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THE INCREASE OF THE ELECTRICAL CONDUCTANCE IN
NANOSTRUCTURES: A THEORETICAL APPROACH

Pavlos D. IDANNOU?, Petru NICAZ2, Maricel AGOP®

Considerdnd cd migcarea purtdtorilor de sarcind are loc pe curbe fractalice,
se explicd cresterea conductantei electrice in nanostructuri folosind un model extins
al teoriei relativitatii de scald. Rezulta doud procese majore responsabile de
cresterea conductantei electrice. La scald macroscopica se obtine trecerea de la
regimul de transport prin structuri necvasiautonome la cel prin structuri
cvasiautonome, separate de structura 0.7 observata experimental. La scald
microscopica procesul este controlat prin intermediul coerentei nano-dilatonilor.

Considering that the charge carrier movements take place on fractal curves,
the increase of electrical conductance in nanostructures is explained using an
extended model of scale relativity theory. Two major processes result as being
responsible for the increase of the electrical conductance. At the macroscopic scale,
this increase implies the change of the transport regime of the charge carriers, from
transport by means of non-quasi-autonomous structures, to transport by means of
quasi-autonomous  structures. These two regimes are separated by the
experimentally observed 0.7 structure. At the microscopic scale, the process is
controlled by means of the nanodilaton’s coherence.
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1. Introduction

The transport of charged particles in electronic devices is generally
described by kinetic models such as Boltzmann-like equations or macroscopic
models of hydrodynamic or diffusion type [1-3]. Due to the ongoing
miniaturization of these devices, reaching the nanometric scale, the reliability of
these classical models becomes doubtful as quantum effects become important.
Since, at an intermediate scale, collision phenomena remain significant, one of the
most challenging areas of investigation in semiconductor modeling deals with the
setting-up of quantum transport models which take into account scattering effects.
Though many works are concerned with the numerical simulation of ballistic
quantum transport models for semiconductors (see e.g. [4,5]), a quantum theory of
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collisions is still under development (among other works on the quantum theory
of scattering, see e.g. [6,7]). Furthermore, several attempts were made to adapt
existing classical macroscopic models to quantum mechanics [8-10] but,
generally, the link between the so-obtained models and a microscopic quantum
description of the particle transport is to a large extent phenomenological.

In solid-state physics and electronics, a large variety of different non-
equilibrium phenomena accompany the spontaneous self-assemblage of spatial
and spatio-temporal patterns. Thus, attention has been paid to thyristor-like
semiconductor structures with large active area, as these nonlinear systems with
bistable properties show several spatial and spatio-temporal current density
patterns. Such semiconductor structures could potentially be used as multi-stable
elements for integrated circuits, self-organizing devices for image recognition and
image processing.

All these results requires the development of new “scale” physical
theories, i.e. of fractal space-time type (e.g. the scale relativity (SR) model
[11,12]), in which the macroscopic scale specific to the classical quantities coexist
and it is compatible, simultaneously, with the microscopic “scale” specific to the
guantum quantities. Then i) the semi-quantum physical theories, must not be
imposed, but are generated as transitions between the interaction scales; ii) the
topological dimension and implicitly, the fractal one (for details see [13]) induces
new transport mechanisms; iii) the so-called anomalies, e.g. the increases of the
thermal conductivity in nanostructures, appear as natural phenomenon in the
context of material structures self-organization by means of the spontaneous
symmetry breaking (for details see [14,15]). In the present paper, considering that
the motion of the charge carriers in nanostructures takes place on fractal curves
(continuous but non-differentiable curves), the increase of the electrical
conductance is explained using an extended model of SR. Such type of movement
is the result of the chaotic collective effect induced by all the other charge carriers
on the one under discussion.

2. Mathematical model

SR [11,12] is a new approach to understand quantum mechanics, and
moreover physical domains involving scale laws, such as chaotic systems. It is
based on a generalization of Einstein’s principle of relativity to scale
transformations. Namely, one redefines space-time resolutions as characterizing
the state of scale of reference systems, in the same way as speed characterizes
their state of motion. Then one requires that the laws of physics apply whatever
the state of the reference system, of motion (principle of motion-relativity) and of
scale (principle of SR). The principle of SR is mathematically achieved by the
principle of scale-covariance, requiring that the equations of physics keep their
simplest form under transformations of resolution.
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According to SR [11,12], a non-differentiable continuum is necessarily
fractal and the trajectories in such a space (or space-time) own (at least) the
following three properties: i) The test particle can follow an infinity of potential
trajectories: this leads us to use a fluid-like description (fractal fluid); ii) The
geometry of each trajectory is fractal ([11-13]). Each elementary displacement is
then described in terms of the sum, dX =dx+d&, of a mean classical

displacement dx =vdt and of a fractal fluctuation d&, whose behavior satisfies
the principle of SR (in its simplest Galilean version). It is such that <d§>=0,

<d€2>=2D(dt)(2/ Dr)  and <d§3>:(2D)3/ 2(dr)®/Pr) | \where D defines the

fractal/non-fractal transition, i.e. the transition from the explicit scale dependence
to scale independence. The existence of this fluctuation implies introducing new
second and third order terms in the differential equation of motion; iii) Time
reversibility is broken at the infinitesimal level: this can be described in terms of a
two-valuedness of the velocity vector, v, the “forward” speed and v_ the

“backward” speed, for which we wuse a complex representation,
V=0, +v_)2-i(v, —v_)/2, where the real part defines the classical
(differentiable) speed, while the imaginary part refers to the fractal (non-
differentiable) character of movement (for details see Refs. [11-16]).

These three effects can be combined to construct a complex time-
derivative operator [15,16],

%:§+ V.V —iD(dt) @/ Pr)A 4 gD?’/Z(dt)@/DF)_lV?’ (1)

so that, the first Newton’s principle in its covariant form becomes 6V /dt =0, i.e.

2
YV AV vxwxv)—ina)® DAy V2 3l 2(an P8y —0 (2)
dt ot 2 3
3
with the special notation ve= 283 / axf’ . Therefore, the sum of the local time
i=1
dependence, 0,V , of the convective term, V- V¥V, of the dissipative one, AV, and

of the dispersive one, V°V is null in any point of a fractal curve of Dy fractal
dimension. This result shows that transport process in nanostructures has
hysteretic properties [17-19]: the fractal fluid can be described by Kelvin-Voight
or Maxwell rheological model with the aid of complex quantities, i.e. the complex
speed field, the complex acceleration field etc. and complex structure coefficients,

i.e. the imaginary viscosity coefficient, nziD(dt)(Z/DF)_l, as it will be shown

below. We assume that the motion of the fractal fluid is irrotational, VxV =0,
and then we can choose V' of the form:
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V =V¢=—-2iD(dt)? P v (Iny) (3)
In these conditions, Eq. (2) takes the form
2
% = 86—'; + V[VT] —iD(dt)? PR Ay & %DW @) C'PAy3y —o0  (4)

and y satisfies a generalized Schrodinger ype equation:
D2(di) Y2 Ay 1 i) @ P2 1 i32 D5'2(ar)®' 2273 Iy = F (1) ©)

Particularly, when the dispersion is absent, Eq. (4) becomes a generalized
Navier-Stoke (GNS) type equation,

2
V_ ¥ —iD(@dr) ¥ Pr) Ay — 0 (6)
dt ot 2

with imaginary viscosity coefficient, z = iD(dt)?*'”"™, and from here, using Eq.
(3), the Schrodinger type equation results,

D?(dt) ¥ Pr)=2 Ay 1 iD(dr) PP 0, =0 (7
Moreover, for D =%/2m, with 7 the reduced Planck’s constant, m the rest mass

of the test particle and for the fractal dimension, D, =2, i.e. for movements on

fractal curves of Peano type [11,12], the previous equation is reduced to standard
Schrodinger equation.

In the particular case when the dissipation is absent, Eq. (4) becomes a
generalized Korteweg de Vries (GKdV) type equation,

a—V+V-VV+£D3/2(dt)(3/DF)_1V3V=O (8)
ot 3
Let us choose the function = \/p exp(iS), with \/p the amplitude and S
the phase. By substituting the complex velocity field (3),
V=v+iu= 2D(dt)(2/DF)_lVS - iD(dt)(Z/DFHV Inp in Eq. (8), and separating
the real and imaginary parts, it results the equation system,
ov V[ﬁ _ﬁ} . gD?’/z(dt)(leF)_lve’v 0

ot 2 2 (9a.h)

% +V(v-u)+ gD?’/Z(dt)(yDF)_lVSu =0

In the differentiable case, ie. at the macroscopic scale, u=0 or
p =const., and for the one-dimensional case, with the dimensionless parameters,
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o=0ljo)=qpvl jo, T=wot, &=kyx, and the normalizing conditions
(ko Jjo  6qpag) =v2D3 % (ar)3 Pr (k3 1309) =1, Eqs. (9a,b) take the form,
According with [20] this equation has the solution,

2
o(&,7)= 2a[&—1J+ 2a-cn2{£!§—2a{3E—(s)—l+; Jr+§0];s} (11)
s

K(s) s K(s)

where cn is the Jacobi’s elliptic function of s modulus [21], K(s),E(s)are the
elliptic complete integrals [12], and &, constant of integration. As a result, at the

macroscopic scale, the electrical charge transport in nanostructures is achieved by
one-dimensional cnoidal oscillation modes of the charge current density. This
process is characterized through the normalized wave length,

25K (s)
A=07 12
Ta (12)
- see Figure 1a, the normalized phase speed
E(s) 1
=4a|3—=-1-— 13
=515 )

- see Figure 1b, and the normalized group speed,
vo—ad ) g L GE 2 DEOKO-6-DKA) | As=KG) |
£ K T2 E(s)K(s)+K2(s) ~sK2(s) S2[E(s) + K(5) —sK(s)]

-see Figure 1c. In such conjecture, the followings result:
i) by eliminating the parameter a from relations (12) and (13), one obtains

the dispersion relation, v, 2% = A(s) , with A(s) :16[3s2E(s)K(s)—(1+s2)K2(s)J.
In Figure 1d the quantity A4(s) is numerically evaluated. We observe that only for s
=0+0.7, A(s) = const., and the dispersion equation takes the form, vfiz = const.,

ii) the parameter s becomes a measure of the electric charge transfer in
nanostructures. Thus, for s >0, 4, v, and v, are small, while for s -1, 4,

v, and v, are high — see Figures la-c;

iii) the one-dimensional cnoidal oscillation modes contain as
subsequences: ii;) for s =0 the one-dimensional harmonic waves and iiy) for
s — 0 the one-dimensional waves packet. These two subsequences describe the
electric charge transport in a non-quasi-autonomous regime (for details see [17-
19]). ii3) Fors =1, the solution (11) becomes a one-dimensional soliton, while ii4)
for s—1 the one dimensional solitons packet results. These last two
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subsequences describe the electric charge transport in a quasi-autonomous regime
(for details see [17-19]). Therefore, these two regimes (non-quasi-autonomous and
quasi-autonomous) are separated by the 0.7 structure, a value in agreement with
the experimental data [22].

A oz

(b)

-750000

(d)

Figs. la-d: The dependences on s of the (a) normalized wave length 4, (b) normalized phase speed
v, (c) group velocity v, (various values of the parameter ), and (d) of the quantity 4

The previous results show, through the normalized group speed (14), an
increase of the charge transport in nanostructures by means of quasi-autonomous
structures. They can provide a possible explanation of the anomalous increase of
the electrical conductance that was experimentally observed in [18,19].

Let us study now the previous phenomenon in the non-differential case,

i.e. at microscopic scale. This can be achieved by the substitutions ¢ = (vf/4)f2
and in = (vf /4)”2 (& —v,7) in Eq. (10). By an adequate choice of the integration
constants, it becomes, 0, f = f%— f,ie. aGinzburg-Landau type equation [23].

The followings result:
i) The # coordinate has dynamic significations and the variable /" has
probabilistic significance —for details see [11,12]. The space-time becomes fractal;
i) According to [24] we can build a field theory with spontaneous
symmetry breaking. The fractal kink solution,

fe() = £(n—no) = tanh|(y - o )/42] (15)
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spontaneously breaks the “vacuum” (the minimum energy states of the system)
symmetry by tunneling, and generates coherent structures. This mechanism is
similar with the one of superconductivity [25];

iii) the normalized fractal potential take a very simple expression which is
directly proportional with the density of states of the fractal fluid,

0 =~ )2 fin?) = i- £2). (16)
When the density of states, 7%, becomes zero, the fractal potential takes a finite
value, O =1. The fractal fluid is normal (it works in a non-quasi-autonomous

regime) and there are no coherent structures in it. When f? becomes 1, the fractal

potential is zero, i.e. the entire quantity of energy of the fractal fluid is transferred
to its coherent structures. Then the fractal fluid becomes coherent (it works in a
quasi-autonomous regime). Therefore, one can assume that the energy from the
fractal fluid can be stocked by transforming all the environment’s entities into
coherent structures and then ‘freezing' them. The fractal fluid acts as an energy
accumulator through the fractal potential (16);

iv) substituting (15) in (16) the fractal potential (16) becomes a soliton at
nano scale,

0 =sech?|(-1,)/2| (17)
and can be associated with a nanodilaton (for details on this concept see [17-19]).
In certain conditions of an external load (e.g. an external stress) the nanodilatons

break down (blow up) and release its energy. As a result, the nanostructure energy
unexpectedly increases.

3. Conclusions

Considering that the charge carrier movements take place on fractal
curves, the electric charge transport is studied in an extended model of SR. It
results: i) An equation of motion is deduced for the complex speed field, where
the local complex acceleration, convection, dissipation and dispersion are
reciprocally compensating. Using this equation, for the irrotational movement the
generalized Schrddinger equation is obtained. The absence of the dispersion
implies a generalized Navier-Stokes type equation, and from here, for the
irrotational movement and fractal dimension D, =2, the usual Schrédinger

equation resulted; ii) The absence of dissipation implies a generalized Korteweg
de Vries type equation. In the one-dimensional macroscopic case, two flowing
regimes (quasi-autonomous and non-quasi-autonomous) of the charge carriers are
evidenced, the separation between them are being made by the 0.7 structure that is
experimentally observed. In such conjecture, the increase of the electrical
conductance in nanostructures is connected with the increase of the group velocity
at the passage from non-quasi-autonomous to quasi-autonomous regime; iii) At
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microscopic scale, the electrical conductance increase is controlled by means of
the nanodilaton coherence. When the external field exceeds a critical value, the
nanodilatons which stock the energy break down and simultaneously release the
energy to the environment.

REFERENCES

[1]J. P. Bourgade, Math. Meth. Appl. Sci. 26, 247-271, 2003.

[2] P. Degond, V. Latocha, L. Guarrigues, and J. P. Boeuf, Transp. Th. Stat. Phys. 27, 203-221.,
1998

[3] P. Degond, F. Méhats, and C. Ringhofer, J. Stat. Phys. 118, 625-667, 2005

[4] N. C. Kluksdahl, A. M. Kriman, D. J. Ferry and C. Ringhofer, Phys. Rev. B 39, 7720, 1989

[5] P. Mounaix, O. Vanbésien, and D. Lippens, Appl. Phys. Lett., 57, 1517, 1990

[6] P. N. Argyres, Phys. Lett. A 171, 373-379, 1992

[7]1 F. A. Buot and K. L. Jensen, Phys. Rev. B 42, 9492, 1990.

[8] I. Gasser, P. Markowich, and C. Ringhofer, Transp. Th.. Stat. Phys. 25, 409-413, 1996

[9] I Gasser, A. Jiingel and Z. Angew, Math. Phys. 48 45, 1997.

[10] M. Sanduloviciu, D. G. Dimitriu, L. M. Ivan, M. Aflori, C. Furtuna, S. Popescu and E.
Lozneanu, J. Opt. Adv. Mat. 7, 845-850, 2005

[11] L. Nottale, Fractal Space-Time and Microphysics: Towards a Theory of Scale Relativity,
World Scientific, Singapore, 1993.

[12] M.S El Naschie, O.E. Rosler and I. Prigogine (editors), Quantum Mechanics, Diffusion and
Chaotic Fractals, Edited by., Elsevier, Oxford, 1995.

[13] B. Madelbrot, The fractal geometry of nature, Freeman, San Francisco, 1982.

[14] P. Vizureanu and M. Agop, Mater. Trans. JIM 48, 3021-3023, 2007

[15] M. Agop, N. Forna, I. Casian-Botez and C. Bejinariu, J. Comp. Theor. Nanosci. (in press
2008).

[16] M. Agop, Cristina Radu, T. Bontas, Chaos, Solitons and Fractals (in press 2007).

[17] V. Chiroiu, P. Stiuca, L. Munteanu, S. Donescu, Introducere in nanomecanica, Editura
Academiei Romane, Bucuresti, 2005.

[18] David K. Ferry, Stephen M. Goodnick, Transport in nanostructures, Cambridge Univ. Press,
1997.

[19] Y. Imry, Introduction to mesoscopic physics, Oxford Univ. Press, Oxford, 2002.

[20] M. Agop, P.D. loannou, D. Luchian, P. Nica and C. Radu, Mater. Trans. JIM 45, 1528-1534,
2004

[21] F. Bowman, Introduction to elliptic function with applications, English University Press,
London, 1955

[22] O. Chatti, J.T. Nicholls, Y.Y. Proskuryakov, N. Lumpkin, 1. Farrer and D.A. Ritchie, Phys.
Rev. Lett. 97, 056601, 2006

[23] E.A. Jackson, Perspectives of non-linear dynamics, Cambridge University Press, Cambridge,
1991

[24] M. Chaichian, N.F. Nelipa, Introduction to gauge field theoretics, Springer-Verlag Berlin,
1984.

[25] C.P. Poole, HA. Farach and R.J. Geswich: Superconductivity, Academic Press, San Diego,
New York, 1995.



