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A NOVEL FEATURE-EXTRACTION ALGORITHM FOR
EFFICIENT CLASSIFICATION OF TEXTURE IMAGES

Tonut MIRONICA', Radu DOGARU?

In this paper, a non-linear model is investigated for texture characterization
and retrieval. The power of our descriptors was validated both in the context of a
classification system and as part of an information retrieval approach. For this
purpose, we have used four different texture databases and we have compared our
descriptor with state of the art algorithms. In most of experiments, our approach has
archieved best results on most of the recognition and retrieval problems.
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1. Introduction

During the last 20 years Content Based Image Retrieval (CBIR)
established itself as a domain with an important role in application areas such as
multimedia database systems. A major part of the work focused on low level
feature study like texture. Textures can usually be described informally as the
output of some physical process wherein local structure is repeated seemingly at
random [1].

The main purpose of this paper is to show improvements of CBIR systems
using classification algorithms. We aim to select the best-suited classifiers by
making a comparison of various classification methods for certain image
databases. In this paper a novel feature classification is introduced, inspired by
nonlinear diffusive operators previously used to quantify the degree of
randomness in an image pattern generated by a 2-dimensional cellular automaton
[15]. The relevance and advantages of this new feature extraction method for
texture images classification as required by CBIR (Content Based Image
Retrieval) systems is extensively investigated through comparisons with other
methods previously cited in the literature. A wide set of benchmark image
databases was selected in order to select the best suited classification method
(both feature classification and classifier) including the novel feature extraction
method called next a Nonlinear Diffusive Transform (NDT).

' PhD student, Image Processing and Analysis Laboratory (LAPI), e-mail: imironica@
alpha.imag.pub.ro

? Prof., Natural Computing Laboratory, Dept. of Applied Electronics and Information Engineering,
University POLITEHNICA of Bucharest, Romania, e-mail:radu_d@jieee.com



102 Ionut Mironica, Radu Dogaru

In addition to performance aspects (such as the percentage of correctly
classified patterns), efficiency and implementation complexity issues are
considered. In this respect it appears that our novel transform allows to obtain
good classification performance while having a reduced implementation
complexity.

The paper is organized as follows: we describe in Section II the previous
work for texture detection content-based image retrieval systems, including a brief
discussion about classical descriptors. Then we describe a novel approach for
texture detection (Section III). Experiments are discussed in Section IV and
conclusions are presented in Section V.

2. Previous Work

One of the earliest and most successful texture descriptors is the run-
length matrix. From the original run-length matrix p(i; j), many numerical texture
measures can be computed. Galloway [2], Chu [3] and Dasarathy [4] have
proposed different sets of original features.

A co-occurrence matrix [5] or co-occurrence distribution is a matrix or
distribution that is defined over an image to be the distribution of co-occurring
values at a given offset. Mathematically, a co-occurrence matrix C is defined over
an image | (with m and n dimensions), parameterized by an offset (dx,dy), as:

noao (1,1 =i lI(p+AX,y+AY) =]
CAx,Av=ZZ{O’ (P.@) =i (p+AX.y+AY) = ]
oo oo |0, otherwise

The 'value' of the image originally referred to the grayscale value of the
specified pixel. The value could be anything, from a binary on/off value to 32-bit
color and beyond.

Image moments [6] provide a measurement for color similarity between
images. There are three central moments of an image's color distribution: mean,
standard deviation and skewness.

The simplest non-parametric approach for density estimation is histogram
calculation [7]. Color Histogram is a representation of the distribution of colors in
an image.

Color Coherence Vectors [8] represent the degree to which pixels of that
color are members of large similarly-colored regions. Computing color coherence
vectors involves two main steps:

- use a mean filter to eliminate small variations between adjacent pixels
(using an eight per eight mask)

- quantify the color space (HSV) into 24 channels (16 for Hue, 4 for
Saturation and 4 to Value)

- classify pixel as coherent or incoherent and create two histograms (2 x
24 features). A coherent pixel is part of a large group of pixels of the same color

(1
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(all adjacent pixel have the same color), while an incoherent point represent an
edge pixel.

The corelogram [9] of a gray-scale image I is defined for i, j e[m],d €[n]
as:

7ig(D=_ _Pr_ (pelylp—p,l=d) 2)

where Pr is the probability of appearance for two pixels ( p,, p,) having similar

colors | o »and distance between these two pixels is equal to d.

The edge histogram descriptor (EHD) represents the local edge
distribution by dividing image space into 4x4 sub images and representing the
local distribution of each sub image by a histogram. In the sense of generating
histograms, edges in all sub images are categorized into five types: vertical,
horizontal, diagonal and no directional edges (namely edges with no particular
directionality), resulting in a total of 5 x 16 = 80 histogram bins [10].

The Homogenous Texture Descriptor [11] describes directionality,
coarseness, and regularity of patterns in images and is most suitable for a
quantitative characterization of texture that has homogenous properties. It
provides a quantitative representation using 62 numbers (quantified to 8 bits each)
that is useful for similarity retrieval. The extraction is done as follows: the image
is first filtered with a bank of orientation and scale tuned filters using Gabor
filters. The first and the second moments of the energy in the frequency domain
from the corresponding sub-bands are then used as the components of the texture
descriptor.

3. Proposed Non-Linear Method

Our approach is inspired by the Cellular Automata Theory [12]. A cellular
automaton [13] is a discrete model studied in computability theory, mathematics,
physics, complexity science, theoretical biology and microstructure modeling. It
consists of a regular grid of cells, each in one of a finite number of states, such as
"On" and "Off" (in contrast to a coupled map lattice). The grid can be in any finite
number of dimensions. For each cell, a set of cells called its neighborhood
(usually including the cell itself) is defined relative to the specified cell. For
example, the neighborhood of a cell might be defined as the set of cells a distance
of two or more from the cell.

The first task is to transform the image in a binary lattice. To create binary
images, we use a thresholding process with a various number of limits. During the
thresholding process, individual pixels in an image are marked as "object" pixels
if their value is greater than some threshold value (assuming an object to be
brighter than the background) and as "background" pixels otherwise. We have
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used in our experiments a fixed number of equally spaced thresholds (from one to
64 thresholds)

Using these thresholds, we have extracted a number of binary images. For
every binary image, we have extracted two features using the following formula:

1 & i

C=—" [F@, 1) 3)
M -N i=1 | j=1

where M and N are the image width and height and F(i,j) is a kernel function,

computed on current pixel neighborhood (Fig. 1). The kernel function is defines
as:

Fi. )= D1 (kAK) 4)
keN; ;
where N, ; is the 3x3 neighborhood centered around the (i,j) location, 1, (k) is a

pixel value at location k (k=1..9) in the neighborhood centered on (i,,j) and A(k)
is one of the 3x3 template matrices presented in Fig. 1.

II’—l,jH Ii’,j—%—l 1r1+l,j+1
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Fig. 1. 3x3 neighborhood for kernel function

There are a high number of possible functions that can be used. For
example, using the von Neumann neighborhood it is possible to have as many as

2% =2% =4295-10® different cell genes, which makes searching emergent
phenomena a time-consuming process. We have been tested a reduced number of
possibilities, namely six variants of functions (a — to f in Fig.1), using 3x3
neighborhood. These functions are similar to kernels used for edge detection
(Prewitt, Sobel, the Laplacian operator and Robert’s cross operator) [26]. Fig. 2
presents the templates used in our experiment.



A novel feature-extraction algorithm for efficient classification of texture images 105

a) b) 9]

dy e) n

Fig. 2. Six templates for computing nonlinear parameters

It was demonstrated in [28], that a value of C close to 1 indicates a
homogeneous state while a value of C=0.5 is a measure of a perfect (high
frequency) chaotic pattern. At the other extreme C=0 indicates the presence of
perfectly regular chess-board pattern. Consequently, such synthetic indicators as
C are strongly correlated with the human perception. Using various A templates
ensures that various directions of interests in the image are better characterized.

To improve the feature performance, we applied the calculation of C
(using equation 3) for to different image scales (s=1, 0.5, 0.25, 0.125 and 0.0625).
The distance between two neighbor pixels (where template matrices A apply) is
respectively d=1/s. The reason of using different image scales is that computing
different texture resolution, we compute different coarseness: one macro texture
of high coarseness and one micro texture of low coarseness. Using 7 thresholds, 3
scales with two template matrices each (left and right in Fig.1) per each scale
results in a 42-dimensional feature vector associated with an image.

4. Experimental Results

Four image databases are used in our experiments (Fig. 3):

- The Vistex database with 900 images (9 images per class [23].

- The UIUC[22] database with 25 texture classes, 40 samples each. All
images are in grayscale JPG format, 640x480 pixels.

- The Brodatz's photo album (Brodatz 1966) [24] is a well known
benchmark database used to evaluate texture recognition algorithms. It contains
111 different texture classes. For each class, it is represented by only one sample,
which is then divided into 9 sub-images non-overlappingly to form the database.
Thus, there are 999 images altogether with resolution of 215x215.

- The KTH-Tips [25] database which contains 10 textures under different
illumination, pose and scale (81 images per class)

As far as texture descriptors are concerned, we test several state of the art
approaches from the existing literature which are known to be successfully
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employed to the CBIR task, namely: GrayScale Histogram, Color Coherence
Vectors, Image Moments, Cooccurrence Matrix texture, Auto-Correlogram, Run-
Lenght Matrix, Edge Histogram Descriptor and Homogeneous Texture
Descriptor.

Fig. 3. Example of images used in experiment : first line — The Brodatz's database, Vistex
database in second line, UIUC database in third line and KTH database in fourth line

To assess the retrieval performance, we have used several measures. First,
we have computed the classical precision and recall chart. Precision is the fraction
of retrieved documents that are relevant to the search (measure of false positives)
and recall is the fraction of the documents that are relevant to the query that are
successfully retrieved (measure of false negatives). The system retrieval response
is assessed with the precision-recall curves which plots the precision for all the
recall rates that can be obtained according to the current image class population.

Second, to provide a global measure of performance we determine the
overall Mean Average Precision - MAP as the area under the uninterpolated
precision-recall curve (http:/trec.nist.gov/trec_eval/). The evaluation consists of
systematically considering each image from the database as query image and
retrieving the remainder of the database accordingly. Precision, recall and MAP
are averaged over all retrieval experiments. Experiments were conducted for
various browsing windows, ranging from 9 to 40 images, depending the number
of textures per class.

4.1. Choosing the algorithm’s parameters

In the first experiment we have analyzed the influence of the parameters
on the system performance. We have compared various strategies for each test
database. We have varied the number of the threshold (using only one image
scale) in Fig. 4, the number of the image scales using only one threshold in Fig. 5
and we have tested various kernel functions performance in Fig. 6.
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By plotting the chart of MAP performance against the threshold values,
the first thresholds will add much performance, but at some point the marginal
gain will drop, giving an angle in the graph. We have the same scenario, by
varying the number of images scales. Using more than three image scales, it will
not add more information. It can be observed in Fig. 5, that the performance of
various kernel functions is similar in most cases, with a little increase of
performance using function kernel a. The lowest performance is obtained using
the second kernel functions.

In our experiments, we have chosen a number of seven to fifteen
thresholds with three image scales and the kernel function a). We have chosed this
combinations of kernels, number of thresholds and image scales because it
provide a reasonable balance between MAP performance and descriptors
computational complexity. Adding a large number of thresholds and image scales
will not improve the algoritm performance with more than one percent. If we use
a smaller descriptor length, it will decrease the algorithm performance with more
then 5 percents.
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Fig. 4. Mean Average Precision using different number of thresholds (using only one image scale)
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Fig. 5. Mean Average Precision using different number of image scales (using only one threshold)
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Fig. 6. Mean Average Precision using different nonlinear kernel templates ( 1 - UIUC database, 2 -
Brodatz's database, 3 - KTH database and 4 - Vistex)

4.2. Retrieval Experiment

In Fig. 7, we present the precision-recall curves computed for all four
image test databases.
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We compare our method (red dotted line) with the following state of the
art algorithms: GrayScale Histogram (black dotted line), Color Coherence Vectors
(yellow dashed line), Image Moments (magenta dashed line), Cooccurrence
Matrix texture (green dashed line), Auto-Correlogram (green dotted line), Run-
Length Matrix (cyan dashed line), Edge Histogram Descriptor (blue dashed line),
and Homogeneous Texture Descriptor (black dashed line). The best MAP results
are presented in Table 1.

Table 1
Improvement achieved by the proposed algorithm (MAP values)
Database 1st MAP 2nd MAP 3rd MAP
KTH 31.95% - Our Approach | 30.34% - HTD 23.43% - CCV
Brodatz | 60.58% - HTD 59.94% - Our Approach 39.45% - CCV
UIUC 33.43% - Our Approach | 32.56% - CCV 24.90% - Coocurence Matrix
Vistex | 66.33% - HTD 56.73% - Our Approach 48.05% - Coocurence Matrix

Discussion on the results. We have obtained the best results with our
approach in two cases: for the KTH and UIUC database, and the second position
on Brodatz and Vistex database. We have also obtained good results using the
Homogenous Texture Descriptor, Color Coherence vectors and Coocurence
Matrix. The worst performance was obtained using the Image Moments, Edge
Histogram Descriptor and Run-Length Matrix. In most of cases the performance
of our algorithm is double than of these algorithms. Better results are obtained
with GrayScale Histogram and Auto-Corelogram, but the differences are greater
too (from 10% to 25 %).

The computational complexity and descriptors sizes are presented in
Table. 2. Our approach has the lowest computational complexity, equal to
Histogram, CCV, EHD and image moments. Homogenous Texture Descriptor has
the biggest computational complexity (O(n”log(n))), and Run Length Matrix,
Auto Corelogram and Coocurence matrix have a bigger complexity of the
algorithm than our approach. Another criterion for feature comparison is the
descriptor length. Our descriptor has 42 features (three scales and seven
thresholds). Four descriptors have smaller sizes ( Histogram, Image Moments,
Run Length Matrix and Coocurence Matrix), while Color Coherence Vectors,
Auto-Corelogram, Homogenous Texture Descriptor and Edge Histogram
Descriptor do not.

Table 2
Comparation of Computational complexity and descriptor size

Algorithm Computational complexity Descriptor size

Histogram O(n) 24

CCV O(n) 48
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Image moments O(n) 9
Run Length Matrix O(n) + O(k'm) — where k is the number of 23
colors and m the maxim size of run-length
Auto Corelogram O(n) + O(k'm) — where k is the number of 96

colors and m the number of neighborhood

Coocurence matrix

O(n) + O( k? ) where k is the number of image 16

colors
EHD O(n) 80
2
HTD o(n” log(n)) o4
Our Approach O(n) 42
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Fig. 7. Precision-recall curves for different content descriptors and test databases.

4.3. Recognition Experiment

In the second experiment, we address texture categorization from the
perspective of machine learning techniques. We attempt to regroup the data
according to related clusters. For classification we use the OpenCV [19]
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environment which provides many implementations of the classification
algorithms.

We have tested the following methods: Naive Bayes [16], Nearest
Neighbor [18] to SVM [17] (linear and RBF kernel), Random Trees [19],
Gradient Boosted Trees[20], Extremely Random Forest [21]. Method parameters
were tuned based on preliminary experimentations.

As the choice of training data may distort the accuracy of the results, we
use a cross validation approach. The data set is split into train and test sets. We
use different values for the percentage split 25% to 75%. To assess performance
we compute the average precision.

Discussion on the results. In Figs. 7, 8, 9 and 10 we present the overall
average correct classification for a selection of seven machine learning techniques
(the ones providing the most significant results) on the several image databases:
Brodatz, UIUC, KTH, and Vistex. The global results are very promising. The
most accurate classification is obtained when using our approach in combination
with Extremely Random Forests, Random Trees, Naive Bayes and SVM with
RBF kernel. The highest average precision is up to 97% while the average of
maxim correct classification is up to 92%. In terms of classification technique, the
most accurate proves to be a the Extremely Random Forests, followed very
closely by SVM with RBF kernel and further Random Trees, Naive Bayes,
Nearest Neighbor, Gradient Boosted Trees and finally SVM with linear kernel.
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Fig. 8. Classification results using different classification methods (Naive Bayes, Nearest
Neighbor, SVM linear, SVM with RBF kernel, Random Trees, Gradient Boosted Trees, Extremely
Random Forest) and content descriptors( 1.Histogram, 2. CCV, 3. Image Moments, 4. Run Lenght

Matrix, 5. AutoCorrelogram, 6. Coocurence Matrix, 7. EHD, 8. HTD, 9.0ur Approach) on
Brodatz database
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Fig. 9. Classification results using different classification methods (Naive Bayes, KNN, SVM
linear, SVM with RBF, Random Trees, Gradient Boosted Trees, Extremely Random Forest) and
content descriptors (1.Histogram, 2. CCV, 3. Image Moments, 4. Run Lenght Matrix, 5.
AutoCorrelogram, 6. Coocurence Matrix, 7. EHD, 8. HTD, 9.0ur Approach) on UIUC database
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Fig. 11. Classification results using different classification methods (Naive Bayes, Nearest
Neighbor, SVM linear, SVM with RBF kernel, Random Trees, Gradient Boosted Trees, Extremely
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5. Conclusions

Experimental results on a wide spectrum of benchmark problems suggest
that given its simplicity, our approach may be a good alternative for texture
detection and recognition. In most of experiments our approach achieves the best
results on recognition and retrieval problems.

Future improvements will mainly consist of fine tuning and adapt the
method to address a higher diversity of image categories. We will try to
implement other kernel functions and other threshold strategies.
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