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STUDY OF A DISC-SHAPED EARTH ELECTRODE 
INJECTING CURRENT INTO AN EXPONENTIALLY 

INCREASING CONDUCTIVITY SOIL 

Iosif Vasile NEMOIANU1, Emil CAZACU2, Veronica PĂLTÂNEA3,               
Gheorghe PĂLTÂNEA4 

Lucrarea tratează studiul unei prize de pământ circulară, de grosime 
neglijabilă, plasată intr-un mediu neomogen cu o conductivitate electrică ce creşte 
exponenţial în raport cu adâncimea solului. Ecuaţiile diferenţiale de ordinul doi cu 
derivate parţiale ale potenţialului electric, obţinute din rezolvarea problemei de 
regim staţionar în domeniul neomogen, sunt determinate în baza metodei separării 
variabilelor. Soluţia analitică astfel obţinută permite estimarea valorii absolute a 
intensităţii câmpului electric, a vectorului  Poynting precum şi rezistenţei electrice 
de dispersie a prizei de pământ în mediul considerat. 

This article treats the injection of a direct current through an above-ground 
circular plate earth electrode is studied. A non-homogeneous soil having an 
exponentially increasing conductivity is considered. The particularities of the 
problem allow the use of the separation of variables method for solving the 
homogeneous second order PDE verified by the electric potential. The analytically 
obtained solution is used to calculate the moduli of the electric intensity and of the 
Poynting’s vector, respectively, and finally the formula of the earth electrode 
resistance is derived. Evaluating the limit of this relationship, the homogeneous case 
formula is also obtained. 

Keywords: earth electrode, inhomogeneous conductivity soil, earth electrode 
resistance 

1.  Introduction 

Except earthing, another important use of the earth electrodes concern the 
measurement of the soil conductivity and the calculation of the earth electrode 
resistance. These parameters may provide important information regarding the 
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geological structure of the tested soil, especially for mineral and fossil deposit 
detection purposes [1-3]. In many practical cases, due to their complexity, the 
assumed homogeneous structure of the soil (even if several different layers of the 
sort are taken into account) is not sufficient for an accurate description of the real 
problem. For example, the non-uniform absorption of underground water by a dry 
porous soil to its surface, leads to a continuous variation of the conductivity, even 
for geologically uniform structures of the terrestrial crust. In spite of the vast 
literature available nowadays, authors are mainly focusing on the shape of the 
device, but are still modeling inhomogeneous soil as a stack of homogeneous 
layers. Several in-situ observations lead geologist to the conclusion that under 
certain physical conditions of the soil a very good approximation of the variation 
law of the conductivity may be an exponentially increasing one [4]. 

Therefore, this article aims to study the injection of a direct current of 
intensity i through an above-ground circular plate of radius a into a soil 
characterized by the following variation function: 

( ) λ
+

σ=σ
z

z e0 ,        (1) 
where σ0 is the conductivity at the surface of the ground, z is a spatial coordinate 
perpendicular to the separation plane, and λ (m) is a real constant, as depicted in 
Fig. 1. 

 
Fig. 1 – Disc-shaped earth electrode injecting current into an inhomogeneous soil. 

 
The study begins from the steady-state local form of the charge 

conservation law: 
0div =J                                                      (2) 

The left-hand side of   (2) is expanded by substituting J = σE : 
( ) EEE divgraddiv σ+σ⋅=σ ,       (3) 

 
and substituting also Vgrad−=E , we have: 

σ
⋅σ

−=Δ
VV gradgrad

 ,                  (4) 

where VV graddiv=Δ .  
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The axis-symmetric configuration presented by the geometry of the 
problem recommends the use of the cylindrical system [5, 6] of 
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where ur, uφ and uz are the unit vectors of the cylindrical system of coordinates. 

2. Current injection into a exponentially increasing conductivity soil 

Taking now into account the assumed variation of conductivity given by 
(1), and by substituting the gradients given by (5) and (6), the right-hand side of 
(4) becomes: 
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The new form of the second order PDE for the electric potential is obtained: 
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The homogeneous PDE given by (9) is solved using the separation of variables 
method, by expressing the potential function as a product of two independent 
single-variable functions: 

( ) ( ) ( )zZrRzrV ⋅=, .     (10) 
Substitution of (10) in (9) gives: 
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By denoting the first term of the left-hand side of (11) by p2, and the second by 
–p2, this equation can be divided into two separate ordinary differential equations: 
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Equations (12) and (13) are solved, and the following general solutions are 
obtained: 
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The characteristics of the problem determine the following restricting 

conditions that are to be imposed on the potential two-variable function: 
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At the same time, inside the conducting half-space, the potential decreases to 

zero for either ∞→r  or ∞→z  (the null reference of the potential is chosen at 
infinity). One can notice that ( ) ∞→∞0I  and, for assuring a finite value of the 
potential, the separation parameter has to be purely imaginary, of the form 

kp j= , since ( ) ( )kJkI 00 jj =  and 0)(J0 →∞ . Similarly, because ( ) ∞→00K  it 
results that 02 =pC . Note that after substituting the parameter p, we have 

0411 22 >λ++− k  at the numerator of the first exponential of (15). Therefore, 
to prevent an infinite value of ( )zZ p  for ∞→z , the first term of the right-hand 
side of (15) must vanish and hence 01 =pD . With these adopted constants the 
general solution for the potential, calculated by integrating over all the positive 
values of the new considered separation parameter k, becomes: 
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where kkk DCA 21=  and 0141 22 <+λ−− k  for all possible values of k. 
The axial component of the electric field intensity results by taking the z-

component of Vgrad−=E (see (6)): 
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The z-component of the current density at the surface of the ground (z = 0) is: 
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In order to determine the constant Ak, restricting conditions for the current 
density at z = 0 have to be established. Let us assume now a uniform current 
density J inside the circular plate, and that the current enters the soil 
perpendicularly to the contact area. In other words, in that region J is vertical and 
downward oriented, so that 
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Obviously, (18) and (19) cannot be properly compared to extract the constant Ak. 
A single compact relationship that replaces (19) is needed. A possible approach is 
the one given by the Fourier-Bessel integral transform [7], which states that a 
piecewise continuous function f  having a bounded variation in (0, ∞) may admit 
an expansion of the form: 
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The stated boundary conditions in (19) impose that 
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Consequently, (20) becomes: 
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By comparing now (18) and (21) the constant of integration Ak is obtained: 
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3. Electric potential, electric field intensity and Earth resistance 
formulas 

Substituting now for Ak in (16) the electric potential formula becomes: 

( ) ( ) ( )∫
∞

λ
λ++

−

λ++

λ
σπ

=
0

22
2
411

10
0 411

deJJ2,

22

k

kakrk
a

izrV
z

k

.         (23) 

According to (6) and taking into account that ( ) ( )rkkrk 10 JJ −=′ , we get the radial 
component of the electric field 
formula:
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On the earth’s surface (z = 0) this last formula becomes: 
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Note that the null value of the radial electric field for ar ≤  is consistent to the 
assumption made for the current density, namely that it has solely a z-component 
at the plane interface between the electrode and the soil. 
 The magnitude of the Poynting’s vector on the earth’s surface 
( ) ( ) ( )0,0,0, rHrErS r ⋅=  for r > a may be calculated by considering the simple 

formula of the magnetic field intensity given by the Ampère’s 
law ( ) )2/(0, rirH π= . We get: 
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Integration of (26) over the interval (a, ∞) gives the electromagnetic power 
transferred to the conducting soil: 
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Dividing this last formula by i2, the earth electrode resistance is also derived: 
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Due to its high degree of complexity, this double integral cannot be 
evaluated to a simple analytical formula. Nevertheless, a mixed analytical and 
numerical approach is possible [8]. So, if we firstly perform analytically the 
double-integral with respect to r, a more accessible simple-integral is obtained 
which for some given values of λ  and  a  may be computed by numerical means. 
Equation (28) becomes: 
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Let us define now the normalized earth electrode resistance Rnorm, by 
dividing the right-hand side of (29) by a quantity having the dimension of 
resistance, namely ( ) 1

0
−σπ a . 

Next, in order to give a quantitative illustration, a numerical example will 
be presented. For the radius a = 0.5 m of the circular plate the right-hand side 
integral of (29) is numerically evaluated for a set of discrete values of parameter 
λ. The variation graph of the normalized earth electrode resistance is shown in 
Fig. 2.  

 
Fig. 2 – Interpolated graph of the normalized earth electrode resistance vs. λ. 

Obviously, the parameter λ (having the dimension of length) introduced 
by (1) defines the “amplification” degree of conductivity along the z-axis, into the 
ground. Computing the limits 

00 elim σ=σ
∞→λ

λ
+

z

      and      1
411

2lim
22

=
λ++

λ
∞→λ k

k , 



192              Iosif Vasile Nemoianu, Emil Cazacu, Veronica Păltânea, Gheorghe Păltânea 

the already reported in the scientific literature formula of the earth electrode 
resistance in the uniform σ0 conductivity case is obtained: 
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with its corresponding normalized value 0,637/2norm,0
≅π=σR , which is also 

plotted in Fig. 2. 

6. Conclusions 

By examining the graph plotted in Fig. 2 two important conclusions may 
be highlighted. As expected, the smaller the value of parameter λ (corresponding 
to a rapid rise of conductivity into the ground) the smaller the value of the earth 
electrode resistance is obtained. In this case due to a significant z-direction 
increase of conductivity the initial half-space may be approximated with a high  
conductivity plate of finite thickness. With even smaller values of this thickness 
(λ→0) the resistance of the plate becomes unimportant, becoming practically a 
superconducting one. Unlike this case, for increasing values of λ the earth 
electrode resistance grows rapidly by asymptotically converging to the 
homogeneous conductivity value, obtained from a well known relationship of the 
earth electrode literature. 
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