
U.P.B. Sci. Bull., Series C, Vol. 73, Iss. 3, 2011 ISSN 1454-234x

MIMO FIR LOWPASS FILTER DESIGN FOR SPATIALLY
INTERCONNECTED SYSTEMS USING A BOUNDED REAL

LEMMA APPROACH

by Bogdan C. Şicleru and Bogdan Dumitrescu

Prezentăm o metodă de proiectare a filtrelor FIR MIMO pentru sis-
teme interconectate spaţial. Mărginirea filtrelor pe diferite benzi de frecvenţă
este impusă folosind sume de pătrate aplicate unui rezultat cunoscut ca
Bounded Real Lemma. Făcând legătura ı̂ntre polinoame sume de pătrate şi
matrici pozitiv semidefinite, obţinem o problemă de programare semidefinită.
Comparând rezultatele noastre cu o metodă anterioară din literatura de spe-
cialitate aratăm că algoritmul nostru este superior.

We present a method for designing MIMO FIR filters for spatially
interconnected systems. The boundedness of the filters on different frequency
bands is imposed using a sum-of-squares approach for a general result known
as the Bounded Real Lemma. By linking the sum-of-squares polynomials to
positive semidefinite matrices, we obtain a problem that belongs to semidefi-
nite programming. Comparing our results with a previous example from the
literature we show that our algorithm is superior.

Keywords: FIR filter design, MIMO, Bounder Real Lemma, sum-of-squares,
semidefinite programming
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1. Introduction

This paper deals with the design of discrete spatially interconnected sys-
tems (SISs). Such a system is formed by similar systems which directly interact
only with their nearest neighbors [1, 10]. In filter design, these systems must
have a frequency response similar to that of a desired ideal filter, for some
frequency domains. Applications can be found in e.g. edge detection, image
recovery [2].

We treat the boundedness design using some results for a general con-
straint known as the Bounded Real Lemma (BRL) in conjunction with ex-
ploiting the state-space representation of the filters. We characterize a BRL
constraint over a (semialgebraic) domain, for multidimensional multi-input
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multi-output (MIMO) systems, using sum-of-squares matrix polynomials. Im-
posing a sum-of-squares constraint amounts to the existence of a positive semi-
definite matrix and setting linear constraints between the coefficients of the
sum-of-squares polynomial and the positive matrix. Therefore, the design
problem becomes a semidefinite programming (SDP) problem which can be
solved using dedicated solvers.

We exemplify our algorithm on 2-D MIMO FIR filters and prove that
using our approach one can obtain better results than using the method from
[10] which is based on a linear matrix inequality condition.

Outline. The remainder of this article is structured as follows. In Section 2 we
describe the SISs. Next, in Section 3 we present the characterization for the
sum-of-squares polynomials. In Section 4 we introduce the BRL constraint.
MIMO FIR filter design, with numerical simulations, is discussed in Section
5. We conclude in Section 6.

Notation. Z, R and T are the sets of integer, real and unit complex numbers,
respectively. Bold characters denote multivariate entities (vectors, matrices).
The inequality a ≤ b is taken elementwise. M � 0 means that M is a positive
semidefinite matrix. TrM and σmax(M ) are the trace and maximum singular

value of the matrix M , respectively. diag
(
M i|di=1

)
denotes the block diagonal

matrix with blocks M i, i = 1 : d. The superscript T denotes transposition. ⊗
is the Kronecker product. For a d-dimensional SIS we denote by m0 the number
of subsystem states and with m(+, i) and m(−, i) the number of outputs of a
subsystem to the subsystems ”immediately after” and ”immediately before”,
respectively. We also denote mi = m(+, i) +m(−, i) and m =

∑d
i=0mi.

2. System description

We consider a d-dimensional discrete SIS [1] x(k + 1, s)
w(k, s)
y(k, s)

 =

 ATT ATS BT

AST ASS BS

CT CS D

 x(k, s)
v(k, s)
d(k, s)


v(k, s) = Zsw(k, s)

(1)

where k and s = [s1, . . . , sd] are the temporal and spatial variables, respec-
tively; x(k, s) denotes the state vector, v(k, s) and w(k, s) denote the subsys-
tem input and output vector, respectively and y(k, s), d(k, s) are the external
output and input vectors, respectively. Zs is a spatial shifting operator and
can be expressed as

Zs = diag

([
z−1i Im(+,i) 0

0 ziIm(−,i)

]∣∣∣∣d
i=1

)
, (2)

where zi, i = 1 : d, is the shift operator for the i-th dimension, namely,
ziw(k, s1, . . . , sd) = w(k, s1, . . . , si + 1, . . . , sd).
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Fig. 1. Spatially interconnected system for d = 2.

For brevity, we denote the matrices

[
ATT ATS

AST ASS

]
,

[
BT

BS

]
and[

CT CS

]
by A, B and C, respectively. Furthermore, we define the op-

erator

Z =

[
z0Im0 0

0 Z−1s

]
, (3)

in which z0 plays the role of a time domain shifting operator. Using the
notations described above, the transfer function matrix for the system (1) is

G(Z) = C(Z −A)−1B + D. (4)

Figure 1 presents an SIS for d = 2; the dashed arrow towards the sub-
system G(s1, s2) denotes the external subsystem input d(k, s) and the dashed
arrow leaving the subsystem denotes the external subsystem output y(k, s).

3. Sum-of-squares

Let us consider a d-dimensional trigonometric polynomial [4] with matrix
coefficients

R(z) =
n∑

k=−n

Rkz
−k, R−k = RT

k , (5)

with Rk ∈ Rκ×κ, k = (k1, . . . , kd) ∈ Zd, n = (n1, . . . , nd) ∈ Zd+ and zk =

zk11 · · · z
kd
d , z ∈ Td.

A trigonometric causal filter with matrix coefficients is defined as

H(z) =
n∑

k=0

Hkz
−k, (6)
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where Hk ∈ Rκ1×κ2 .
The polynomial (5) is sum-of-squares if it can be written as

R(z) =

p∑
`=1

F `(z)F `(z
−1)T , (7)

where F `(z), ` = 1 : p, are causal polynomials and p ∈ Z+. Note that the
degrees of the polynomials from the right-hand side of (7) may exceed n.

In order to connect the sum-of-squares polynomials to SDP, we must
express the causal polynomials with the standard d-dimensional basis

Ψ(z) = Ψ(zd)⊗ · · · ⊗Ψ(z1)⊗ Iκ, (8)

where
Ψ(zi) =

[
1 zi . . . zni

i

]T
(9)

is a univariate basis. If we stack the matrix coefficients of the polynomial H(z)
in the order of the basis from (8), we obtain a matrix H of size Nκ1 × κ2,

with N =
∏d

i=1(ni + 1) being the total number of matrix coefficients of H(z).
Now, the polynomial H(z) can be written as

H(z) = Ψ(z−1)H . (10)

Example 3.1. For a degree n = (2, 1), the matrix H has the form

H =
[
HT

0,0 HT
1,0 HT

2,0 HT
0,1 HT

1,1 HT
2,1

]T
. (11)

The basis for such a polynomial H(z) is

Ψ(z) =
[
I z1I z21I z2I z1z2I z21z2I

]T
. (12)

�

The next theorem characterizes a sum-of-squares polynomial in an SDP
fashion.

Theorem 3.1. A matrix trigonometric polynomial (5) is sum-of-squares if and
only if there exists a matrix Q � 0, such that

R(z) = Ψ(z−1)T ·Q ·Ψ(z), (13)

where Q is of size Nκ×Nκ. (The matrix Q is called a Gram matrix.)

Proof. See for instance [7]. �

Remark 3.1. Explicitly, the equation (13) is implemented using the following
linear constraints between the elements of the matrix coefficients of R(z) and
the matrix Q:

Rk(i, j) = Tr[Θkd ⊗ · · · ⊗Θk1 ⊗Ej,i ·Q], k ∈ Hd, i, j = 1 : κ, (14)

where Θk is the elementary Toeplitz matrix with ones on the k-th diagonal
and zeros elsewhere and Ei,j is the matrix with one on the position (i, j) and
zeros elsewhere. Hd is the halfspace for the degree n, consisting of all the
d-tuples (k1, . . . , kd) with (kd > 0) or (kd = 0 and (k1, . . . , kd−1) ∈ Hd−1). �
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We take now a frequency domain

D = {z ∈ Td | D`(z) ≥ 0, ` = 1 : L}, (15)

described by L positive polynomials. The result which characterizes the pos-
itivity [4] of the polynomial R(z) on the domain D is given in the following
theorem.

Theorem 3.2. A matrix polynomial (5) is positive definite on the domain D,
i.e. R(z) � 0, ∀z ∈ D, if and only if there exist sum-of-squares polynomials
S`(z), ` = 0 : L, such that

R(z) = S0(z) +
L∑
`=1

D`(z)S`(z). (16)

Proof. Due to the fact that both scalar and matrix sum-of-squares polynomi-
als are characterized through the trace parameterization in the same manner
(recall (14) for the matrix case) with positive semidefinite matrices, the proof
of the theorem is similar to the one for scalar polynomials [3]. See also [8] for
a real polynomial variant for the Theorem 3.2. �

4. Bounded Real Lemma

A (matrix) BRL constraint, on the domain D, is a characterization of
the form

‖H(z)‖ ≤ γ, ∀z ∈ D, (17)

where γ ∈ R and ‖ · ‖ is a system norm. Considering the H∞ norm, (17) is
equivalent to

σmax(H(z)) ≤ γ, ∀z ∈ D. (18)

Next, we give a characterization of the BRL from (18) (using sum-of-
squares) [5].

Theorem 4.1. For the polynomial H(z), the inequality from (18) is true, if
and only if there exist sum-of-squares S`(z), ` = 0 : L, such that

γ2Iκ1 = S0(z) +
L∑
`=1

D`(z)S`(z) (19)

and [
Q0 H
HT Iκ2

]
� 0, (20)

where Q0 is the Gram matrix for the polynomial S0(z).

Proof. The proof is similar to the scalar case presented in [3]; it uses Theorem
3.2, a majorization and the Schur complement. �
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Fig. 2. Passband of lowpass 2-D filter; ωp = 0.4π, ωs = 0.9π.

Remark 4.1. The relation (18) is equivalent to

γ2Iκ1 >H(z)H(z−1)T , ∀z ∈ D, (21)

which explains the size of the matrix coefficients from (19). �

Remark 4.2. In implementing (19) we always consider the minimum degree
for the sum-of-squares polynomials. In particular we take S0(z) to be of degree
n. So, we use only a sufficient boundedness condition. Thus, the optimal γ is
an upper approximation of the desired H∞ norm. �

5. MIMO filter design

We consider designing MIMO FIR lowpass filters. Figure 2 shows the
ideal passband for a lowpass filter with square shape; the passband is in black
and stopband in grey. We take ωp and ωs to be the passband and stopband
frequencies, respectively. We also denote γp and γs to be the passband and
stopband error bounds, respectively. Considering a desired response ∆(z) in
the passband, finding the optimal filter in the sense of minimal stopband error
amounts to solving the optimization problem

min γs
s.t. σmax(H(ejω)−∆(ejω)) ≤ γp, ∀|ωi| ≤ ωp, i = 1 : d

σmax(H(ejω)) ≤ γs, ∃i ∈ 1 : d, |ωi| ≥ ωs

(22)

where H(ejω) is the frequency response for the filter H(z), for z = ejω. The
passband Dp is a domain like the one in (15), where

D`(z) = z` + z−1` − 2 cosωp, ` = 1 : d. (23)

The stopband is a union of domains

Ds =
d⋃
i=1

Ds,i, (24)
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where

Ds,i = {z ∈ Td | Ds(zi) ≥ 0}, i = 1 : d, (25)

with

Ds(zi) = 2 cosωs − zi − z−1i . (26)

Hence, the problem (22) can be written as

min
γs,H

γs

s.t. σmax(H(z)−∆(z)) ≤ γp, ∀z ∈ Dp

σmax(H(z)) ≤ γs, ∀z ∈ Ds,1
...
σmax(H(z)) ≤ γs, ∀z ∈ Ds,d

(27)

In order to design a subsystem for an SIS, the filter from (27) must meet
the condition (4). Thus, the SIS design problem can be cast as

min
γs,H,C,D

γs

s.t. Hk = Gk, ∀k
σmax(H(z)−∆(z)) ≤ γp, ∀z ∈ Dp

σmax(H(z)) ≤ γs, ∀z ∈ Ds,1
...
σmax(H(z)) ≤ γs, ∀z ∈ Ds,d

(28)

Note that the matrices A and B from (4) are usually given, so we consider
only C and D to be variables in the optimization problem.

Let us consider designing 2-D MIMO filters with two inputs and two
outputs. Moreover, in filter design, it is assumed that m0 = 0 and m(−, 1) =
m(+, 1) = m(−, 2) = m(+, 2) = m′. (Note that in this case m = 4m′ and
Z = Z−1s .)

In designing FIR filters the matrices A and B are designated to be [6]

A =

[
01×(m−1) 0
Im−1 0(m−1)×1

]
(29)

and

B =

[
I2 . . . I2︸ ︷︷ ︸

]T
.

m/2 blocks

(30)

The matrix A being subdiagonal, the equation (4) becomes

G(Z) = C
(
I + Z−1A + . . .+ (Z−1A)m−1

)
Z−1B + D, (31)

where C ∈ R2×m and D ∈ R2×2.
In (31) the variables z1 and z2 appear with degrees between −m′ and m′.

As such, we consider the filter H(z) to be a causal filter of degree 2m′. Taking
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a delay ∆(z) = zm
′

1 zm
′

2 I, the problem (28) becomes

min
γs,H,C,D

γs

s.t. Hk1,k2 = Gk1−m′,k2−m′ , (0, 0) ≤ (k1, k2) ≤ (2m′, 2m′)
σmax(H(z1, z2)− zm

′
1 zm

′
2 I2) ≤ γp, ∀(z1, z2) ∈ Dp

σmax(H(z1, z2)) ≤ γs, ∀(z1, z2) ∈ Ds,1

σmax(H(z1, z2)) ≤ γs, ∀(z1, z2) ∈ Ds,2

(32)

To better understand the equality constraints Hk = Gk from (32), we
detail them for the case m′ = 1. In this scenario, the relation (31) becomes

G(z1, z2) = C


1 0 0 0
z1 1 0 0

z1z
−1
2 z−12 1 0
z1 1 z2 1



z−11 0 0 0
0 z1 0 0
0 0 z−12 0
0 0 0 z2




1 0
0 1
1 0
0 1

+ D.

(33)
Finally,

G(z1, z2) = C


z−11 0
1 z1

2z−12 z1z
−1
2

2 z1 + z2

+ D. (34)

Separating the degrees of G(z1, z2), we obtain

G(z1, z2) = C(z−11 N−1,0+z
−1
2 N 0,−1+N 0,0+z1N 1,0+z1z

−1
2 N 1,−1+z2N 0,2)+D,

(35)
where

N−1,0 =


1 0
0 0
0 0
0 0

 ,N 0,−1 =


0 0
0 0
2 0
0 0

 ,N 0,0 =


0 0
1 0
0 0
2 0

 (36)

and

N 1,0 =


0 0
0 1
0 0
0 1

 ,N 1,−1 =


0 0
0 0
0 1
0 0

 ,N 0,1 =


0 0
0 0
0 0
0 1

 . (37)

We also denote N o1,o2 = 04×2, ∀ (o1, o2) ∈ {(−1, 1), (−1,−1), (1, 1)}. There-
fore, the equality constraints from the problem (32) (for m′ = 1) can be seen
as

Hk1,k2 = CN o1,o2 , (0, 0) < (k1, k2) ≤ (2, 2),
H0,0 = CN 0,0 + D,

(38)

with oi = ki− 1, i = 1 : 2. The generalization of (38) for m′ > 1 is straightfor-
ward.

Example 5.1. We have solved the problem (32) using the SeDuMi [9] solver
and compared our results with the ones from [10]. The stopband error bounds
γs, considering m′ = 3 : 6, are presented in Table 1. The values obtained
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Fig. 3. Frequency response of 2-D FIR filter, m′ = 6.

for γs using the problem (32) are better (smaller) than the ones in [10]. One
theoretical explanation for this is that while our algorithm relaxes a necessary
condition, the method from [10] implements directly a sufficient condition;
sum-of-squares relaxations have been proved to be almost necessary in many
practical applications.

Table 1

Stopband error bounds.

Algorithm γs
m′

3 4 5 6
[10] 0.87128 0.84608 0.82556 0.82086
(32) 0.86213 0.83389 0.81330 0.81056

We present in Figure 3 the frequency response for the 2-D FIR filter,
from input 1 to output 1, for the case m′ = 6. �

6. Conclusions

We have presented a design method for MIMO filters for SISs. The fre-
quency response constraints were imposed in a BRL manner. To characterize
the BRL constraints on semialgebraic domains we have used a sum-of-squares
approach, which amounted to setting linear constrains between the coefficients
of the sum-of-squares polynomials and positive semidefinite matrices. The de-
sign example, performed on 2-D FIR filters, showed that our method can
perform better than a previous algorithm, in terms of stopband error bound.
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