analytics Function (NWDAF) Fig. 10, is crucial (industrial IoT, 

telec, smart homes and cities).  
 

 

 

 

 

 
 

 
 

 

Fig. 10. Interaction of NWDAF with other 5G network elements 

 

Options for the following types of data analysis and forecasting are included in 

NWDAF, as illustrate in Fig. 11. [30]: 
 

Predictive Analysis 

      Function 
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Fig. 11. Data analysis and forecasting are included in NWDAF 
 

A collection of information regarding network overloading, both current and 

forecast for a particular place, and enforcement of the quality of service's stability, 

together with relevant reports It is also important to point out that the 3GPP 

recommendations indicate a very flexible choice of the data analysis tools, in 

addition to an increase in the utilization of open-source software that is provided 

by third parties for these purposes 
 

4.1 Partitioning Time Series Over Periods of Time   

Disentangling fixed and variable time periods is a crucial part of any time 

series analysis. Since some indicators correspond to human life cycles, the time 

series described in the previous sentence may exhibit harmonic components 

(seasonality) (working hours and days, weekends, holidays). A rise or fall in 

subscription numbers may also reveal trending elements. Therefore, the data in 

question can be effectively decomposed using an Error Trend Seasonality (ETS) 

[31] model. Decompositions can be either additive or multiplicative. An additive 

model can be defined as follows: 
 
 

                       𝑦𝑡 = 𝑆𝑡 + 𝑇𝑡 + 𝑅𝑡                           (11) 

where 𝑦𝑡 − is the value of 𝑦 at time instant 𝑡, S𝑡 − is the seasonal component, 

𝑇𝑡 − is the trend component, and 𝑅𝑡 − is a residual that cannot be characterized in 

terms of the first two components due to the presence of random fluctuations 

(noise, spikes etc). Instead, [32] we say the following about a multiplicative 

decomposition: 
 

 

𝑦𝑡 = 𝑆𝑡 x 𝑇𝑡 x 𝑅𝑡  
                                      (12) 
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Or, equivalently as:  

𝑙𝑛(𝑦𝑡) = 𝑙𝑛(𝑆𝑡) + 𝑙𝑛(𝑇𝑡) + 𝑙𝑛(𝑅𝑡)                  13) 
 

We also suggest that further ETS-family linear decompositions can be 

derived from this type of  decomposition. Heuristically developed components, 

such as the Facebook Prophet model, which also encounters public holidays 

component [33], can be used to extend the models (11) and (12). Number of failed 

E-UTRAN Radio Access Bearer (E-RAB) connections is a key performance 

indicator (KPI) considered in this article (E-RAB Setup Failures). The failure to 

send the "E-RAB SETUP REQUEST" message to the Mobility Management 

Entity (MME) on the network of the considered operator is the primary cause of 

the aforementioned errors. The MME initiates the procedure by sending a location 

reporting control message. On receipt of a location reporting control message the 

eNodeB shall perform the requested location reporting control action for the user 

equipment (UE).  When there are issues with the communication routes between 

the base stations (eNodeB) and CN, the checksum of a particular message can 

become corrupted, leading to these occurrences as illustrate in Fig.12. [34].  

 

Fig. 12.  Step-by-step establishment of the E-RAB protocol 

Fig 13 and 14 display the results of using formula(11) to decompose the 

key performance indicator readings for E-RAB setup failures. 
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Fig. 13. Trend and residual components of E-RAB setup failures KPI readings  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. Seasonal breakdown of E-RAB setup failures key performance indicators  

 

Fig 15 and 16 depict the decomposition of the pondered KPI measures 

according to formula (13). 
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Fig. 15. A Graphical representation of the trend and residual factors in E-RAB setup failures key 

performance indicators. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. Shows How season affects KPI for E-RAB installation problems (multiplicative ETS 

model) 

The additive model is considered to be correct because of what is known 

about the residual component (Figs. 13, 15). 
 

4.2 The Decomposition of Time Series Using Statistics 

Determining the statistical distribution of the data being analyzed is 

another crucial part of time series analysis. What's more, real-world data may 
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have multiple statistically distinct elements [35]. Since our key performance 

indictors are affected by a wide range of variables ( time of day, total number of 

subscribers, potential incidents) that are not highly correlated with one another, 

[36] it is reasonable to assume that KPI value can be decomposed into several 

statistically independent values: 

                     𝑓(𝑥 𝛼𝑡 𝜃) = ∑ 𝑎𝑓(𝑥𝜃𝑡) 𝑥
𝑥=1                               (14) 

 

Here,  𝑎(𝑎 > 0. ∑ 𝑎 = 1𝑥
𝑥=1 ) are probabilistic mixture weights, [37] is the 

probability density function of the i-th mixed component 𝜃𝑖 is the set of 

distribution parameters, and K is the number of components. Here, we assume 

both the presence of a regular (repetitive) statistical component in our data, and 

the presence of an outliers component (Fig. 17).  

 
Fig. 17. A box plot representing the data for E-RAB setup failures  

Numerous outliers is a driving factor in the need for an outliers prediction task 

[38]. 

5. Conclusions 
 

We can draw the following conclusion from table 1: XGboost and Holt-

Winters perform better than other algorithms when compared to the metrics that 

were chosen for the regular part prediction problem. In addition, XGboost has a 

lower error value spread in comparison to every other algorithm that was taken 

into consideration. The outcomes of the outlier’s prediction problem, which are 

presented in table 4, are comparable to those that were calculated for the regular 

part prediction problem. When compared to SVR and PyDLM, XGboost and 

Holt-Winters have significantly lower rates of both false alarms and missed 

alarms, and this is true for both two- and single-featured issues. It is also 

important to point out that SVR has a high rate of false alarms, whereas PyDLM 

has a high rate of missed alarms. It's possible that the smoothing nature of the 
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respective methods is to blame for the latter two observations. The next stage in 

this research could be a study into whether or not Deep Learning models can be 

applied to the many tasks that are being explored. 
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