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RESEARCH ON MACHINING CENTER SPINDLE BEARING FAULT 
DIAGNOSIS BASED ON PARD-BP ALGORITHM 

Dongmei LV1, 2*, Xiaolei SUN1, Zhang CHENG1 

 Combining working principle and failure mechanism of the three-main-shaft 
precision drilling and milling vertical machining center, analyzing the dynamical 
model of machining center spindle bearing, illustrating its failure phenomenon of the 
key components---the main shaft bearing, which will directly affect the performance 
of the power for the machining center. In order to make machining center spindle box 
work reliably, introducing PARD-BP neural network fault diagnosis algorithm, 
regarding machining center spindle box key components related fault samples data 
as input, and regarding fault mode matrix as target output. The diagnostic results of 
PARD-BP network are completely consistent with the test results. It can be seen from 
the analysis that PARD-BP network can identify mechanical faults and accurately 
diagnose faults. It is proved that PARD-BP algorithm is reliable for mechanical fault 
detection and diagnosis of spindle bearing. 

Keywords: three-main-shaft machining center; Spindle system; PARD-BP 
Algorithm; Fault diagnosis; Network structure model 

1. Introduction 

With the wide application of electronic, sensor and computer technology in 
machinery industry, the technology of mechanical fault diagnosis develops rapidly. 
The system may completely or partially lose its function when it fails [1-3]. The 
traditional fault diagnosis technique is not very effective when analyzing the deep 
fault of the key parts of machining center with complex mechanical structure[4]. 
By integrating the knowledge of human logic thinking and image thinking into the 
diagnosis process, the deep and predictive fault diagnosis can be realized in real 
time and reliably. 
XI et al.[5] studied fault diagnosis by establishing machine tool spindle bearing 
dynamic model. Berredjem et al. [6] studied the automatic induction of fuzzy rules 
from numerical data with the method of similarity division. CHENG et al. [7] 
studied the fault diagnosis of variable speed bearings based on [4] the fault 
characteristic coefficient template. In addition, Bayesian networks and decision 
trees have many applications in fault diagnosis. ZHANG et al. [8] conducted 
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bearing fault diagnosis based on naive Bayes and decision tree by enhancing data 
independence. ZHOU et al. [9] used Bayesian networks to establish intelligent fault 
diagnosis and fault reasoning methods. ZHANG et al. [10,11] applied gradient 
lifting decision tree to data analysis of bearing fault diagnosis. Two kinds of data 
sets and time-frequency graph were constructed by using time series sorting 
transformation and continuous wavelet transform. 
Based on the learning and training of Yolov5 algorithm, two kinds of machine 
vision models of pressure and velocity nephogram were obtained, and combined 
with statistical analysis, the preliminary diagnosis of impeller fault was realized. 
The way of improving the accuracy of impeller fault diagnosis is that two detection 
models were integrated based on the idea of stack integration [12]. The NPR-AFO 
method was introduced into mechanical fault diagnosis and compared with other 
existing decomposition methods through simulation and analysis of local fault data 
of rolling bearing. The proposed method can not only extract fault features 
effectively [13,14], but also state fault features are more obvious.  
According to the typical fault diagnosis of the spindle bearings of the three-spindle 
precision drilling and tapping vertical machining center -- angular contact ball 
bearing, PARD-BP neural network model was established. In this paper, vibration 
signals of spindle and spindle bearing in x/y/z direction are comprehensively 
analyzed in the fault diagnosis of headstock, and the results of vibration diagnosis 
are fused [13,14]. After the vibration signals in all directions are diagnosed by 
PARD-BP neural network, the vibration information diagnosis is fused. 

2. Main shaft bearing fault phenomena 

The object studied in this paper is the physical object and coordinate system of the 
spindle system of the three-spindle precision drilling and tapping vertical 
machining center, as shown in Fig.1.The paper adds a physical picture of the spindle 
box of the machining center, from which it can be seen that +Z is vertical up, +X is 
horizontal left, and +Y is vertical to the paper (X-Z plane) according to the right-
handed Cartesian coordinate system, pointing to the reader (operator).The detailed 
diagram of the spindle system of the research object in this paper is shown in Fig.2. 
From the perspective of components, spindle bearing faults mainly include inner 
ring fault (fatigue, fracture), outer ring fault (fatigue, fracture), rolling body fault 
(wear, fatigue), cage fault and other faults. According to statistics, 90% of the 
rolling bearing failure from the outer ring and inner ring failure [13-15], the main 
fault phenomena of gear include tooth surface wear and tooth surface contact 
fatigue, bending fatigue [16], broken teeth, tooth surface bonding and abrasion 
peeling, common wear mainly abrasive wear, corrosion wear, adhesive wear and 
tooth end impact wear, and related plastic deformation. 
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Fig.1 Spindle system of three spindle drilling-tapping vertical machining center 

 

 
1-Spindle seat; 2-Spindle; 3-Spindle bearing; 4-Beam construction. 

Fig.2 The machining centemain shaft system 

Bearing fault diagnosis Algorithm method is similar to PARD-BP neural network 
fault diagnosis technology [16]. Self-Constructing algorithms are a widely used 
pruning technology in BP networks. Based on mathematical statistics, they 
introduce correlation coefficients and scatter in constructing and constructing 
hidden nodes to achieve constructing and merging control [12]. However, 
experimental data showed that when constructing Self-Constructing pruning 
methods, poor convergence, namely, the difficulty of constructing hidden-layer 
nodes into minimalism, was found. Therefore, the concept of randomness was 
introduced in constructing and constructing the pruning algorithm (PARD-BP), 
constructing and constructing the randomness algorithm in an integrated way. The 
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application of this algorithm in the fault diagnosis of spindle system in three-spindle 
precision drilling and tapping vertical machining center proves that the algorithm 
can effectively cut the hidden layer nodes of BP neural network to a minimum. In 
terms of diagnosis accuracy and network training time, PARD-BP neural network 
fault diagnosis technology with extremely condensed hidden layer nodes has 
obvious advantages compared with ordinary BP neural network. 

3. PARD-BP neural network 

3.1 Pruning Algorithm based on Random Degree (PARD-BP) 
algorithm 
The self-configuration pruning algorithm with randomness RD is called PARD-BP 
algorithm. When randomness is zero, the PARD-BP algorithm degenerates into a 
general constructing Self-Constructing algorithm. 
The idea of PARD-BP algorithm is shown in Figure 2, which comes from three 
aspects: 
(1) The constructing possibility of Self-Constructing algorithms in itself is 
constructing consistent network structures. 
(2) Transforming the disadvantages of randomness in initial weights and bias values 
into advantageous conditions in constructing convergent and consistent network 
structures in Self-Constructing algorithms. In essence, it is the application of 
probabilistic statistics techniques in constructing and constructing the concept of 
randomness. 

 
Fig. 3 Thought diagram of PARD-BP algorithm 

(3) From the idea of divide-and-conquer algorithm, it is simply one task, that is, 
converging to a consistent network structure. When one step cannot be effectively 
completed or it is difficult to complete, each sub-task is completed in multiple steps, 
that is, pruning to a network structure first, starting with the network structure, 
continue pruning, and finally combine the sub-tasks, that is, the whole process of 
network pruning. To complete the whole task, that is, to achieve convergence of the 
network structure. 
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In Fig.3, kn hh , for a given number of hidden nodes (in which redundant nodes 
exist), the bold solid lines show that, when built in equal numbers, ideal Self-
Constructing algorithms are able to shear from different numbers of hidden nodes 
to constructing a uniform, and the network structure has minh  hidden layer nodes. 
In fact, Self-Constructing algorithms (expressed in fine solid lines) can only nh
construct network structures in pruning which are constructed with inh − hidden 
layers of nodes, by stripping away i  hidden nodes. After kh pruning, a hidden 
layer with jkh −  network structure of nodes is formed. In generally, it is also 
demonstrated that Self-Constructing algorithms do not converge from constructing 
networks with different constructing node numbers in hidden layers to constructing 
networks with minh individual constructing nodes. In PARD-BP (represented by 
dotted lines), the concept of randomness is utilized to repeatedly apply Self-
Constructing algorithms in constructing or constructing networks of random initial 
weights. From inh − , jkh − meridian ‘inh

−
, ''inh

−
 or ‘jn

h
−

the number of hidden 

layer node network structure, finally converges to or near it. 
3.2 Normalization of feature parameters of PARD-BP algorithm 

In the process of vibration signal acquisition, it will undoubtedly be affected by 
external factors, usually the noise pollution is very serious. The collected data will 
be analyzed and converted in the amplitude range so that the impact on vibration 
signals can be reduced [7-8]. The characteristic parameters are simple amplitude 
parameter extreme value, peak extreme value, root mean square value and 
dimensionless amplitude parameter [5]. Dimensionless amplitude parameters 
include waveform index, Extreme index and pulse index. 
The signals of the normal operation and failure of the headstock are collected, and 
8 types of common faults are selected [1]: inner ring fatigue, inner ring fracture, 
outer ring fatigue, outer ring fracture, rolling body wear, rolling body fatigue, cage 
failure. The calculation methods of each parameter are respectively. 
Extreme value:                       ）（EE maxmax =                (1) 
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Pulse index: 
−

= EEC maxf                                         (6) 

The original data as characteristic parameters have different amplitudes, and 
sometimes the difference is quite large. If the neural network is directly input, when 
the measurement value fluctuates greatly, the learning process of neural networks 
will be affected, and it is difficult to reflect the change of small measurement value 
[14]. In order to classify and recognize various states by neural networks, it is 
necessary to remove the interference of physical units of each characteristic 
parameter, analyze only from the numerical value, and normalize between [0,1]. 
Therefore, the original data is normalized. 
Common normalization processing methods are: 
(1) Range normalization method:  
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The results obtained by the three data normalization processing methods are the 
same, but the range normalization method is the simplest [8]. Therefore, the range 
normalization method of Equation (1) is adopted to process the data, so that the 
normalized value falls between [0,1]. 

4. Headstock PARD-BP algorithm implementation 

 As an experimental device, Jiangsu Donghua DH5922N dynamic signal test 
analyzer collects signal dates and analyzes the dates. Bration signals of spindle 
bearing during normal operation, inner ring fatigue, inner ring fracture, outer ring 
fatigue, outer ring fracture, rolling body wear, rolling body fatigue and cage failure 
were collected. Vibration data network extraction training was carried out in 
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horizontal-direction, radial-direction and axial-direction [17]. Feature extraction 
was carried out on 6 groups of data extracted from each fault. Each group of data 
collected 150 points, and then the feature signal training processing, the obtained 
data into the neural network [18]. The fault warning table of normal operation (F0), 
inner ring fatigue (F1), inner ring fracture (F2), outer ring fatigue (F3), outer ring 
fracture (F4), rolling body wear (F5), rolling body fatigue (F6) and cage failure (F7) 
in the three directions of horizontal-direction, radial-direction and axial-direction 
were constructed. The fault mode symptom table of all directions is listed here, as 
shown in Tab.1, and the fault mode table of the above states is shown in Tab. 2. 
To verify the validity of fault diagnosis for spindle bearing of machining center 
headstock, PARD-BP algorithm was introduced to simplify the network structure. 
To diagnose spindle bearings effectively, the working principle and fault diagnosis 
mechanism are analyzed according to the working characteristics of the spindle 
bearing, the data acquisition system of the spindle bearing is designed and 
implemented, and the monitoring equipment and parameters are described.  

Table.1  
Axial/Z-direction failure symptom table of key components 

Failure mode 
Parameter maxE  ffE  rmsE  fW  fK  fC  

Normal operation  0.4268 0.6379 0.6176 0.4376 0.6248 0.6324 
Inner ring fatigue 0.4218 0.3978 0.3724 0.3365 0.4425 0.4097 
Inner ring fracture 0.3364 0.3962 0.6200 0.6148 0.3136 0.3003 
Outer ring fatigu 0.4476 0.3811 0.6049 0.6031 0.4137 0.4468 
Outer ring fracture 0.4233 0.6011 0.4701 0.4424 0.3663 0.4473 
Rolling wear 0.4420 0.4133 0.3263 0.2716 0.4182 0.4467 
Rolling body fatigue 0.4137 0.5477 0.4476 0.4497 0.4135 0.4683 
Cage failure 0.4578 0.4438 0.3876 0.6087 0.6561 0.4583 

Table 2 
 Failure modes Table 

State 
Failure mode F1 F2 F3 F4 F5 F6 F7 

Normal operation 0 0 0 0 0 0 0 
Inner ring fatigue 1 0 0 0 0 0 0 
Inner ring fracture 0 1 0 0 0 0 0 
Outer ring fatigue 0 0 1 0 0 0 0 
Outer ring fracture 0 0 0 1 0 0 0 
Rolling wear 0 0 0 0 1 0 0 
Rolling body fatigue 0 0 0 0 0 1 0 
Cage failure 0 0 0 0 0 0 1 

In summary, the PARD-BP neural network for main shaft bearing fault diagnosis 
is reliable and effective. The adoption of PARD-BP genetic algorithm based on the 
algorithm is superior to the ordinary genetic algorithm [18] in terms of its consistent 
network structure convergence characteristics, simplified pruning property and its 
implication for the selection of randomness events. The BP algorithm is trained by 
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inputting fault sample data of axial piston pump and outputting fault mode target 
matrix. 
Its output target matrix is 

））（（ 21122 b)blogsig(*logsiga ++= PIWLW                        (10) 
In the formula:  
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Combined with the working principle and fault mechanism of the three-spindle 
machining center, the possible fault cases were collected, and the working principle 
[1] and fault phenomena of the key spindle component of the three-spindle 
machining center -- rolling bearing were studied. The fault will directly affect the 
working performance of the spindle. In order to make the three-spindle machining 
center work reliably, the PARD-BP neural network fault diagnosis algorithm was 
introduced. PARD-BP algorithm takes spindle bearing vibration sample data as 
input and fault mode matrix as target output [19]. The results show that the PARD-
BP algorithm is reliable for the fault detection and diagnosis of the main shaft 
bearing. 
The establishment of spindle bearing fault diagnosis model based on genetic 
algorithm includes genetic algorithm optimization calculation and spindle bearing 
fault integral numerical simulation. Genetic algorithm can be used for the fault 
diagnosis and optimization of main shaft bearings. Compared with other traditional 
algorithms, it does not require derivatives or other auxiliary information, and only 
approximates the optimal solution by imitating the successful evolutionary process 
of genetic screening in nature [1].  
PARD-BP network was used to detect the main shaft bearing fault sample data, and 
the horizontal direction vibration signal of the fault sample collected in history was 
normalized. Bearing fault sample data show in Tab. 3. 



Research on machining center spindle bearing fault diagnosis based on PARD-BP algorithm  69 

Table. 3 
 Fault sample data (horizontal-direction) 

Inner ring fatigue (Sample 
1) 0.3124 0.3067 0.4764 0.4261 0.4203 0.3844 0.3642 0.4643 

Inner ring fracture (Sample 
2) 0.3084 0.2901 0.4198 0.4119 0.3089 0.3064 0.2924 0.6809 

Outer ring fatigue (Sample 
3) 0.2279 0.2668 0.2443 0.2296 0.3402 0.2819 0.2644 0.6375 

Outer ring fracture (Sample 
4) 0.4291 0.4627 0.4864 0.4683 0.3102 0.4463 0.4784 0.3447 

The structural parameters of the horizontal-direction vibration neural network after 
training[1] are shown in the Tab.4. After pruning, the number of hidden layer nodes 
of the object is reduced from 18 to 5. 

Table 4 
 Reduction of axial /Z- vibration parameters of key components 

The initial value in the horizontal /X- direction 
-0.3119    -0.2785    0.1023    0.1268   -0.1164    0.084   -0.069   -0.4229   -0.4643 
-0.1478    -0.4684    -0.1081   0.1793   -0.3894   -0.4463  0.1126   0.1117   -0.4237 

The value after training 
-7.044463   4.182612   -1.837496   2.487431   3.748632 

The trained network structure is used to test the fault sample data, and the results 
are shown in Tab. 5[5]. 

Table 5 
 Sample data 

Inner ring fatigue (Sample 1) 0.1464  0.1443 0.9836 0.0000 0.0000 0.0124 
Inner ring fracture (Sample 2) 0.0021 0.9964 0.1382 0.0000 0.0009 0.0000 
Outer ring fatigue (Sample 3) 0.0003 0.1469 0.0004 0.9894 0.0000 0.0049 
Outer ring fracture (Sample 4) 0.0860 0.0000 0.0002 0.9942 0.0007 0.0017 

The output results in the above table are processed. The output matrix is taken, and 
the fault diagnosis mode is obtained. The diagnosis conclusion is drawn [18]. The 
diagnosis results of PARD-BP network are completely consistent in Tab. 6. It can 
be seen from the analysis that the PARD-BP network can identify different forms 
of faults and diagnose faults accurately [1]. 

Table 6  
PARD-BP network diagnosis results 

Sample number Failure mode Diagnostic conclusion 
Sample 1 0 0 1 0 0 0 Inner ring fatigue  
Sample 2 0 1 0 0 0 0 Inner ring fracture  
Sample 3 0 0 0 1 0 0 Outer ring fatigue  
Sample 4 0 0 0 1 0 0 Outer ring fracture  

5. Result analysis 

The static characteristics of the spindle system are shown in Table 7 below. Through 
the analysis of the spindle system, it is found that the stress of the spindle system is 
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mainly concentrated on the side rib plate and the inner rib plate, so it is important 
to optimize the size of the inner rib plate and the side rib plate. 

Table7  
Statics characteristic of the spindle system 

Loading direction Maximum deformation (μm) Maximum stress (Pa) 

X 11.7 880118 
Y 1.51 118932 
Z 1.34 125416 

The structural diagram before and after the optimization of the spindle system is 
shown in Figure 5 in the dynamic test of the three-spindle machining center. The 
mechanical characteristics of the spindle system monomer after optimization are 
obtained by optimizing the inner and side ribs of the spindle system, and the 
mechanical characteristics of the spindle system monomer before and after 
optimization are compared, as shown in Tab. 8 [16]. 

                
        a) Before optimization                   b) After optimization 

Fig.4 The optimization of the spindle system 
Tab.8 Mechanical properties before and after the optimization of the spindle system 

monomer 
 Direction Maximum deformation(μm) Maximum stress(Pa) Mass (kg) 

After 
optimization 

X 10.7 805682 306.5 
(Original mass: 

297.5kg) 
Y 1.40 107689 
Z 1.23 112853 

Rate of change 
X -8.54% -9.24% 

3.02% Y -7.28% -9.45% 
Z -8.94% -10.02% 

 
The primary mass of spindle system is 297.5kg. By comparing the 

mechanical characteristics of the spindle system before and after the single factor 
optimization, it is found that the weight of the spindle system only increases by 
3.02% after the single factor optimization, the mechanical characteristics of the 
spindle system are improved, and the three axial strains are all decreased, indicating 
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that the stiffness is increased, and the stress on the three axes is also reduced, 
especially the Z-axis, which is reduced by -10.02%. It indicates that the mechanical 
characteristics of the spindle system have been improved [19]. 

6. Summary 

In this paper, the main shaft bearing of machining center dynamic element main 
shaft system is studied, and the algorithm theory and test data acquisition and 
comparison method are proposed. The algorithm and test method used in this paper 
are effective for fault monitoring and control and can further improve the control 
reliability and dynamic performance of the spindle system of the machining center, 
and improve the machining precision and efficiency of the spindle system. This 
method can provide technical reference for the fault diagnosis and dynamic 
performance stability of spindle systems of other types of multi-axis machine tools, 
rotating parts and other mechanical parts, and has important significance and 
application potential for the exploration of fault diagnosis and algorithm of related 
mechanical ontology and rotating parts in mechanical engineering and automotive 
engineering fields. 
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