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RESEARCH ON MACHINING CENTER SPINDLE BEARING FAULT
DIAGNOSIS BASED ON PARD-BP ALGORITHM

Dongmei LV!, ¥, Xiaolei SUN!, Zhang CHENG'

Combining working principle and failure mechanism of the three-main-shaft
precision drilling and milling vertical machining center, analyzing the dynamical
model of machining center spindle bearing, illustrating its failure phenomenon of the
key components---the main shaft bearing, which will directly affect the performance
of the power for the machining center. In order to make machining center spindle box
work reliably, introducing PARD-BP neural network fault diagnosis algorithm,
regarding machining center spindle box key components related fault samples data
as input, and regarding fault mode matrix as target output. The diagnostic results of
PARD-BP network are completely consistent with the test results. It can be seen from
the analysis that PARD-BP network can identify mechanical faults and accurately
diagnose faults. It is proved that PARD-BP algorithm is reliable for mechanical fault
detection and diagnosis of spindle bearing.

Keywords: three-main-shaft machining center; Spindle system; PARD-BP
Algorithm; Fault diagnosis; Network structure model

1. Introduction

With the wide application of electronic, sensor and computer technology in
machinery industry, the technology of mechanical fault diagnosis develops rapidly.
The system may completely or partially lose its function when it fails [1-3]. The
traditional fault diagnosis technique is not very effective when analyzing the deep
fault of the key parts of machining center with complex mechanical structure[4].
By integrating the knowledge of human logic thinking and image thinking into the
diagnosis process, the deep and predictive fault diagnosis can be realized in real
time and reliably.

XI et al.[5] studied fault diagnosis by establishing machine tool spindle bearing
dynamic model. Berredjem et al. [6] studied the automatic induction of fuzzy rules
from numerical data with the method of similarity division. CHENG et al. [7]
studied the fault diagnosis of variable speed bearings based on [4] the fault
characteristic coefficient template. In addition, Bayesian networks and decision
trees have many applications in fault diagnosis. ZHANG et al. [8] conducted
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bearing fault diagnosis based on naive Bayes and decision tree by enhancing data
independence. ZHOU et al. [9] used Bayesian networks to establish intelligent fault
diagnosis and fault reasoning methods. ZHANG et al. [10,11] applied gradient
lifting decision tree to data analysis of bearing fault diagnosis. Two kinds of data
sets and time-frequency graph were constructed by using time series sorting
transformation and continuous wavelet transform.

Based on the learning and training of Yolov5 algorithm, two kinds of machine
vision models of pressure and velocity nephogram were obtained, and combined
with statistical analysis, the preliminary diagnosis of impeller fault was realized.
The way of improving the accuracy of impeller fault diagnosis is that two detection
models were integrated based on the idea of stack integration [12]. The NPR-AFO
method was introduced into mechanical fault diagnosis and compared with other
existing decomposition methods through simulation and analysis of local fault data
of rolling bearing. The proposed method can not only extract fault features
effectively [13,14], but also state fault features are more obvious.

According to the typical fault diagnosis of the spindle bearings of the three-spindle
precision drilling and tapping vertical machining center -- angular contact ball
bearing, PARD-BP neural network model was established. In this paper, vibration
signals of spindle and spindle bearing in x/y/z direction are comprehensively
analyzed in the fault diagnosis of headstock, and the results of vibration diagnosis
are fused [13,14]. After the vibration signals in all directions are diagnosed by
PARD-BP neural network, the vibration information diagnosis is fused.

2. Main shaft bearing fault phenomena

The object studied in this paper is the physical object and coordinate system of the
spindle system of the three-spindle precision drilling and tapping vertical
machining center, as shown in Fig.1.The paper adds a physical picture of the spindle
box of the machining center, from which it can be seen that +Z is vertical up, +X is
horizontal left, and +Y is vertical to the paper (X-Z plane) according to the right-
handed Cartesian coordinate system, pointing to the reader (operator).The detailed
diagram of the spindle system of the research object in this paper is shown in Fig.2.
From the perspective of components, spindle bearing faults mainly include inner
ring fault (fatigue, fracture), outer ring fault (fatigue, fracture), rolling body fault
(wear, fatigue), cage fault and other faults. According to statistics, 90% of the
rolling bearing failure from the outer ring and inner ring failure [13-15], the main
fault phenomena of gear include tooth surface wear and tooth surface contact
fatigue, bending fatigue [16], broken teeth, tooth surface bonding and abrasion
peeling, common wear mainly abrasive wear, corrosion wear, adhesive wear and
tooth end impact wear, and related plastic deformation.
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1-Spindle seat; 2-Spindle; 3-Spindle bearing; 4-Beam construction.

Fig.2 The machining centemain shaft system

Bearing fault diagnosis Algorithm method is similar to PARD-BP neural network
fault diagnosis technology [16]. Self-Constructing algorithms are a widely used
pruning technology in BP networks. Based on mathematical statistics, they
introduce correlation coefficients and scatter in constructing and constructing
hidden nodes to achieve constructing and merging control [12]. However,
experimental data showed that when constructing Self-Constructing pruning
methods, poor convergence, namely, the difficulty of constructing hidden-layer
nodes into minimalism, was found. Therefore, the concept of randomness was
introduced in constructing and constructing the pruning algorithm (PARD-BP),
constructing and constructing the randomness algorithm in an integrated way. The
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application of this algorithm in the fault diagnosis of spindle system in three-spindle
precision drilling and tapping vertical machining center proves that the algorithm
can effectively cut the hidden layer nodes of BP neural network to a minimum. In
terms of diagnosis accuracy and network training time, PARD-BP neural network
fault diagnosis technology with extremely condensed hidden layer nodes has
obvious advantages compared with ordinary BP neural network.

3. PARD-BP neural network

3.1 Pruning Algorithm based on Random Degree (PARD-BP)
algorithm
The self-configuration pruning algorithm with randomness RD is called PARD-BP
algorithm. When randomness is zero, the PARD-BP algorithm degenerates into a
general constructing Self-Constructing algorithm.
The idea of PARD-BP algorithm is shown in Figure 2, which comes from three
aspects:
(1) The constructing possibility of Self-Constructing algorithms in itself is
constructing consistent network structures.
(2) Transforming the disadvantages of randomness in initial weights and bias values
into advantageous conditions in constructing convergent and consistent network
structures in Self-Constructing algorithms. In essence, it is the application of
probabilistic statistics techniques in constructing and constructing the concept of
randomness.

Fig. 3 Thought diagram of PARD-BP algorithm

(3) From the idea of divide-and-conquer algorithm, it is simply one task, that is,
converging to a consistent network structure. When one step cannot be effectively
completed or it is difficult to complete, each sub-task is completed in multiple steps,
that is, pruning to a network structure first, starting with the network structure,
continue pruning, and finally combine the sub-tasks, that is, the whole process of
network pruning. To complete the whole task, that is, to achieve convergence of the
network structure.



Research on machining center spindle bearing fault diagnosis based on PARD-BP algorithm 65

In Fig.3, h,,h, for a given number of hidden nodes (in which redundant nodes

exist), the bold solid lines show that, when built in equal numbers, ideal Self-
Constructing algorithms are able to shear from different numbers of hidden nodes

to constructing a uniform, and the network structure has /4_. hidden layer nodes.
In fact, Self-Constructing algorithms (expressed in fine solid lines) can only 4,
construct network structures in pruning which are constructed with /4, hidden
layers of nodes, by stripping away i hidden nodes. After 4, pruning, a hidden
layer with 7, ; network structure of nodes is formed. In generally, it is also

demonstrated that Self-Constructing algorithms do not converge from constructing
networks with different constructing node numbers in hidden layers to constructing

networks with #_. individual constructing nodes. In PARD-BP (represented by

dotted lines), the concept of randomness is utilized to repeatedly apply Self-
Constructing algorithms in constructing or constructing networks of random initial
weights. From £ h,_,meridian h ., h . or h ; the number of hidden

layer node network structure, finally converges to or near it.
3.2 Normalization of feature parameters of PARD-BP algorithm

In the process of vibration signal acquisition, it will undoubtedly be affected by
external factors, usually the noise pollution is very serious. The collected data will
be analyzed and converted in the amplitude range so that the impact on vibration
signals can be reduced [7-8]. The characteristic parameters are simple amplitude
parameter extreme value, peak extreme value, root mean square value and
dimensionless amplitude parameter [5]. Dimensionless amplitude parameters
include waveform index, Extreme index and pulse index.

The signals of the normal operation and failure of the headstock are collected, and
8 types of common faults are selected [1]: inner ring fatigue, inner ring fracture,
outer ring fatigue, outer ring fracture, rolling body wear, rolling body fatigue, cage

failure. The calculation methods of each parameter are respectively.

Extreme value: E_ . =max (E) (1)
Peak-extreme value : E.=E .~ Eun (2)
N 2
Root mean square value: g - ER E 3
q w3 G)
Waveform index: W, =E,/ |l~5 l.| 4)

In the formula, £ is Mean Value;
Extreme index: K, =E_, /E, (5)
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E (6)
The original data as characteristic parameters have different amplitudes, and
sometimes the difference is quite large. If the neural network is directly input, when
the measurement value fluctuates greatly, the learning process of neural networks
will be affected, and it is difficult to reflect the change of small measurement value
[14]. In order to classify and recognize various states by neural networks, it is
necessary to remove the interference of physical units of each characteristic
parameter, analyze only from the numerical value, and normalize between [0,1].
Therefore, the original data is normalized.

Common normalization processing methods are:

(1) Range normalization method:

Pulse index: C; =E /

e. —e. .
elO — 1 min (7)
emax - emin
In the formula, e, =max{e},e . =min{e,}.

(2) Standard deviation normalization method:
0 e —e

e = )
(o2

_ n 1 n _
In the formula, e = lZei , O= \/—IZ(Q —e)’
n—1

n g
(3)Mean normalization method:

©)
In the formula, e = lZei .
n

i=1
The results obtained by the three data normalization processing methods are the
same, but the range normalization method is the simplest [8]. Therefore, the range
normalization method of Equation (1) is adopted to process the data, so that the
normalized value falls between [0,1].

4. Headstock PARD-BP algorithm implementation

As an experimental device, Jiangsu Donghua DH5922N dynamic signal test
analyzer collects signal dates and analyzes the dates. Bration signals of spindle
bearing during normal operation, inner ring fatigue, inner ring fracture, outer ring
fatigue, outer ring fracture, rolling body wear, rolling body fatigue and cage failure
were collected. Vibration data network extraction training was carried out in
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horizontal-direction, radial-direction and axial-direction [17]. Feature extraction
was carried out on 6 groups of data extracted from each fault. Each group of data
collected 150 points, and then the feature signal training processing, the obtained
data into the neural network [18]. The fault warning table of normal operation (F0),
inner ring fatigue (F1), inner ring fracture (F2), outer ring fatigue (F3), outer ring
fracture (F4), rolling body wear (F5), rolling body fatigue (F6) and cage failure (F7)
in the three directions of horizontal-direction, radial-direction and axial-direction
were constructed. The fault mode symptom table of all directions is listed here, as
shown in Tab.1, and the fault mode table of the above states is shown in Tab. 2.
To verify the validity of fault diagnosis for spindle bearing of machining center
headstock, PARD-BP algorithm was introduced to simplify the network structure.
To diagnose spindle bearings effectively, the working principle and fault diagnosis
mechanism are analyzed according to the working characteristics of the spindle
bearing, the data acquisition system of the spindle bearing is designed and
implemented, and the monitoring equipment and parameters are described.

Table.1
Axial/Z-direction failure symptom table of key components
Failure mode
Parameter E o Ey E s W K; G
Normal operation 0.4268 | 0.6379 | 0.6176 | 0.4376 | 0.6248 | 0.6324
Inner ring fatigue 0.4218 | 0.3978 | 0.3724 | 0.3365 | 0.4425 | 0.4097
Inner ring fracture 0.3364 | 0.3962 | 0.6200 | 0.6148 | 0.3136 | 0.3003
Outer ring fatigu 0.4476 | 0.3811 | 0.6049 | 0.6031 | 0.4137 | 0.4468
Outer ring fracture 0.4233 | 0.6011 | 0.4701 | 0.4424 | 0.3663 | 0.4473
Rolling wear 0.4420 | 0.4133 | 0.3263 | 0.2716 | 0.4182 | 0.4467
Rolling body fatigue | 0.4137 | 0.5477 | 0.4476 | 0.4497 | 0.4135 | 0.4683
Cage failure 0.4578 | 0.4438 | 0.3876 | 0.6087 | 0.6561 | 0.4583
Table 2

Failure modes Table

State

Failure mode F1 | F2 | F3 | F4 | F5 | F6 | F7

Normal operation 0] 0]0]J0]0]01]0O0
Inner ring fatigue 1 0[]0 0]0]0]0O0
Inner ring fracture 0 1 0/]0]0]071]O0
Outer ring fatigue 01]0 1 0100710
Outer ring fracture 0] 010 1 01010
Rolling wear 0] 0[0]O0 1 010
Rolling body fatigue | 0 | 0 | 0 | O | O 1 0
Cage failure 0] 0]0]J]O0O]0]O 1

In summary, the PARD-BP neural network for main shaft bearing fault diagnosis
is reliable and effective. The adoption of PARD-BP genetic algorithm based on the
algorithm is superior to the ordinary genetic algorithm [18] in terms of its consistent
network structure convergence characteristics, simplified pruning property and its
implication for the selection of randomness events. The BP algorithm is trained by
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inputting fault sample data of axial piston pump and outputting fault mode target
matrix.
Its output target matrix is

a’ =logsig (LW?**(logsig (UIW'P+b"))+b" (10)

In the formula:

1
Wi Wi e Wig
1 1 1
1 Wor Wiy o Wi
W' = |
b,
1 1 1 1
Wit Wia - Wig b = b,
1
b,
1 1 1
Wi Wi, Wik
1 1 1
w2 — Woir Wio W k
— p2
|
1 1 1 2
Wil Wiooe Wi g b;
21
b;

Combined with the working principle and fault mechanism of the three-spindle
machining center, the possible fault cases were collected, and the working principle
[1] and fault phenomena of the key spindle component of the three-spindle
machining center -- rolling bearing were studied. The fault will directly affect the
working performance of the spindle. In order to make the three-spindle machining
center work reliably, the PARD-BP neural network fault diagnosis algorithm was
introduced. PARD-BP algorithm takes spindle bearing vibration sample data as
input and fault mode matrix as target output [19]. The results show that the PARD-
BP algorithm is reliable for the fault detection and diagnosis of the main shaft
bearing.

The establishment of spindle bearing fault diagnosis model based on genetic
algorithm includes genetic algorithm optimization calculation and spindle bearing
fault integral numerical simulation. Genetic algorithm can be used for the fault
diagnosis and optimization of main shaft bearings. Compared with other traditional
algorithms, it does not require derivatives or other auxiliary information, and only
approximates the optimal solution by imitating the successful evolutionary process
of genetic screening in nature [1].

PARD-BP network was used to detect the main shaft bearing fault sample data, and
the horizontal direction vibration signal of the fault sample collected in history was
normalized. Bearing fault sample data show in Tab. 3.
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Table. 3

Fault sample data (horizontal-direction)

Inner ring fatigue (Sample
1)

Inner ring fracture (Sample

0.3124 | 0.3067 | 0.4764 | 0.4261 | 0.4203 | 0.3844 | 0.3642 | 0.4643

0.3084 | 0.2901 | 0.4198 | 0.4119 | 0.3089 | 0.3064 | 0.2924 | 0.6809

2)
Outer ring fatigue (Sample

3 0.2279 | 0.2668 | 0.2443 | 0.2296 | 0.3402 | 0.2819 | 0.2644 | 0.6375
O“te”mgfrjgmre(sample 0.4291 | 0.4627 | 0.4864 | 0.4683 | 0.3102 | 0.4463 | 0.4784 | 0.3447

The structural parameters of the horizontal-direction vibration neural network after
training[ 1] are shown in the Tab.4. After pruning, the number of hidden layer nodes

of the object is reduced from 18 to 5.
Table 4
Reduction of axial /Z- vibration parameters of key components

The initial value in the horizontal /X- direction

-0.3119 -0.2785 0.1023 0.1268  -0.1164 0.084 -0.069 -0.4229 -0.4643
-0.1478 -0.4684 -0.1081 0.1793  -0.3894  -0.4463 0.1126  0.1117  -0.4237

The value after training

-7.044463  4.182612  -1.837496  2.487431  3.748632

The trained network structure is used to test the fault sample data, and the results

are shown in Tab. 5[5].
Table 5

Sample data
Inner ring fatigue (Sample 1) | 0.1464 | 0.1443 | 0.9836 | 0.0000 | 0.0000 | 0.0124
Inner ring fracture (Sample 2) | 0.0021 | 0.9964 | 0.1382 | 0.0000 | 0.0009 | 0.0000
Outer ring fatigue (Sample 3) | 0.0003 | 0.1469 | 0.0004 | 0.9894 | 0.0000 | 0.0049
Outer ring fracture (Sample 4) | 0.0860 | 0.0000 | 0.0002 | 0.9942 | 0.0007 | 0.0017

The output results in the above table are processed. The output matrix is taken, and
the fault diagnosis mode is obtained. The diagnosis conclusion is drawn [18]. The
diagnosis results of PARD-BP network are completely consistent in Tab. 6. It can
be seen from the analysis that the PARD-BP network can identify different forms
of faults and diagnose faults accurately [1].

Table 6
PARD-BP network diagnosis results
Sample number Failure mode Diagnostic conclusion
Sample 1 0 0 1 0 0 0 | Inner ring fatigue
Sample 2 0 1 0 0 0 0 | Inner ring fracture
Sample 3 0 0 0 1 0 0 | Outer ring fatigue
Sample 4 0 0 0 1 0 0 | Outer ring fracture

5. Result analysis

The static characteristics of the spindle system are shown in Table 7 below. Through
the analysis of the spindle system, it is found that the stress of the spindle system is
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mainly concentrated on the side rib plate and the inner rib plate, so it is important
to optimize the size of the inner rib plate and the side rib plate.
Table7

Statics characteristic of the spindle system

Loading direction

Maximum deformation (pm)

Maximum stress (Pa)

X 11.7 880118
Y 1.51 118932
Z 1.34 125416

The structural diagram before and after the optimization of the spindle system is
shown in Figure 5 in the dynamic test of the three-spindle machining center. The
mechanical characteristics of the spindle system monomer after optimization are
obtained by optimizing the inner and side ribs of the spindle system, and the
mechanical characteristics of the spindle system monomer before and after
optimization are compared, as shown in Tab. 8 [16].

a) Before optimization b) After optimization
Fig.4 The optimization of the spindle system

Tab.8 Mechanical properties before and after the optimization of the spindle system

monomer
Direction | Maximum deformation(um) | Maximum stress(Pa) Mass (kg)
After X 10.7 805682 . 306.5
optimization Y 1.40 107689 (Original mass:
Z 1.23 112853 297.5kg)
X -8.54% -9.24%
Rate of change Y -7.28% -9.45% 3.02%
Z -8.94% -10.02%

The primary mass of spindle system is 297.5kg. By comparing the
mechanical characteristics of the spindle system before and after the single factor
optimization, it is found that the weight of the spindle system only increases by
3.02% after the single factor optimization, the mechanical characteristics of the
spindle system are improved, and the three axial strains are all decreased, indicating
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that the stiffness is increased, and the stress on the three axes is also reduced,
especially the Z-axis, which is reduced by -10.02%. It indicates that the mechanical
characteristics of the spindle system have been improved [19].

6. Summary

In this paper, the main shaft bearing of machining center dynamic element main
shaft system is studied, and the algorithm theory and test data acquisition and
comparison method are proposed. The algorithm and test method used in this paper
are effective for fault monitoring and control and can further improve the control
reliability and dynamic performance of the spindle system of the machining center,
and improve the machining precision and efficiency of the spindle system. This
method can provide technical reference for the fault diagnosis and dynamic
performance stability of spindle systems of other types of multi-axis machine tools,
rotating parts and other mechanical parts, and has important significance and
application potential for the exploration of fault diagnosis and algorithm of related
mechanical ontology and rotating parts in mechanical engineering and automotive
engineering fields.
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