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FIXED FUZZY POINT THEOREMS FOR FUZZY MAPPINGS ON

COMPLETE METRIC SPACES

Basit Ali1, Mujahid Abbas2, Simona Costache3

The aim of this paper is to present fixed fuzzy point results of fuzzy mappings in

complete metric spaces. As an application, coincidence and common fixed fuzzy points

of a hybrid fuzzy pair of mappings are obtained. An example is presented to support the

result proved herein. Our results generalize and extend various results in the existing

literature.
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1. Introduction

The Banach contraction principle appeared in explicit form in Banach’s thesis [5] in

1922 where it was used to establish the existence of a solution for an integral equation. Since

then, it has become a very popular tool in solving existence problems in many branches of

mathematics. Extensions of this principle were obtained either by generalizing the domain

of mappings or by extending the contractive condition on the mappings ( see for example

[1, 2, 4, 6, 7, 8, 10, 13, 14, 16, 18, 19] )s. Nadler [20] proved multivalued version of Banach

contraction principle. In mathematical modeling of the real world problems, there are many

inconveniences including the complexity of models and imprecision in differentiating the

events exactly in real situations. Advances in computer science industry developed and

modified many areas of research. There is still a major shortcoming of computers to deal

with the uncertain and imprecise situations. To deal with this uncertainty Zadeh [23] in

1965, initiated the concept of fuzzy sets. Since then, many authors have employed this

concept extensively in topology and analysis to develop this theory further and obtained

several interesting applications. Now it is well recognized theory to handle uncertainties

arising in various real life situations. Heilpern [12] introduced fuzzy mappings on a metric

space and proved a fixed point theorem for fuzzy contraction mappings as a generalization

of Nadler’s theorem [20]. For more results on fuzzy mappings we refer to [9, 21, 22].
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The aim of this paper is to present a new fixed point theorem for fuzzy mappings in

complete metric spaces. As an application of the result presented herein, a new fixed point

result of multivalued mappings is obtained. Also, coincidence and common fixed fuzzy point

result of a hybrid fuzzy pair of mappings is derived. An example is given to show that the

result proved in this paper is a proper generalization of comparable results in the existing

recent literature.

2. Preliminaries

Let us first recall some basic definitions and known results needed in the sequel.

Let X be a space of points with generic elements of X denoted by x and I = [0, 1].

A fuzzy set A in X is characterized by a membership function A : X → I such that each

element in X is associated with a real number A(x) ∈ [0, 1]. Let IX be the collection of all

fuzzy subsets of X. Let (X, d) be a metric space and A a fuzzy set in X. If α ∈ (0, 1], then

α− level set Aα of A is defined as:

Aα = {x : A(x) ≥ α}.

For α = 0, we have A0 = {x ∈ X : A(x) > 0}, where B denotes the closure of a set B in

(X, d). The set Aα is a crisp approximation of the fuzzy set A. A fuzzy set A is said to be

an approximate quantity if and only if for each α ∈ [0, 1], Aα is compact, and convex subset

of a metric linear space (X, d) with

sup
x∈X

A(x) = 1.

Let W (X) be the family of all approximate quantities. A fuzzy set A is said to be more

accurate than the fuzzy set B, denoted by A ⊂ B if and only if A(x) ≤ B(x) for each x in

X. It is obvious that if 0 < α ≤ β ≤ 1, then Aβ ⊆ Aα. Corresponding to each α ∈ [0, 1] and

x ∈ X, the fuzzy point xα of X is a fuzzy set xα : X → [0, 1] given by

xα(y) =

{
α if x = y

0 otherwise.

For α = 1, we have following indicator function of {x},

x1(y) =

{
1 if x = y

0 otherwise.

Define Wα(X) = {A ∈ IX : Aα is nonempty and compact}. For A,B ∈ Wα(X) and

α ∈ [0, 1], let

pα(A,B) = inf
x∈Aα,y∈Bα

d(x, y), δα(A,B) = sup
x∈Aα,y∈Bα

d(x, y),

Dα(A,B) = max{ sup
x∈Aα

d(x,Bα), sup
y∈Bα

d(y,Aα)},

D(A,B) = sup
α

Dα(A,B).

Note that pα is nondecreasing mapping of α and D a metric on Wα(X). Let Y be an

arbitrary subset in (X, d). A mapping F : Y → Wα(X) is called a fuzzy mapping over

the set Y, that is, a fuzzy set Fy ∈ Wα(X) for each y in Y. As, a fuzzy set Fy in X is
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characterized by a membership function Fy : X → [0, 1], so Fy(x) is a membership of x in

Fy. Thus a fuzzy mapping F over Y is a fuzzy subset of Y ×X having membership function

Fy(x) = F (y, x).

In a more general sense than that given in [12], a mapping F : X → IX is a fuzzy

mapping over X ([21]). Notice that α−level set of fuzzy mapping F over X is given by

(Fx)α = {y ∈ X : Fx(y) ≥ α}.

Definition 2.1 ([9]). A fuzzy point xα in X is called a fixed fuzzy point of fuzzy mapping

F if xα ⊂ Fx that is (Fx)x ≥ α or x ∈ (Fx)α. That is, the fixed degree of x in Fx is at least

α. If {x} ⊂ Fx, then x is a fixed point of a fuzzy mapping F.

Recently Ali and Abbas [3] gave the following definitions followed by a couple of

results about fixed fuzzy points and common fixed fuzzy points of fuzzy mappings.

Definition 2.2 ([3]). Let F : X → Wα(X) be a fuzzy mapping and g : X → X a self

mapping on X. A fuzzy point xα in X is called:

(a): coincidence fuzzy point of hybrid fuzzy pair (g, F ) if (gx)α ⊂ Fx, that is (Fx)gx ≥
α or gx ∈ (Fx)α. That is, the fixed degree of gx in Fx is at least α.

(b): common fixed fuzzy point of the hybrid fuzzy pair (g, F ) if xα = (gx)α ⊂ Fx,

that is x = gx ∈ (Fx)α ( the fixed degree of x and gx in Fx is same and is at least

α ).

We denote Cα(g, F ) and Fα(g, F ) by the set of all coincidence fuzzy point and set of

all common fixed fuzzy point of the hybrid fuzzy pair (g, F ), respectively.

Definition 2.3 ([3]). Let F : X → Wα(X) be a fuzzy mapping and g : X → X a self

mapping on X, then

(c): the hybrid pair (g, F ) is called w − fuzzy compatible if

g(Fx)α ⊆ (Fgx)α

whenever x ∈ Cα(g, F ).

(d): mapping g is called F − fuzzy weakly commuting at some point x ∈ X if g2(x) ∈
(Fgx)α.

Lemma 2.1 ([11]). Let X be a nonempty set and g : X −→ X. Then there exists a subset

E ⊆ X such that g(E) = g(X) and g : E −→ X is one to one.

Lemma 2.2 ([12]). Let (X, d) be a metric space, x, y ∈ X and A,B ∈ W (X) :

(1) if pα(x,A) = 0, then xα ⊂ A;

(2) pα(x,A) ≤ d(x, y)+ pα(y,A);

(3) if xα ⊂ A , then pα(x,B) ≤ Dα(A,B).

Theorem 2.1 ([9]). Let (X, d) be a complete metric space, F a fuzzy mapping from X to

Wα(X), where α ∈ (0, 1). If there exists q ∈ (0, 1) such that

Dα(Fx, Fy) ≤ qd(x, y),
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holds for each x, y ∈ X. Then there exists x ∈ X such that xα is a fixed fuzzy point

Lemma 2.3 ([17]). Let (X, d) be a complete metric space and F a fuzzy mapping from X

into W (X) and x0 ∈ X. Then there exists a x1 ∈ X such that {x1} ⊂ Fx0.

Recently Khojasteh et al. [15] proved the following new type of fixed point theorem.

Theorem 2.2. Let (X, d) be a complete metric space and T : X → CB(X) (set of closed

and bounded subsets of X) be a multivalued mapping. Let T satisfy the following:

H(Tx, Ty) ≤
(

d(x, Ty) + d(y, Tx)

1 + δ(x, Tx) + δ(y, Ty)

)
d(x, y)

for all x, y ∈ X. Then T has a fixed point.

Throughout this article we use the following notations:

MF
α (x, y) = max{d(x, y), pα(x, Fx), pα(y, Fy),

pα(x, Fy) + pα(y, Fx)

2
},

NF
α (x, y) = min{pα(x, Fx), pα(y, Fy), pα(x, Fy), pα(y, Fx)},

βF (x, y) =
pα(x, Fy) + pα(y, Fx)

1 + pα(x, Fx) + pα(y, Fy)

Mg,F
α (x, y) = max{d(gx, gy), pα(gx, Fx), pα(gy, Fy),

pα(gx, Fy) + pα(gy, Fx)

2
},

Ng,F
α (x, y) = min{pα(gx, Fx), pα(gy, Fy), pα(gx, Fy), pα(gy, Fx)},

βg,F (x, y) =
pα(gx, Fy) + pα(gy, Fx)

1 + pα(gx, Fx) + pα(gy, Fy)
.

3. Main Results

In this section we prove fixed fuzzy point theorem on a complete metric space.

Theorem 3.1. Let (X, d) be a complete metric space and F : X → Wα(X) a fuzzy

mapping. Suppose that there exists an L ≥ 0 such that

Dα(Fx, Fy) ≤ βF (x, y)MF
α (x, y) + LNF

α (x, y) (3.1)

for all x, y ∈ X. Then there exists a point x ∈ X such that xα ⊂ Fx.

Proof. Let u0 be an arbitrary element of X. As (Fu0)α is nonempty and compact so there

exists u1 ∈ (Fu0)α such that d(u0, u1) = pα(u0, Fu0). If u0 = u1, then u0 = u1 ∈ (Fu0)α and

the proof is finished. Suppose that u0 ̸= u1. Since (Fu1)α is nonempty and compact, there

exists u2 ∈ (Fu1)α such that

d(u1, u2) = pα(u1, Fu1) ≤ Dα(Fu0 , Fu1).
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If u1 = u2, then u1 = u2 ∈ (Fu1)α and the proof is finished. Suppose that u1 ̸= u2, then by

given assumption we have

d(u1, u2) ≤ Dα(Fu0 , Fu1) ≤ βF (u0, u1)M
F
α (u0, u1) + LNF

α (u0, u1)

≤
(

pα(u0, Fu1) + pα(u1, Fu0)

1 + δα(u0, Fu0) + δα(u1, Fu1)

)
MF

α (u0, u1) + LNF
α (u0, u1)

≤
(

d(u0, u2) + d(u1, u1)

1 + d(u0, u1) + d(u1, u2)

)
MF

α (u0, u1) + LNF
α (u0, u1)

where

MF
α (u0, u1) = max{d(u0, u1), pα(u0, Fu0), pα(u1, Fu1),

pα(u0, Fu1) + pα(u1, Fu0)

2
}

= max{d(u0, u1), d(u0, u1), d(u1, u2),
d(u0, u2) + d(u1, u1)

2
}

= max{d(u0, u1), d(u1, u2),
d(u0, u1) + d(u1, u2)

2
}

= max{d(u0, u1), d(u1, u2)}

NF
α (u0, u1) = min{pα(u0, Fu0), pα(u1, Fu1), pα(u0, Fu1), pα(u1, Fu0)

= min{pα(u0, u1), pα(u1, u2), pα(u0, u2), pα(u1, u1)} = 0.

Hence we obtain

d(u1, u2) ≤
(

d(u0, u1) + d(u1, u2)

1 + d(u0, u1) + d(u1, u2)

)
max{d(u0, u1), d(u1, u2)}. (3.2)

Note that

d(u1, u2) ≤ d(u0, u1).

If not, then d(u1, u2) > d(u0, u1). In this case (3.2) implies

d(u1, u2) ≤
(

d(u0, u1) + d(u1, u2)

1 + d(u0, u1) + d(u1, u2)

)
d(u1, u2) < d(u1, u2),

a contradiction. Hence

d(u1, u2) ≤ d(u0, u1)

and consequently

d(u1, u2) ≤
(

d(u0, u1) + d(u1, u2)

1 + d(u0, u1) + d(u1, u2)

)
d(u0, u1). (3.3)

Continuing this process, we construct a sequence {un} in X such that un ∈ (Fun−1)α, and

un+1 ∈ (Fun)α with

d(un, un+1) = pα(un, Fun) ≤ Dα(Fun−1 , Fun).

If un = un+1 for some n ∈ N, then un = un+1 ∈ (Fun)α and the proof is finished. Suppose

un ̸= un+1 for all n ∈ N, then by the given assumption we have

d(un, un+1) ≤ Dα(Fun−1 , Fun)

≤
(

pα(un−1, Fun) + pα(un, Fun−1)

1 + δα(un−1, Fun−1) + δα(un, Fun)

)
MF

α (un−1, un) + LNF
α (un−1, un)

≤
(

d(un−1, un+1) + d(un, un)

1 + d(un−1, un) + d(un, un+1)

)
MF

α (un−1, un) + LNF
α (un−1, un),
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where

MF
α (un−1, un) = max{d(un−1, un), pα(un−1, Fun−1), pα(un, Fun),

pα(un−1, Fun) + pα(un, Fun−1)

2
}

= max{d(un−1, un), d(un−1, un), d(un, un+1),
d(un−1, un+1) + d(un, un)

2
}

= max{d(un−1, un), d(u1, un+1),
d(un−1, un) + d(un, un+1)

2
} = max{d(un−1, un), d(un, un+1)}

NF
α (un−1, un) = min{pα(un−1, Fun−1), pα(un, Fun), pα(un−1, Fun), pα(un, Fun−1)

= min{pα(un−1, un), pα(un, un+1), pα(un−1, un+1), pα(un, un)} = 0.

Hence we obtain

d(un, un+1) ≤
(

d(un−1, un) + d(un, un+1)

1 + d(un−1, un) + d(un, un+1)

)
max{d(un−1, un), d(un, un+1)}. (3.4)

Note that

d(un, un+1) ≤ d(un−1, un).

If not, then d(un, un+1) > d(un−1, un) In this case (3.4) implies

d(un, un+1) ≤
(

d(un−1, un) + d(un, un+1)

1 + d(un−1, un) + d(un, un+1)

)
d(un, un+1) < d(un, un+1),

a contradiction. Hence

d(un, un+1) ≤ d(un−1, un)

and consequently

d(un, un+1) ≤
(

d(un−1, un) + d(un, un+1)

1 + d(un−1, un) + d(un, un+1)

)
d(un−1, un). (3.5)

Denote

βn = βF (un−1, un) =
d(un−1, un) + d(un, un+1)

1 + d(un−1, un) + d(un, un+1)
.

Then from (3.5) we have

d(un, un+1) ≤ βnd(un−1, un) ≤ βnβn−1d(un−2, un−1) ≤ ... ≤ (βnβn−1...β1)d(u0, u1). (3.6)

Note that {βn} is nonincreasing sequence with βn > 0 for all n ∈ N. So β1...βn ≤ (β1)
n and

lim
n→∞

(β1)
n = 0. It follows that

lim
n→∞

(β1β2...βn) = 0.

Hence from (3.6) we obtain

lim
n→∞

d(un, un+1) = 0. (3.7)

Now for all m,n ∈ N with m > n, we have

d(un, um) ≤ d(un, un+1) + d(un+1, un+2) + ...+ d(um−1, um)

≤ [(βnβn−1...β1) + (βnβn−1...β1) + ...+ (βnβn−1...β1)]d(u0, u1)

=
m−1∑
k=n

(βkβk−1...β1)d(u0, u1) =
m−1∑
k=n

υkd(u0, u1) <
∞∑

k=n

υkd(u0, u1),

where υk = (βkβk−1...β1). Now using (3.7) we get

lim
k→∞

υk+1

υk
= lim

k→∞

βk+1βkβk−1...β1

βkβk−1...β1
= lim

k→∞
βk+1 = lim

k→∞

d(uk, uk+1) + d(uk+1, uk+2)

1 + d(uk, uk+1) + d(uk+1, uk+2)
= 0.
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This implies that
∞∑

k=n

υk < ∞. Hence {un}n is a Cauchy sequence and so is convergent in

(X, d). That is there exists an element z such that lim
n→∞

un = z. We claim that z ∈ (Fz)α.

On contrary suppose that z ̸∈ (Fz)α. Then pα(z, Fz) > 0 and consequently

pα(z, Fz) = lim
n→∞

pα(un+1, Fz) ≤ lim
n→∞

Dα(Fun , Fz)

≤ lim
n→∞

(
pα(un, Fz) + pα(z, Fun)

1 + δα(un, Fun) + δα(z, Fz)

)
MF

α (un, z) + LNF
α (un, z)

≤ lim
n→∞

(
pα(un, Fz) + pα(z, un+1)

1 + d(un, un+1) + pα(z, Fz)

)
lim

n→∞
max{d(un, z), pα(un, Fun), pα(z, Fz),

pα(z, Fz) + pα(z, Fun)

2
}

+L lim
n→∞

max{d(un, un+1), pα(z, Fz), pα(z, Fz), d(z, un+1)}

≤ lim
n→∞

(
pα(un, Fz) + pα(z, un+1)

1 + d(un, un+1) + pα(z, Fz)

)
lim

n→∞
max{d(un, z), d(un, un+1), pα(z, Fz),

pα(z, Fz) + d(z, un+1)

2
}

≤
(

pα(z, Fz)

1 + pα(z, Fz)

)
pα(z, Fz) < pα(z, Fz).

Since pα(z, Fz) > 0 therefore

pα(z, Fz)

1 + pα(z, Fz)
= 1,

a contradiction. Hence z ∈ (Fz)α. �

Corollary 3.1. Let (X, d) be a complete metric space and F : X → Wα(X) a fuzzy mapping

such that there exists an L ≥ 0 such that

Dα(Fx, Fy) ≤ βF (x, y)d(x, y) + Ld(x, y) (3.8)

for all x, y ∈ X. Then there exists a point x ∈ X such that xα ⊂ Fx.

Corollary 3.2. Let (X, d) be a complete metric space and F : X → Wα(X) a fuzzy

mapping such that there exists an L ≥ 0 such that

Dα(Fx, Fy) ≤ βF (x, y)max{d(x, y), pα(x, Fx), pα(y, Fy)}+ LNF
α (x, y) (3.9)

for all x, y ∈ X. Then there exists a point x ∈ X such that xα ⊂ Fx.

Corollary 3.3. Let (X, d) be a complete metric space and F : X → Wα(X) a fuzzy

mapping such that

Dα(Fx, Fy) ≤ βF (x, y)max{d(x, y), pα(x, Fx), pα(y, Fy)} (3.10)

for all x, y ∈ X. Then there exists a point x ∈ X such that xα ⊂ Fx.
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Corollary 3.4. Let (X, d) be a complete metric space and F : X → Wα(X) a fuzzy

mapping such that

Dα(Fx, Fy) ≤ βF (x, y)d(x, y)

for all x, y ∈ X. Then there exists a point x ∈ X such that xα ⊂ Fx.

Now we present an example to explain the Theorem 3.1 as a generalization of some

comparable results in the literature.

Example 3.1. Let X = {0, 1, 2} be endowed with metric d defined as:

d(0, 2) = 15, d(0, 1) = 10, d(1, 2) = 5,

d(x, x) = 0, d(x, y) = d(y, x) for all x, y ∈ X.

Let α ∈ (0,
1

3
) and define a fuzzy mapping F from X into Wα(X) as:

F0(x) =


2α if x = 0,
α

3
if x = 1,

0 if x = 2,

, F1(x) =


α

2
if x = 0

3α if x = 1,

0 if x = 2,

, F2(x) =


α if x = 0,
α

5
if x = 1,

α

3
if x = 2,

.

Then (F0)α = {0}, (F1)α = {1}, (F2)α = {0}. Note that for all x, y ∈ {0, 2}, we have

Dα(Fx, Fy) = H((Fx)α, (Fy)α) = 0. For x = 1 and y ∈ {0, 2}, we obtain

Dα(F0, F1) = H((F0)α, (F1)α) = d(0, 1) = 10,

Dα(F1, F2) = H((F1)α, (F2)α) = d(1, 0) = 10,

and for x = 1, y = 2 we have

MF
α (1, 2) = max{d(1, 2), pα(1, F1), pα(2, F2),

pα(1, F2) + pα(2, F1)

2
}

= max{d(1, 2), d(1, 1), d(2, 0), d(1, 0) + d(2, 1)

2
}

= max{5, 0, 15, 15
2
} = 15,

NF
α (1, 2) = min{pα(1, F1), pα(2, F2), pα(1, F2), pα(2, F1)}

= min{d(1, 1), d(2, 0), d(1, 0), d(2, 1)} = min{0, 15, 10, 5} = 0

βF (1, 2) =
pα(1, F2) + pα(2, F1)

1 + δα(1, F1) + δα(2, F2)
=

d(1, 0) + d(2, 1)

1 + d(1, 1) + d(2, 0)
=

15

16
.

So

Dα(F1, F2) = 10 ≤ 225

16
= βF (1, 2)Mα(1, 2) + LNF

α (1, 2).
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Now for x = 0 and y = 1, we obtain

MF
α (0, 1) = max{d(0, 1), pα(1, F1), pα(0, F0),

pα(1, F0) + pα(0, F1)

2
}

= max{d(0, 1), d(1, 1), d(0, 0), d(1, 0) + d(0, 1)

2
}

= max{10, 0, 0, 20
2
} = 10.

NF
α (0, 1) = min{pα(1, F1), pα(0, F0), pα(1, F0), pα(0, F1)}

= min{d(1, 1), d(0, 0), d(1, 0), d(0, 1)}

= = min{0, 0, 10, 10} = 0,

βF (0, 1) =
pα(1, F0) + pα(0, F1)

1 + δα(1, F1) + δα(0, F0)
=

d(1, 0) + d(0, 1)

1 + d(1, 1) + d(0, 0)
= 20.

Hence

Dα(F0, F1) = 10 ≤ 200 = βF (0, 1)Mα(0, 1) + LNF
α (0, 1).

Consequently

Dα(Fx, Fy) ≤ βF (x, y)Mα(x, y) + LNF
α (x, y)

is satisfied for all x, y ∈ X. Hence all the conditions of Theorem 3.1 are satisfied. Moreover

for x = 0, we have xα ⊂ F (x) as (F0)0 ≥ α. Hence {0} ⊂ (F0)α.This implies that x = 0

is the fixed fuzzy point of fuzzy mapping F.

Remark 3.1. Let fuzzy mapping F from X into Wα(X) be defined as in above example.

Since

Dα(F1, F2) = d(1, 0) = 10, d(1, 2) = 5

βF (1, 2) =
pα(1, F2) + pα(2, F1)

1 + δα(1, F1) + δα(2, F2)
=

15

16
,

therefore

Dα(F1, F2) = 10 ≮
75

16
= βF (1, 2)d(1, 2).

Hence Theorem 2.2 doesn’t hold true in this example that shows Theorem 3.1 is a proper

generalization of Theorem 2.2.

Remark 3.2. Let fuzzy mapping F from X into Wα(X) be defined above. Since

Dα(F1, F2) = d(1, 0) = 10, d(1, 2) = 5

and for any choice of q ∈ ]0, 1[

Dα(F1, F2) ̸≤ qd(1, 2).

Hence Theorem 2.1 does not holds true in this case. Hence Theorem 3.3 is a proper gener-

alization of results given in [9, 12, 15, 20].

Remark 3.3. Let F be a fuzzy mapping from X into Wα(X) and T : X → CB(X) (set of

all compact subsets of X). Define

(Fx)(z) =

{
α, if z ∈ Tx

0, otherwise
(3.11)
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for each x ∈ X. Note that

(Fx)α = {z : F (x)(z) ≥ α} = Tx. (3.12)

Now we present multivalued version of Theorem 3.1 which itself is a new result in complete

metric spaces and is a generalization of resuts given in [15].

Theorem 3.2. Let (X, d) be a complete metric space and T : X → K(X) (set of all

compact subsets of X) a multivalued mapping. Then T has a fixed point provided that T

satisfy the following:

H(Tx, Ty) ≤
(

d(x, Ty) + d(y, Tx)

1 + δ(x, Tx) + δ(y, Ty)

)
MT (x, y) + LNT (x, y) (3.13)

for all x, y ∈ X where

MT (x, y) = max{d(x, y), d(x, Fx), d(y, Fy),
d(x, Fy) + d(y, Fx)

2
},

NT (x, y) = min{d(x, Fx), d(y, Fy), d(x, Fy), d(y, Fx)}.

Proof. It follows from Remark 3.3. �

Theorem 3.3. Let (X, d) be a complete metric space and g : X → X a self map on X,

F : X → Wα(X) a fuzzy mapping. Suppose that there exists an L ≥ 0 such that

Dα(Fx, Fy) ≤ βg,F (x, y)Mg,F
α (x, y) + LNg,F

α (x, y) (3.14)

Then Cα(g, F ) ̸= ϕ provided that (F(X))α ⊆ g(X) for each α. Moreover F and g have

common fixed fuzzy point if any of the following conditions holds:

(f): F and g are w − fuzzy compatible, lim
n→∞

gnx = u and lim
n→∞

gny = v for some

x ∈ Cα(F, g), u ∈ X and g is continuous at u .

(g): g is F − fuzzy weakly commuting for some x ∈ Cα(g, F ), and g2x = gx.

(h): g is continuous at x for some x ∈ Cα(g, F ) and for some u ∈ X, such that

lim
n→∞

gnu = x.

Proof. By Lemma 2.1, there exists E ⊆ X such that g : E −→ X is one to one and

g(E) = g(X). Define a mapping A : g(E) −→ Wα(X) by

Agx = Fx for all gx ∈ g(E). (3.15)

As g is one to one on E, so A is well defined. Therefore (3.14) becomes

Dα(Agx,Agy) = Dα(Fx, Fy) ≤ βg,F (x, y)Mg,F
α (x, y) + LNg,F

α (x, y)

= βA(gx, gy)MA
α (gx, gy) + LNA

α (gx, gy)

for all gx, gy ∈ g(E). Hence A satisfies (3.1) and all the conditions of Theorem 3.1. Using

Theorem 3.1 with mapping A, it follows that A has fixed fuzzy point u ∈ g(E). Now it is left

to prove that F and g have coincidence fuzzy point. Since A has fixed fuzzy point uα ⊂ Au,

therefore u ∈ (Au)α. As (F(X))α ⊆ g(X), there exists u1 ∈ X such that gu1 = u, thus it

follows that

gu1 ∈ (Agu1)α = (Fu1)α. (3.16)
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This implies that u1 ∈ X is coincidence fuzzy point of F and g. Hence Cα(g, F ) ̸= ϕ.

Suppose now that (a) holds. Then for some xα ∈ Cα(g, F ), we have lim
n→∞

gnx = u, where

u ∈ X. Since g is continuous at u, so we have that u is a fixed points of g. As F and g are

w − fuzzy compatible and (gnx)α ∈ Cα(g, F ) for all n ≥ 1. That is gnx ∈ (Fgn−1x)α for all

n ≥ 1. Now we show that gu ∈ (Fu)α. Assume on contrary that gu /∈ (Fu)α, then by Lemma

2.2 pα(gu, Fu) > 0

pα(gu, Fu) ≤ pα(gu, g
nx) + pα(g

nx, Fu) ≤ pα(gu, g
nx) +Dα(Fgn−1x, Fu)

≤ pα(gu, g
nx) + βg,F (x, y)Mg,F

α (x, y) + LNg,F
α (x, y)

≤ pα(gu, g
nx) +

pα(gu, Fgn−1x) + pα(g
nx, Fu)

1 + pα(ggn−1x, Fgn−1x) + pα(gu, Fu)

max{d(ggn−1x, gu), pα(g
nx, Fgn−1x), pα(gu, Fu),

pα(gu, Fgn−1x) + pα(g
nx, Fu)

2
}

+Lmin{pα(gnx, Fgn−1x), pα(gu, Fu), pα(gu, Fgn−1x), pα(g
nx, Fu)}

≤ pα(gu, g
nx) +

pα(gu, g
nx) + pα(g

nx, Fu)

1 + pα(gnx, gnx) + pα(gu, Fu)

max{d(gnx, gu), pα(gnx, gnx), pα(gu, Fu),
pα(gu, g

nx) + pα(g
nx, Fu)

2
}

+Lmin{pα(gnx, gnx), pα(gu, Fu), pα(gu, g
nx), pα(g

nx, Fu)}.

On taking limit as n → ∞, we get

pα(gu, Fu) ≤
pα(gu, Fu)

1 + pα(gu, Fu)
pα(gu, Fu) < pα(gu, Fu) (3.17)

a contradiction. Hence u = gu ∈ (Fu)α. That is, uα is common fixed fuzzy point of F and

g. Suppose now that (b) holds. If for some xα ∈ Cα(F, g), g is F − fuzzy weakly commuting

and g2x = gx then gx = g2x ∈ (Fgx)α. Hence (gx)α is a common fixed fuzzy point of F and

g. Suppose now that (c) holds and assume that for some xα ∈ Cα(F, g) and for some u ∈ X,

lim
n→∞

gnu = x and lim
n→∞

gnv = y. By continuity of g at x and y, we get x = gx ∈ (Fx)α. The

result follows. �

4. Conclusion

In attempt to model the real world problems, we have to deal with uncertainties and

vagueness of the data, tools or conditions in the form of constraints . Fuzzy set theory has

provided many important tools in mathematics and related disciplines to resolve the issues

of uncertainty and ambiguity. Fuzzy sets and mappings play important roles in the process

of systems and fuzzy optimization. Fixed point theorems for fuzzy mappings obtained in

this article can further be used in solving the real world problems involving fuzzy situations.

We presented a new fixed point theorem in the context of fuzzy mappings which

generalize the comparable results [9, 12, 15, 20] in the existing literature. An example is

given to prove that the generalization is proper and important one. These results obtained

here can be applied in functional equations involving fuzzy situations.
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