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FIXED FUZZY POINT THEOREMS FOR FUZZY MAPPINGS ON
COMPLETE METRIC SPACES

Basit Ali', Mujahid Abbas?, Simona Costache®

The aim of this paper is to present fized fuzzy point results of fuzzy mappings in
complete metric spaces. As an application, coincidence and common fized fuzzy points
of a hybrid fuzzy pair of mappings are obtained. An erxample is presented to support the
result proved herein. Our results generalize and extend various results in the existing

literature.
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1. Introduction

The Banach contraction principle appeared in explicit form in Banach’s thesis [5] in
1922 where it was used to establish the existence of a solution for an integral equation. Since
then, it has become a very popular tool in solving existence problems in many branches of
mathematics. Extensions of this principle were obtained either by generalizing the domain
of mappings or by extending the contractive condition on the mappings ( see for example
[1,2,4,6,7, 8,10, 13, 14, 16, 18, 19] )s. Nadler [20] proved multivalued version of Banach
contraction principle. In mathematical modeling of the real world problems, there are many
inconveniences including the complexity of models and imprecision in differentiating the
events exactly in real situations. Advances in computer science industry developed and
modified many areas of research. There is still a major shortcoming of computers to deal
with the uncertain and imprecise situations. To deal with this uncertainty Zadeh [23] in
1965, initiated the concept of fuzzy sets. Since then, many authors have employed this
concept extensively in topology and analysis to develop this theory further and obtained
several interesting applications. Now it is well recognized theory to handle uncertainties
arising in various real life situations. Heilpern [12] introduced fuzzy mappings on a metric
space and proved a fixed point theorem for fuzzy contraction mappings as a generalization

of Nadler’s theorem [20]. For more results on fuzzy mappings we refer to [9, 21, 22].
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The aim of this paper is to present a new fixed point theorem for fuzzy mappings in
complete metric spaces. As an application of the result presented herein, a new fixed point
result of multivalued mappings is obtained. Also, coincidence and common fixed fuzzy point
result of a hybrid fuzzy pair of mappings is derived. An example is given to show that the
result proved in this paper is a proper generalization of comparable results in the existing

recent literature.

2. Preliminaries

Let us first recall some basic definitions and known results needed in the sequel.

Let X be a space of points with generic elements of X denoted by = and I = [0, 1].
A fuzzy set A in X is characterized by a membership function A : X — I such that each
element in X is associated with a real number A(x) € [0,1]. Let IX be the collection of all
fuzzy subsets of X. Let (X, d) be a metric space and A a fuzzy set in X. If o € (0, 1], then
a— level set A, of A is defined as:

Ay ={z: A(z) > a}.

For a = 0, we have Ay = {x € X : A(xz) > 0}, where B denotes the closure of a set B in
(X,d). The set A, is a crisp approximation of the fuzzy set A. A fuzzy set A is said to be
an approximate quantity if and only if for each « € [0, 1], A, is compact, and convex subset
of a metric linear space (X, d) with

sup A(x) = 1.

zeX
Let W(X) be the family of all approximate quantities. A fuzzy set A is said to be more
accurate than the fuzzy set B, denoted by A C B if and only if A(z) < B(x) for each z in
X. It is obvious that if 0 < & < 8 <1, then Ag C A,. Corresponding to each « € [0, 1] and
x € X, the fuzzy point z, of X is a fuzzy set z, : X — [0, 1] given by

) a ifz=y
X =
¥ 0 otherwise.

For a = 1, we have following indicator function of {z},

xl(y):{l ifx=y

0 otherwise.

Define W, (X) = {A € I* : A, is nonempty and compact}. For A,B € W,(X) and
a € [0,1], let

(A, B) = inf  d(z,y),0a(4,B) = d(z,y),
pa(4, B) ceaf (z,9),6a(A, B) ol (z,9)
D.(A,B) = max{ sup d(z, B,), sup d(y, As)},

T€EAL yE B
D(A,B) = supD,(A,B).

Note that p, is nondecreasing mapping of o and D a metric on W, (X). Let Y be an
arbitrary subset in (X,d). A mapping F : Y — W,(X) is called a fuzzy mapping over
the set Y, that is, a fuzzy set F,, € W,(X) for each y in Y. As, a fuzzy set F, in X is
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characterized by a membership function F, : X — [0,1], so F,(z) is a membership of = in
F,. Thus a fuzzy mapping F' over Y is a fuzzy subset of Y x X having membership function
Fy(z) = F(y,2).

In a more general sense than that given in [12], a mapping F: X — IX is a fuzzy
mapping over X ([21]). Notice that a—level set of fuzzy mapping F over X is given by

(Fo)a ={y € X : Fu(y) > a}.
Definition 2.1 ([9]). A fuzzy point x, in X is called a fixed fuzzy point of fuzzy mapping

F ifx, C Fy that is (Fp)x > «a or x € (Fy)a. That is, the fized degree of x in Fx is at least
a. If {x} C F,, then x is a fized point of a fuzzy mapping F.

Recently Ali and Abbas [3] gave the following definitions followed by a couple of
results about fixed fuzzy points and common fixed fuzzy points of fuzzy mappings.

Definition 2.2 ([3]). Let F: X — W,(X) be a fuzzy mapping and g : X — X a self
mapping on X. A fuzzy point o in X is called:

(a): coincidence fuzzy point of hybrid fuzzy pair (g, F') if (92)o C Fy, that is (F,)gz >
aor gr € (F;)q. That is, the fixed degree of gz in F, is at least .

(b): common fixed fuzzy point of the hybrid fuzzy pair (g, F) if o, = (92)a C Fi,
that is @ = gz € (Fy)q ( the fixed degree of 2 and gz in F, is same and is at least
).

We denote C, (g, F') and F, (g, F) by the set of all coincidence fuzzy point and set of
all common fixed fuzzy point of the hybrid fuzzy pair (g, F'), respectively.

Definition 2.3 ([3]). Let F: X — W, (X) be a fuzzy mapping and g: X — X a self
mapping on X, then

(c): the hybrid pair (g, F) is called w — fuzzy compatible if

9(F2)a € (Fga)a
whenever z € Cy (g, F).
(d): mapping g is called F — fuzzy weakly commuting at some point x € X if g?(z) €
(Fyz)a-
Lemma 2.1 ([11]). Let X be a nonempty set and g : X — X. Then there exists a subset
E C X such that g(FE) = g(X) and g : E — X is one to one.

Lemma 2.2 ([12]). Let (X,d) be a metric space, z,y € X and A, B € W(X) :
(1) if pa(z, A) =0, then xo C A;
(2) pa(z,A) S d(:ll,y)—F pa(yaA)v
(3) if 1o C A, then pa(x7B) < Da(Aa B)

Theorem 2.1 ([9]). Let (X,d) be a complete metric space, F a fuzzy mapping from X to
Wo(X), where o € (0,1). If there exists ¢ € (0,1) such that

D, (Fz, Fy) < qd(x,y),
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holds for each x,y € X. Then there exists x € X such that x,, is a fized fuzzy point

Lemma 2.3 ([17]). Let (X,d) be a complete metric space and F a fuzzy mapping from X
into W(X) and x¢ € X. Then there exists a 1 € X such that {x1} C Fxy.

Recently Khojasteh et al. [15] proved the following new type of fixed point theorem.

Theorem 2.2. Let (X,d) be a complete metric space and T : X — CB(X) (set of closed
and bounded subsets of X ) be a multivalued mapping. Let T satisfy the following:

d(z,Ty) + d(y, Tx)
1+6(z, Tx) + d(y, Ty)) d(z,y)

H(T%Ty)g(

forall x,y € X. Then T has a fived point.

Throughout this article we use the following notations:

ME(g) = max{d(z,9).pa(e Fr). poly, ), P20 T T pelinFe)y
NE(z,y) = min{pa(z, Fx),pa(y, Fy),pal@, Fy),paly, F2)},
BF(ny) = 1pa(m,Fy)+pa(y,Fz)
+ pa(@, F2) + paly, Fy)
Mo  (z,y) = maX{d(gw,gy)ma(gw,Fw),pa(gy,Fy%pa(gw’Fy);pa(gy’Fx)},
NP (z,y) = min{pa(gz, Fs),palgy: Fy): pa(92, Fy), palgy, Fr)},
BIF (g y) = Pa(92, Fy) + palgy, Fr)

1+ palgz, Fr) + palgy, Fy)’

3. Main Results

In this section we prove fixed fuzzy point theorem on a complete metric space.

Theorem 3.1. Let (X,d) be a complete metric space and F : X — Wo(X) a fuzzy
mapping. Suppose that there exists an L > 0 such that

Do (Fy, Fy) < B (z,y) M (2,y) + LNZ (2, y) (3.1)

for all x,y € X. Then there exists a point x € X such that x, C F,.

Proof. Let ug be an arbitrary element of X. As (Fy,)q is nonempty and compact so there
exists u1 € (Fyu,)a such that d(ug, u1) = pa(ug, Fuy)- If ugp = ug, then ug = uy € (Fy,)a and
the proof is finished. Suppose that ug # wu;. Since (Fuy), is nonempty and compact, there

exists ug € (Fy,)q such that

d(u17u2) = pa(ulaELl) S DOL(EL[)?El,l)'
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If uy = ug, then uy = ug € (F,, )o and the proof is finished. Suppose that u; # us, then by
given assumption we have

d(ur,u2) < Do(Fuy, Fuy) < B (ug, ur) ML (uo,w1) + LNL (ug, u1)

Pa (U0, Fu,) + palur, Fu,) h .
= M, LN,
B <1+5 (U(), )+5 (Ul’ ) O‘(u07u1)+ a(U‘Ovul)
d(ug, uz) + d(uy, u1) . B
M, LN,
B (1+d(uoau1)+d(u1,u2) a(uo’u1)+ oz(u()aul)
where
o\ W 7Fu + Palu 7Fu
Mf(UO,ul) = max{d(“’Ov“l)vPa(”OaFuo)apa(thu1)ap ( > 1) 2p ( - 0)}
d(u , U +d U, u
= l,nax{d(u(h1141)7(:[(11/[),’Ltl),d(ul’fua)7 ( 0 2) 5 ( 1 1)}
= max{d(ug,u1),d(u1,us), d(uo, u1) ;—d(uhug)}
= max{d(u07u1)7d(U1,U2)}
Nolj(u();ul) = min{pa(uO’Fu0)7pa(u1’Ful)’pa(u07Fu1);pa(U1,Fuo)

= min{pq (ug, u1), Pa(v1,u2), pa(vo, u2), pa(u1,u1)} = 0.

Hence we obtain
d(uy,ug) < ( dug, w) + d(u, up)

L+ d(uo,u1) + d(ui, ug)

) max{d(ug, u1),d(u1,uz)}. (3.2)
Note that

d(ul, UQ) < d(UQ, ul).
If not, then d(uq1,ug) > d(ug,u1). In this case (3.2) implies

d(UO, ul) + d(ul, UQ)
d(uq,
(ur, up) < (1+d(u0,u1)+d(u1,uz)
a contradiction. Hence

) d(uq,u2) < d(uq,ug),

d(ul, ’LL2) S d(UO, ’U,l)
and consequently
d(ug, u1) + d(u1, u2)
d(uy,ug) < d(ug,uy). 3.3
( ! 2) - (1+d(U0,U1)+d(U1,U2) ( 0 1> ( )
Continuing this process, we construct a sequence {u,} in X such that u, € (Fy,_,)a, and
Unp41 € (Fun)a with

d(tn, unt1) = Pa(Un, Fu,) < Da(Fu, s Fu,)-

If u, = up4q for some n € N, then u,, = uny1 € (F,, )o and the proof is finished. Suppose

Up, # Upy1 for all n € N, then by the given assumption we have

d(un,unH) S Da(Fu,,L,laFun)
< ( pa(unthun) +pa(unaFu7L 1)
- 1+5a(un—17Fun,1) +§ (una Unp )

( d(un—lvun—i-l) + d(unaun)
1+ d(unfla un) + d(una unJrl)

> Mf(un,l,un) + LN(f('U/nfhun)

> Mf(un_l,un) + LN(f(un—lyun)a
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where
ME (i) = {1, 0) a1, Fay ) ot ), 2t P P Pt )y

= max{d(un—1,Un),d(Un—1,Un), d(Un, Un+1), d(un_l,un+12) - dlun, un)}

= max{d(un 1, ), d(tn, 1ty 1), n=1s ) ;d(“”’ Unt 1)y sl d(un 1), d(ttn, 1)}
Nf(un,l,un) = min{pa(Uun—1, Fu, 1) Pa(tn, Fu, ) Da(tn-1,Fu, ) Da(tn, Fu, _,)

= min{pa (un—h un)apa (un; un-‘rl);pa(un—l; un-‘rl);pa(u'ru un)} =0.

Hence we obtain

d(una un+1) S (

Note that

d(unflaun) + d(unaunJrl)
1 + d(“n—lv un) + d(un; un+1)

> max{d(un—_1, Un), d(Un, Unt1)}. (3.4

d(una UnJrl) S d(unfla un)

If not, then d(uy, unt1) > d(tyn—1,u,) In this case (3.4) implies

d(“n, Un+1) § (

a contradiction. Hence

d(unflaun) + d(un»un+1)
1 + d(un—ly un) + d(u'm un+1)

) d(un7un+1) < d(unaun-l-l)a

d(u'ru unJrl) g d(unfly un)
and consequently

d n—1i,“¥n d mnsy “'n
d(Un7Un+1) S ( (u LY )+ <u “ +1)

1+ d(un—lv un) + d(una un+1)

) A(tn—1, Un). (3.5)

Denote
d(un—h un) + d(un7 un-‘rl)

T 1+ (1, tn) + d(tn, tUng1)

Bn = BF(un—laun)
Then from (3.5) we have
d(unaun+1) < /Bnd(un—laun) < ﬁnlgn—ld(un—%un—l) <. < (/Bnﬂn—1~--ﬂ1)d(u0au1)~ (36)

Note that {3, } is nonincreasing sequence with 3, > 0 for all n € N. So $3;...8, < (81)™ and
li_>m (61)™ = 0. It follows that
n [ee]

n—oo

Hence from (3.6) we obtain
lim d(upn, unt1) =0. (3.7)
n—00

Now for all m,n € N with m > n, we have

d(u’ru um) S d(una un-i—l) + d(un-i-h un+2) + ...+ d(um—ly um)
< [(/Bnﬂn—lﬂl) + (6nﬂ71—1-~-ﬂ1) + ...+ (/Bnﬂn—l---ﬂl)}d(um ul)
m—1 m—1 o0
= ) (BeBr-1--Br)d(uo,ur) = Y wrd(ug,ur) < Y vpd(ug, ua),
k=n k=n k=n

where vy, = (Bkfk—1..-01). Now using (3.7) we get

e d d
S R, Br+1BkBr—1---B1 ~ Jim Beyy = lim (uk, Ukt1) + d(Upt1, Uky2)
k—oo vg  k—oo  [rfr-1...f1 k—o0 koo 14 d(uk, wet1) + d(Upt1, Uk+2)

=0.
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o0

This implies that > vi < co. Hence {uy}, is a Cauchy sequence and so is convergent in
k=n

(X, d). That is there exists an element z such that lim w, = z. We claim that z € (F},),.

n—oo

On contrary suppose that z & (F.)s. Then p,(z, F.) > 0 and consequently

pa(Z7FZ) = hm pa(un+1an) S hm Da(Fun;Fz>

n—oo n—o0

Pa(Un, F) + pal(z, Fu,)
1+ 0a(tn, Fu,) + 0a(z, F.)

< lim

n—00

) ME (1, 2) + LNE (. 2)

. pa(unan)'i_pa(zvunJrl) .
< 1 1 d ns bl 0% ’n7Fu by 0% 7FZ7
< ”gr;o(Hd(umun+l)+pa(27Fz) Jim max{d(un, 2), pa(un, Fu, ) Pa(2, F)
pa(zan)+pa(zaFun)}
2
+L lim max{d(un, unt1), Pa(2, F2), Pal2, F2), d(2, unt1)}
n— o0
. pa(un7F2)+pa(Zvun+1) .
<
< lim (1+d(un,un+1)+pa(Z,Fz) Jim max{d(un, 2), d(un, unt1), Pa(2, F2),

Pa(z, F2) + d(2, upt1)
2
( pa(Z, Fz)
— \1+palz, F)

Since ps(z, F,) > 0 therefore

}
>pa(Z,Fz) < palz, Fy).
pa(Z;Fz)

1 +pa(Z7Fz)

a contradiction. Hence z € (F})q. O

=1

)

Corollary 3.1. Let (X,d) be a complete metric space and F : X — W, (X) a fuzzy mapping
such that there exists an L > 0 such that

Do (Fy, Fy) < B5 (x,y)d(x, y) + Ld(x, y) (3.8)

for all x,y € X. Then there exists a point © € X such that v, C F,.

Corollary 3.2. Let (X,d) be a complete metric space and F : X — W,(X) a fuzzy
mapping such that there exists an L > 0 such that

Do(Fy, Fy) < 7 (2, y) max{d(x,y), pa (2, Fy), Pa(y, Fy)} + LN (2,9) (3.9)
for all x,y € X. Then there exists a point x € X such that x4 C F.

Corollary 3.3. Let (X,d) be a complete metric space and F : X — Wo(X) a fuzzy
mapping such that

Da(va Fy) < /BF(afvy) maX{d(x,y),pa(x,Fx),pa(y, Fy)} (3~10)

for all x,y € X. Then there exists a point x € X such that x, C F.
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Corollary 3.4. Let (X,d) be a complete metric space and F : X — Wo(X) a fuzzy
mapping such that

Do (Fy, Fy) < B (z,y)d(x,y)
for all x,y € X. Then there exists a point x € X such that x, C F,.

Now we present an example to explain the Theorem 3.1 as a generalization of some

comparable results in the literature.

Example 3.1. Let X ={0,1,2} be endowed with metric d defined as:

QU
=
=

DO
~—

Il

15,d(0,1) = 10,d(1,2) = 5,
dx,z) = 0,d(z,y) =d(y,z) for all z,y € X.

1
Let o € (0, g) and define a fuzzy mapping F from X into W, (X) as:

200 if x = 0, %ifgg:() aifr=0,

a . a
Fo(z) = ngle, (@) =9 3aifz=1, ,F(z)= §Zf$_1’

0if x =2, 0 if x =2, gifx:2,

Then (Fp)a = {0}, (F1)a = {1}, (F2)a = {0}. Note that for all x,y € {0,2}, we have
Do (Fy,Fy) = H(Fy)a, (Fy)a) =0. Forz =1 and y € {0,2}, we obtain

Da(Fo, F1) = H((Fb)a, (F1)a) = d(0,1) = 10,
Da(F17F2> = H((Fl)oca (F2)a) = d(l,O) = 10,

and for x =1,y = 2 we have

Pa(1, F2) + pa(2, F1)

M5(1’2) = maX{d(l,2),pa(l,F1),pa(2,F2), 2 }

= max{d(1,2).d(1,1),(2,0), A0 F AL,

= max{5,0,15,§} = 15,
Nf(laZ) = min{pa(laFl)apa(2aFZ)apa(lvFQ)vpa(QaFl)}

= min{d(1,1),d(2,0),d(1,0),d(2,1)} = min{0, 15, 10,5} = 0
BF(1,2) = Pa(l, o) +pa(2,F1)  d(1,0)+d(2,1) 15

1+ 0a(1, 1) +04(2,F2)  1+d(1,1) +d(2,0) 16’

So

225
<7:

Dy (F1,Fr) =1
O(( 1, 2) 0— 16

BF(1,2)M,(1,2) + LNE (1,2).
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Now for x =0 and y = 1, we obtain
pa(LFO) +p0z(07F1)

MZ(0,1) = max{d(0,1),pa(1, F1),pa(0, Fo), 5 }
_ max{d((),1),d(1,1),d(0,0),W}
_ max{10,0,0,2—20}:10.

NI(0,1) = min{pa(1,F1),pal0, Fo), pa(l, Fo), pa(0, F1)}

= min{d(1,1),d(0,0),d(1,0),d(0,1)}
= =min{0,0,10,10} =0,

Po(L ) +pa(0.F)) _ d(LO)+d(0.) o

F
£7(0,1) 1+ 64(1, F1) + 04(0,Fo)  L+d(L,1)+d(0,0)

Hence
D, (Fy, F1) = 10 < 200 = 8¥(0,1)M,(0,1) + LN (0,1).
Consequently
Do(Fy, Fy) < B"(2,y)Ma(2,y) + LN, (,y)
1s satisfied for all x,y € X. Hence all the conditions of Theorem 3.1 are satisfied. Moreover
for x =0, we have zo C F (z) as (F0)0 > a. Hence {0} C (F0),.This implies that x = 0
1s the fized fuzzy point of fuzzy mapping F.

Remark 3.1. Let fuzzy mapping F from X into W, (X) be defined as in above example.

Since
D,(F1,F;) = d(1,0)=10,d(1,2)=5
/BF(l 2) pa(17F2)+pOt(27F1) :g
’ 14 0a(1, F1) + 602, F2) 16’
therefore

75
Da(Fi, Fp) =10 £ 75 = BT (1,2)d(1,2).
Hence Theorem 2.2 doesn’t hold true in this example that shows Theorem 3.1 is a proper

generalization of Theorem 2.2.

Remark 3.2. Let fuzzy mapping F from X into W, (X) be defined above. Since
D, (Fy, Fy) =d(1,0) =10,d(1,2) =5
and for any choice of q € ]0,1]
Do (Fy, F») £ qd(1,2).

Hence Theorem 2.1 does not holds true in this case. Hence Theorem 3.3 is a proper gener-
alization of results given in [9, 12, 15, 20].

Remark 3.3. Let F be a fuzzy mapping from X into Wy (X) and T : X — CB(X) (set of
all compact subsets of X ). Define

a, ifzeTx

] (3.11)
0, otherwise

(Fz)(2) = {
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for each x € X. Note that
(Fp)a ={2:F()(2) > a} = Tx. (3.12)

Now we present multivalued version of Theorem 3.1 which itself is a new result in complete

melric spaces and is a generalization of resuts given in [15].

Theorem 3.2. Let (X,d) be a complete metric space and T : X — K(X) (set of all
compact subsets of X) a multivalued mapping. Then T has a fized point provided that T
satisfy the following:

d(z,Ty) + d(y, Tx)
1+ 060(x,Tx) + 6(y, Ty)

H(Tz,Ty) < < ) M7*(z,y) + LN (z,y) (3.13)

for all x,y € X where
d(z, Fy) +d(y, Fx)

MT(z,y) = wax{d(z,y),d(z, Fz),d(y, Fy), 5 b
N'(z,y) = min{d(z, Fz),d(y, Fy),d(z, Fy),d(y, Fx)}.
Proof. 1t follows from Remark 3.3. O

Theorem 3.3. Let (X,d) be a complete metric space and g : X — X a self map on X,
F: X — W,(X) a fuzzy mapping. Suppose that there exists an L > 0 such that

Do (Fu, Fy) < 97 (2,y) M (2,y) + LNST (2,y) (3.14)

Then Co(g, F) # ¢ provided that (F(x))a € g(X) for each a. Moreover F and g have
common fized fuzzy point if any of the following conditions holds:
(f): F and g are w — fuzzy compatible, nlLH;og”x = u and nlLrI;og"y = v for some
x € Co(F,g), u € X and g is continuous at u .
(g): gis F — fuzzy weakly commuting for some x € Cy(g, F), and gz = gz.
(h): g is continuous at x for some z € Cy(g,F) and for some u € X, such that
lim g"u = x.
n—oo
Proof. By Lemma 2.1, there exists £ C X such that ¢ : £ — X is one to one and
g9(E) = g(X). Define a mapping A : g(E) — W, (X) by

Ay = F, for all gz € g(E). (3.15)
As g is one to one on E, so A is well defined. Therefore (3.14) becomes
Da(AgssAgy) = DalFu F,) < 877 (2,5)ME" (2,y) + LNZT (2,y)
= gz, gy) M (g7, 9y) + LNZ (92, 9y)

for all gz, gy € g(E). Hence A satisfies (3.1) and all the conditions of Theorem 3.1. Using
Theorem 3.1 with mapping A, it follows that A4 has fixed fuzzy point v € g(E). Now it is left
to prove that F' and g have coincidence fuzzy point. Since A has fixed fuzzy point u, C A,
therefore u € (Ay)a- As (F(x))a € 9(X), there exists u; € X such that gu; = wu, thus it
follows that

gur € (Aguy)a = (Fuy)a- (3.16)
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This implies that u; € X is coincidence fuzzy point of F' and g. Hence C,(g, F) # ¢.
Suppose now that (a) holds. Then for some z, € Cy(g, F), we have nh_}n;@ g"x = u, where
u € X. Since g is continuous at u, so we have that wis a fixed points of g. As F' and ¢ are
w — fuzzy compatible and (9"x)o € Co(g, F) for all n > 1. That is g"x € (Fyn-1,)q for all
n > 1. Now we show that gu € (Fy),. Assume on contrary that gu ¢ (Fy)a, then by Lemma
2.2 po(gu, ) >0

Palgu, Fu) < palgu, g"z) + pa(9" e, Fy) < pa(gu, 9"x) + Do(Fyn-14, Fy)

< palgu, g"z) + o (z,y) MEF (2,y) + LNZ (2, y)
Pa(gu, Fyn-1,) + palg"z, Fy)
< palgu,g™z) + -
“ 1+ palgg™ @, Fyn-1,) + pa(gu, F)

e n Pa(gu, Fgn—1y) + palg™z, F)
max{d(g9" 'z, gu), pa (9", Fyn-1,), Pa(gu, Fy.), — }
+L min{pa(gnx, Fg"_lm)apa (gu7 Fu)vpa(gua Fg”_laj)vpa(gnxa Fu)}

by a\gU, " + o nxyFu
< palgug"z) + Pa(gu, g"x) + paly )

L+ palgz, gnz) + palgu, Fy)

Pa(gu, g"x) + pa (9", F,)
2 }

+L min{pa(gnxa g"m),pa(gu, Fu)vpa (gua gnx)7pa(gnx’ Fu)}

max{d(gnx’ gu)7pa(gnx7 gnx)7pa(gu7 Fu)7

On taking limit as n — oo, we get

Pa(gu, Fiy) < %pa(gquu) < palgu, Fu) (3.17)
a contradiction. Hence u = gu € (Fy)q. That is, u, is common fixed fuzzy point of F and
g. Suppose now that (b) holds. If for some z, € Co(F,g), g is F — fuzzy weakly commuting
and g2z = gz then gx = g°z € (Fy)q. Hence (gz), is a common fixed fuzzy point of F and
g. Suppose now that (¢) holds and assume that for some z,, € C,(F, g) and for some u € X,
lim g"u = x and nlgr;o g"™v = y. By continuity of g at x and y, we get x = gz € (F,)q. The

n—oo
result follows. O

4. Conclusion

In attempt to model the real world problems, we have to deal with uncertainties and
vagueness of the data, tools or conditions in the form of constraints . Fuzzy set theory has
provided many important tools in mathematics and related disciplines to resolve the issues
of uncertainty and ambiguity. Fuzzy sets and mappings play important roles in the process
of systems and fuzzy optimization. Fixed point theorems for fuzzy mappings obtained in
this article can further be used in solving the real world problems involving fuzzy situations.

We presented a new fixed point theorem in the context of fuzzy mappings which
generalize the comparable results [9, 12, 15, 20] in the existing literature. An example is
given to prove that the generalization is proper and important one. These results obtained

here can be applied in functional equations involving fuzzy situations.
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