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STUDY OF A DISC-SHAPED EARTH ELECTRODE
INJECTING CURRENT INTO AN EXPONENTIALLY
INCREASING CONDUCTIVITY SOIL

losif Vasile NEMOIANU', Emil CIVAZAACUZ, Veronica PALTANEA®,
Gheorghe PALTANEA*

Lucrarea trateaza studiul unei prize de pamdnt circulard, de grosime
neglijabila, plasatad intr-un mediu neomogen cu o conductivitate electrica ce creste
exponential in raport cu addncimea solului. Ecuatiile diferentiale de ordinul doi cu
derivate partiale ale potentialului electric, obtinute din rezolvarea problemei de
regim stationar in domeniul neomogen, sunt determinate in baza metodei separarii
variabilelor. Solutia analitica astfel obtinuta permite estimarea valorii absolute a
intensitatii campului electric, a vectorului Poynting precum §i rezistentei electrice
de dispersie a prizei de pamant in mediul considerat.

This article treats the injection of a direct current through an above-ground
circular plate earth electrode is studied. A non-homogeneous soil having an
exponentially increasing conductivity is considered. The particularities of the
problem allow the use of the separation of variables method for solving the
homogeneous second order PDE verified by the electric potential. The analytically
obtained solution is used to calculate the moduli of the electric intensity and of the
Poynting’s vector, respectively, and finally the formula of the earth electrode
resistance is derived. Evaluating the limit of this relationship, the homogeneous case
formula is also obtained.

Keywords: earth electrode, inhomogeneous conductivity soil, earth electrode

resistance

1. Introduction

Except earthing, another important use of the earth electrodes concern the
measurement of the soil conductivity and the calculation of the earth electrode
resistance. These parameters may provide important information regarding the
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geological structure of the tested soil, especially for mineral and fossil deposit
detection purposes [1-3]. In many practical cases, due to their complexity, the
assumed homogeneous structure of the soil (even if several different layers of the
sort are taken into account) is not sufficient for an accurate description of the real
problem. For example, the non-uniform absorption of underground water by a dry
porous soil to its surface, leads to a continuous variation of the conductivity, even
for geologically uniform structures of the terrestrial crust. In spite of the vast
literature available nowadays, authors are mainly focusing on the shape of the
device, but are still modeling inhomogeneous soil as a stack of homogeneous
layers. Several in-situ observations lead geologist to the conclusion that under
certain physical conditions of the soil a very good approximation of the variation
law of the conductivity may be an exponentially increasing one [4].

Therefore, this article aims to study the injection of a direct current of
intensity i through an above-ground circular plate of radius a into a soil
characterized by the following variation function:

z
+Z
o(z)=cge *, (1)
where o is the conductivity at the surface of the ground, z is a spatial coordinate
perpendicular to the separation plane, and A (m) is a real constant, as depicted in
Fig. 1.
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Fig. 1 — Disc-shaped earth electrode injecting current into an inhomogeneous soil.

The study begins from the steady-state local form of the charge
conservation law:

divd =0 2)
The left-hand side of (2) is expanded by substituting J = cE :
div(cE) = E-gradc + odivE, (3)

and substituting also E =—grad)’, we have:

AV = _grado-grad V , )
c

where AV =divgradl .
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The axis-symmetric configuration presented by the geometry of the
problem recommends the use of the cylindrical system [5, 6] of

coordinates (7,9, z), where 9¢ =0, 9¢ =0 and ar =0, and therefore:
or foX0) 0
1{ Oo 0o 0c 0c
rade = —|r—Uu, +—U, +r—Uu, | = —U 5
g r( or ' o oz Zj oz ° ©)
grad V = 1 ra—Vur Jra—Vu(erra—VuZ = a—Vur +8—Vuz (6)
r\ or op oz or oz

and

2 2

AV - )
ar? ror dz2

where U,, U, and U, are the unit vectors of the cylindrical system of coordinates.
2. Current injection into a exponentially increasing conductivity soil

Taking now into account the assumed variation of conductivity given by
(1), and by substituting the gradients given by (5) and (6), the right-hand side of
(4) becomes:

_grado-grad V _ 1 Goe+iuz~ a—Vur+a—VuZ =_18_V‘ ®)
o ro(z) oz Aoz
The new form of the second order PDE for the electric potential is obtained:
2 2
6V+18_V+8V+16V:O. ©)

arz r@r 622 IE

The homogeneous PDE given by (9) is solved using the separation of variables
method, by expressing the potential function as a product of two independent
single-variable functions:

V(r,z) = R(r)-Z(2). (10)
Substitution of (10) in (9) gives:
2 2
R\ 5,2 ror Z\pz2 A Oz

By denoting the first term of the left-hand side of (11) by p*, and the second by
—p?, this equation can be divided into two separate ordinary differential equations:
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2
a°R , 1dR ~p>R =0 and (12)
dr? rdr

2
—dZ+l£+pzZ =0, (13)
de )\4 dZ
Equations (12) and (13) are solved, and the following general solutions are
obtained:

Ry(r) = Ciplo(pr) + C3p Ko(pr) and (14)
—1+ y1-4p)? —1 - \1-4p*3?
—_—— Z B ——A
Z,(z)=Dye 2 +Dy,e 2H (15)

The characteristics of the problem determine the following restricting
conditions that are to be imposed on the potential two-variable function:

constant, forr<a
V(r,0)=

finite, forr > a.

At the same time, inside the conducting half-space, the potential decreases to
zero for either » — o or z — oo (the null reference of the potential is chosen at
infinity). One can notice that I(c0)— oo and, for assuring a finite value of the
potential, the separation parameter has to be purely imaginary, of the form
p=jk,since Iy(jk)=jJo(k) and Jo (c0)— 0. Similarly, because K(0)— oo it
results that C, =0. Note that after substituting the parameter p, we have

—1+V1+4k%22 >0 at the numerator of the first exponential of (15). Therefore,
to prevent an infinite value of Z, (z) for z — oo, the first term of the right-hand

side of (15) must vanish and hence Dj p=0. With these adopted constants the

general solution for the potential, calculated by integrating over all the positive
values of the new considered separation parameter k, becomes:

- 1= 4k +1 .
V(rz) = [AgJolkr)e 2 dk, (16)
0

where Ay =C; Dy and —1— JA4k*22 +1 < 0 forall possible values of £.

The axial component of the electric field intensity results by taking the z-
component of E =—gradV (see (6)):
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5 \/4k2x2+1
E.(rz) = - 9Vlr2) jA ] (kr)1+V4k Pl “dk.

17
Py (17)
The z-component of the current density at the surface of the ground (z = 0) is:
0 2~2
1+ 1+ 4k7X
J.(r0) = 09 E.(r0) = oo 4 To(kr) = dk . (18)

0
In order to determine the constant 4, restricting conditions for the current
density at z=0 have to be established. Let us assume now a uniform current
density J inside the circular plate, and that the current enters the soil
perpendicularly to the contact area. In other words, in that region J is vertical and
downward oriented, so that

L forre
J.(r0) =12’ Y (19)

0, forr>a

Obviously, (18) and (19) cannot be properly compared to extract the constant 4.
A single compact relationship that replaces (19) is needed. A possible approach is
the one given by the Fourier-Bessel integral transform [7], which states that a
piecewise continuous function f* having a bounded variation in (0, «) may admit
an expansion of the form:

o0 o0
= [kIo(kr)dk[pJo(ip)f(p) dp. (20)
0 0
The stated boundary conditions in (19) impose that
i
——, forp<a . < 4
/) =1 na? Besides, [pJo(kp)dp=[pJo(kp)dp = %Jl(ka)-
0, forp>a 0 0

Consequently, (20) becomes:
f()=T:0-0)= ——[olkr) i (ka)dk. 1)
0

By comparing now (18) and (21) the constant of integration 4 is obtained:

4 = 2i & Jy(ka) ‘ 22)

G0 @ 41+ 4k22
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3. Electric potential, electric field intensity and Earth resistance
formulas

Substituting now for 4 in (16) the electric potential formula becomes:

T+ 144K 222
-2z

2i AT " dk
V(rz) = —JJO(kr)Jl(ka)e . (23)
nog a 141+ 4k2)2
According to (6) and taking into account that Ji(kr)= — kJ;(kr), we get the radial
component of the electric field
formula:
" T/ 1+4K22
. - Z
Erz)=- S0 = LA [ )y ka)e LE o
or mogay 14414 4652
On the earth’s surface (z = 0) this last formula becomes:
20 L kdk
N3 (k7)1 (k a) , forr>a
E.(r0) =<mog a { o1t 4232 (25)

0, forr<a.
Note that the null value of the radial electric field for » <a is consistent to the
assumption made for the current density, namely that it has solely a z-component
at the plane interface between the electrode and the soil.

The magnitude of the Poynting’s vector on the earth’s surface
S(r,0)= E,(r,0)- H(r,0) for »>a may be calculated by considering the simple
formula of the magnetic field intensity given by the Ampére’s
law H(r,O) =i/(2nr). We get:

i a1 k dk

Jl(kr)Jl(ka)
n* o @ ’”{) 1+ 41+ 45202

Integration of (26) over the interval (a, «) gives the electromagnetic power
transferred to the conducting soil:

o0 D 4, 00 0
P = [S(r0)2nrdr= 21 &J.er.Jl(kr)Jl(ka) kdk (o)
mop Ay L+ 41+ 4k%2

0

S(r,0) = for > a. (26)

a

Dividing this last formula by i%, the earth electrode resistance is also derived:
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T 20k
[dr[5(kr)Iy(ka) dk. (28)
oy L+ 4/1+ 4522

Due to its high degree of complexity, this double integral cannot be
evaluated to a simple analytical formula. Nevertheless, a mixed analytical and
numerical approach is possible [8]. So, if we firstly perform analytically the
double-integral with respect to », a more accessible simple-integral is obtained
which for some given values of A and @ may be computed by numerical means.
Equation (28) becomes:

2 moga

17 2
R = Jolka)l,(ka) dk. (29)
n60a£ 141+ 4k 232

Let us define now the normalized earth electrode resistance Rporm, by
dividing the right-hand side of (29) by a quantity having the dimension of

resistance, namely (n 60(1)_1 .

Next, in order to give a quantitative illustration, a numerical example will
be presented. For the radius a =0.5 m of the circular plate the right-hand side
integral of (29) is numerically evaluated for a set of discrete values of parameter
A. The variation graph of the normalized earth electrode resistance is shown in
Fig. 2.
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Fig. 2 — Interpolated graph of the normalized earth electrode resistance vs. A.

Obviously, the parameter A (having the dimension of length) introduced
by (1) defines the “amplification” degree of conductivity along the z-axis, into the
ground. Computing the limits

z

limoge = 69 and lim 21 =1

YR oo 414 4k 22

b
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the already reported in the scientific literature formula of the earth electrode
resistance in the uniform oy conductivity case is obtained:

[e e}
R, = 1 JJO(ka)Jl(ka) ak. (30)
0 nGoa k

with its corresponding normalized value R norm = 2/7 = 0,637, which is also

plotted in Fig. 2.
6. Conclusions

By examining the graph plotted in Fig. 2 two important conclusions may
be highlighted. As expected, the smaller the value of parameter A (corresponding
to a rapid rise of conductivity into the ground) the smaller the value of the earth
electrode resistance is obtained. In this case due to a significant z-direction
increase of conductivity the initial half-space may be approximated with a high
conductivity plate of finite thickness. With even smaller values of this thickness
(A—0) the resistance of the plate becomes unimportant, becoming practically a
superconducting one. Unlike this case, for increasing values of A the earth
electrode resistance grows rapidly by asymptotically converging to the
homogeneous conductivity value, obtained from a well known relationship of the
earth electrode literature.
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