U.P.B. Sci. Bull., Series 76, Vol. 1, Iss. 1, 2014 ISSN 2286-3540

A ROLE BASED ACCESS CONTROL SOLUTION FOR LINUX
NETWORK

Marius LEAHU"|Vasile BUZULOIU? Dan Alexandru STOICHESCU?

Linux networks are widely used nowadays in computers laboratories or
clusters as convenient solutions for optimal hardware and software exploitation by
the organizations. One of the challenges in managing these networks is the control
of users who have different level of expertise and various roles in the organization.
This heterogeneity of organization personnel requires a mechanism to control “who
accesses what” network node or software application. This article proposes an
access control solution for a Linux network built on the Role Based Access Control
model which uses well known Linux tools and services: sudo, PAM, LDAP.

Keywords: security, role based access control, hierarchical RBAC, Linux, sudo,
PAM, LDAP

1. Introduction

Linux networks are nowadays a common solution in organizations’
computers laboratories or clusters for optimal hardware and software exploitation
by the organization employees. It allows easy inter communication and data
sharing in daily activities performed by the users, but also comes with the risk of
damaging or stealing data and resources put in common by the organization
through the computers network. It is the goal of computer security field to deal
with such risks and the access control domain with its authentication,
authorization and audit functions is of prime importance in reducing the security
risk.

This article proposes an access control solution for a Linux network which
is the result of the author research at CERN[1] in the Trigger and Data
Acquisition group of ATLAS Experiment, as member of SysAdmin team[2]. The
access control solution implemented in the experiment’s computing cluster [3]
spreads from operating system level (users login on the cluster’s nodes and users
access to command line tools) to the application level (the data acquisition

'Eng. Ph.D. Student, Faculty of Electronics, Telecommunications and Information Technology,
University POLITEHNICA of Bucharest, Romania, e-mail: mleahu@alpha.imag.pub.ro

2 prof. Applied Electronics and Informatics Engineering Department, University POLITEHNICA
of Bucharest, Romania

% Prof., Faculty of Electronics, Telecommunications and Information Technology, University
POLITEHNICA of Bucharest, Romania, e-mail: stoich@elia.pub.ro

90 Marius Leahu, Vasile Buzuloiu, Dan Alexandru Stoichescu

software running on the computing cluster restricts access to its sensitive
functions) and is built on the Role Based Access Control model. This paper
focuses on the access control at the level of the operating system, namely the
Scientific Linux CERN 5[4] version of Linux.

The following chapters describe the Role Based Access Control model’s
principles and terminology applied in the solution, the requirements to be
fulfilled, then continues with the details of design and implementation of the
access control solution.

2. The Role Based Access Control model

An access control system regulates the operations that can be executed on
data and resources to be protected. Its goal is to control operations executed by
subjects in order to prevent actions that could damage or steal data and resources.

Authorization and authentication are fundamental to access control.
Authentication is the process of determining who you are (that user’s claimed
identity is legitimate), while authorization determines what you are allowed to
do. Note that authorization necessarily depends on proper authentication. If the
system cannot be certain of a user’s identity, there is no valid way of determining
if the user should be granted access.

An access control model in general and the Role Based Access Control
(RBAC) model in particular as the subject of this article are focused on the
authorization part of an access control system.

After a long history of various approaches on the RBAC model, the first
step in the direction of standardization was done by Sandhu, Ferraiolo and Kuhn
in 2000 [5]. They define consolidated RBAC model for proposed industry
standard which has been adopted by the American National Standards Institute,
International Committee for Information Technology Standards (ANSI/INCITS)
in 2003 as an industry consensus standard INCITS 359:2004.

RBAC provides a valuable level of abstraction to promote security
administration at a business enterprise level rather than at the user identity level.
The basic role concept is simple: establish permissions based on the functional
roles in the enterprise, and then appropriately assign users to a role or set of roles.
With RBAC, access decisions are based on the roles individual users have as part
of an enterprise. Roles could represent the tasks, responsibilities and qualifications
associated with an enterprise. Because the roles within an enterprise are relatively
persistent with respect to user turnover and task re-assignment, RBAC provides a
powerful mechanism for reducing the complexity, cost and potential for error in
assigning user permissions within the enterprise.

The hierarchical RBAC (Fig. 1) is one of the RBAC models proposed for
standardization [5] and used in the RBAC solution proposed by this article. The

A role based access control solution for Linux network 91

drawing below shows three sets of entities called users, roles, and permissions. A
user in this model is a human being or other autonomous agent such as a process
or a computer. A role is a job function or job title within the organization with
some associated semantics regarding the authority and responsibility conferred on
a member of the role. A permission is an approval of a particular mode of access
to one or more objects in the system. The terms authorization, access right and
privilege are also used in the literature to denote a permission. Permissions are
always positive and confer the ability to the holder of the permission to perform
some action(s) in the system. The relationships user-role assignment and
permission-role assignment are many-to-many relations. The relationship role
hierarchy can be also many-to-many, but this depends very much on the
organization as the role hierarchies are a natural means for structuring roles to
reflect an organization's lines of authority and responsibility.

Role Hierarchy

Permission
User Assignment <—Assignment o
Users Roles Permissions
—p P

—
Fig. 1 Hierarchical RBAC

The convention in roles hierarchy diagrams is that more powerful (or
senior) roles are shown toward the top of diagrams, and less powerful (or junior)
roles toward the bottom.

The roles hierarchy example depicted in Fig. 2 will be used in the next
chapters of this article to demonstrate how the access control solution is designed
and implemented in a Linux network. The example is composed of 2 types of
roles hierarchies:

- Tree hierarchy (e.g. Shift Leader, TDAQ Shifter, DCS Shifter): senior roles
aggregate the permissions of junior roles. Trees are good for aggregation but
do not support sharing.

- Inverted tree hierarchy (e.g. Observer, TDAQ Shifter, DCS Shifter): senior
roles are shown towards the top with edges connecting them to junior roles.
The inverted tree facilitates sharing of resources. Resources made available to
the junior role are also available to senior roles.

92 Marius Leahu, Vasile Buzuloiu, Dan Alexandru Stoichescu

Observer

Fig. 2 Example of roles hierarchy

There can be more interpretation of how permissions inheritance goes
from a role to another in a role hierarchy. The senior roles in the roles hierarchy
example are regarded as inheriting permissions from juniors. This is called the
permission-inheritance interpretation and the hierarchy is called an inheritance
hierarchy. When TDAQ Expert role is activated, the permissions assigned to
TDARQ Shifter and Observer roles are all available for use.

3. Access control needs in a Linux network

The access control solution proposed by this article assumes that the Linux
network (Fig. 3) is composed of two types of nodes:

- Servers: these nodes hosts various services used by all the other nodes in the
cluster. For example: a network file sharing service, print service, web, email,
directory service etc. There can be one or more server nodes running
centralized services for the network. Since the server nodes run services for
the whole network, they are critical for the network operation, hence only a
limited number of users (SysAdmin team) should have direct access to them.

- Workstations: these are client nodes where the users perform their daily work
using also the services exposed by the servers. Their main characteristic is the
heterogeneity:

0 The hardware can vary from one node to another (from desktop
configuration to *“special” hardware, e.g. data acquisition cards
installed or connected to the node). It is obvious that only experts or

A role based access control solution for Linux network 93

qualified technicians should be allowed to use the special nodes, while
the other nodes for general use can be accessed by more employees.

o Software with limited number of licenses is not installed on all nodes.
Also, only a few users may use such software and access only the
nodes with that software installed.

0 The organization may decide that each department can use exclusively
a subset of network nodes but, in the same time, a pool of nodes
should be shared by more departments.

Centralized directory
Users, roles and permissions

Network servers

First level of access control Second level of access control
Network nodes grouped by Policy enforcement on the access
their functional role. to sensitive command line tools on
Access control policy enforced each node.

on users login to the nodes.

Fig. 3 Access control levels in a Linux network

The access control solution must be able to enforce the constraints
enumerated above, but also should allow sufficient flexibility for the organization
in the allocation of its resources to the internal departments. In order to fulfill
these requirements, the access control is designed on the RBAC model and
structured in two levels of granularity:

94 Marius Leahu, Vasile Buzuloiu, Dan Alexandru Stoichescu

- First level of access control regulates the access of the user to the node itself,
meaning that a user is allowed to open either a local or a remote shell (ssh
[6]) to the node. This allows the organization to allocate nodes exclusively to
teams or departments.

- Second level of access control is in the scope of a node. It is assumed that the
user passed the first level, so he/she has access to the node. Once logged in,
the user may be allowed or not to use all the software available on the node.

For easier administration of access control solution, the RBAC
configuration (users, roles and permissions and assignments) is centralized in

Directory Service deployed in the Linux network’s servers.

The following chapters describe how the access control solution is
implemented on the SLC 5 [4] Linux version.

4. Centralized RBAC configuration

The RBAC configuration is centralized in an LDAP Directory for easier
maintenance of nodes configuration. Therefore, all entities specific to Hierarchical
RBAC model (Fig. 1) (users, roles, permissions) and relationships (user
assignment to roles, permissions assignment to role, role hierarchies) are defined
in an OpenLDAP[7] server hosted on one of the network servers.

The users are defined in the LDAP directory as posixAccount objectclass
so that the standard PAM[8] authentication on the Linux nodes to be able to
recognize them as user accounts on the node. Fig. 4 shows an example of user
definition in LDAP as it can be viewed with phpLDAPAdmIn[9] browser.

£ cn=mileahu

cn=mleahu,ou=people ou=atlas,o=cern,c=ch
Marius

{MD5}CqhgXdpElBI4TTINZvPyQ==

Leahu

1001

mieahu

1001

inetOrgPerson
posixAccount
top

mileahu
homefmleahu

Fig. 4 User definition in LDAP

The roles are mapped in LDAP as nisNetgroup object class and amRole
object class. The use of NIS netgroups[10] brings the following advantages:

A role based access control solution for Linux network

95

Out of the box integration with many Linux tools (e.g. Sudo[11]) and
mechanisms (e.g. various PAM modules are able to work with netgroups),
hence the roles are seen as natural components in Linux environment
Aggregation of more netgroups in one netgroup. This is very helpful to set up
the role hierarchies and permission inheritance over the hierarchy.

dn

objectClass

cn

nisNetgroupTriple

memberNisNetgroup

cn=RA-DCS expert ou=netgroup,ou=atlas o=_

top
nisNetgroup
amRole

RA-DCS:expert

(,bob,)

cn=RA-DCS:shifter.ou=netgroup.ou=atlas.o...

top
nisNetgroup
amRole

RA-DCS:shifter

RA-ShiftLeader
RA-DCS expert

cn=RA-Observer,ou=netgroup.ou=atlas.o=ce..

top
nisNetgroup
amRole

RA-Observer

RA-TDAQ:shifter
RA-DCS:shifter

& & & @

cn=RA-ShiftLeader.ou=netgroup.ou=atlas.o...

top
nisNetgroup
amRole

RA-ShiftLeader

(,alice,)

&

__|top

nisNetgroup
amRole

RA-TDAQ:expert

top
nisNetgroup
amRole

RA-TDAQ:shifter

(,mleahu,)

RA-TDAQ:expert
RA-ShiftLeader

cn=RE-DCS:expert.ou=netgroup.ou=atlas.o=__

top
nisNetgroup
amRole

RE-DCS:expert

cn=RE-DCS:shifter.ou=netgroup.ou=atlas.o...

top
nisNetgroup
amRole

RE-DCS:shifter

RE-ShiftLeader
RE-DCS:expert

cn=RE-Observer,ou=netgroup.ou=atlas.o=ce..

top
nisNetgroup
amRole

RE-Observer

RE-TDAQ:shifter
RE-DCS:shifter

& & & & @

cn=RE-ShiftLeader.ou=netgroup.ou=atlas.o...

top
nisNetgroup
amRole

RE-ShiftLeader

(,alice,)

dn

objectClass

ch

nisNetgroupTriple

memberNisNetgroup

cn=RE-TDAQ:expert ou=neigroup.ou=atlas.o. .

top
nisNetgroup
amRole

RE-TDAQ:expert

top
nisNetgroup
amRole

RE-TDAQ:shifter

(,mleahu,)

RE-TDAQ:expert
RE-ShiftLeader

Fig. 5 Roles and role hierarchy definitions in LDAP

The amRole object class is specially defined for the RBAC configuration
in LDAP for the following reasons:
Label the NIS netgroups defined in LDAP with the “role” qualifier for easier
differentiation in ldap queries
Attach more properties to netgroups useful in more advanced RBAC models
definition, such as: if the role is assignable to users or not (in that case, the
role is just internally in the hierarchy just to allow permissions sharing);

96 Marius Leahu, Vasile Buzuloiu, Dan Alexandru Stoichescu

constraints like Static Separation of Duties or Dynamic Separation of Duties
(not in the scope of this article).

Fig. 5 shows the role definition in LDAP as netgroups for the example of
role hierarchy from Fig. 2. The columns from the table represent:

- dn: the “path” to the object in the LDAP DB

- objectClass: specifies a set of attributes used to describe an object; in our
case, the object classes described above are mandatory

- cn: the role name prefixed with RA or RE. There are two netgroups defined in
LDAP for each role:

0 RA-<rolename> shows that the <rolename> is assigned to an user

0 RE-<rolename> shows that the <rolename> is enabled for an user

(more details about assigned/enabled states in user assignment
paragraph).

- nisNetgroupTriple: used for user assignment relationship

- memberNisNetgroup: used for role hierarchy relationship

The permissions and permission assignment relations are defined in
LDAP as specific configuration for the tools to be used to enforce the two levels
of access control described in chapter 3. The configuration and enforcement of
these two levels of access control is detailed in chapters 5 and 6.

The user assignment to roles is accomplished by setting role’s netgroup
property nisNetgroupTriple to the user name in the format (,<username>,). The
roles assigned to a user have 2 states:

- assigned: this is the initial state when the user is certified for the role. For
example, a user who graduated training on DCS technology is recognized as
expert in DCS department, hence he gets the DCS expert role assigned.

- enabled: a role already assigned to a user is enabled so that the user is able to
perform the tasks allowed by this role. The user with DCS expert role can
work on DCS hardware only when his role is enabled. In this way, the
exclusive access to resources can be regulated by the group leaders.

The example in Fig. 5 has three users with the following roles assignment:

- roles assigned: mleahu — TDAQ:shifter, alice — ShiftLeader, bob -
DCS:Expert

- roles enabled: mleahu — TDAQ:shifter, alice — ShiftLeader, bob — no roles
enabled.

The role hierarchy is mapped to the netgroup aggregation relationship.
This is configured in LDAP thanks to the memberNisNetgroup attribute of a role:
the value of this attribute represents a senior role for the current role. For
example, the role DCS shifter has senior roles ShiftLeader and DCS expert as
values of its memberNisNetgroup attribute; on the other hand, DCS shifter role is
senior for Observer, hence Observer’s memberNisNetgroup value contains it. The
role hierarchy managed through netgroups permits permission inheritance from

A role based access control solution for Linux network 97

junior to senior roles. This means that permission assigned to a role Observer is
allowed to users with the role Observer and all Observer’s seniors (direct or
indirect). The following queries list the users who will get a permission assigned
to a certain role for the example in Fig. 5 :

[root@localhost]# getent netgroup RA-Observer

RA-Observer (, bob,) C, alice,) (, mleahu,)
[root@localhost]# getent netgroup RE-Observer

RE-Observer (, alice,) (, mleahu,)
[root@localhost]# getent netgroup RA-TDAQ:shifter
RA-TDAQ:shifter (, mleahu,) (, alice,)
[root@localhost]# getent netgroup RA-DCS:shifter
RA-DCS:shifter (, bob,) (, alice,)
[root@localhost]# getent netgroup RE-DCS:shifter
RE-DCS:shifter (, alice,)

In order to configure the RBAC in LDAP directory as described above, the
following configuration checks or adjustments are necessary after the installation
of OpenLDAP[?] package on SLC 5 server:

nis.schema must be included in the server configuration file (slapd.conf).
This schema is necessary to support the NIS netgroups information in the
LDAP structure[12].

- sudo.schema[l3] (shipped also in the sudo package in
/usr/share/doc/sudo-1.7.2p1/schema.OpenLDAP) must be included in
the server configuration to allow the definitions of sudo permissions (more
details in the following chapter).

- optionally, the amRBAC schema, a custom made LDAP schema which is
used to mark the netgroups as roles to be more convenient for shell scripts to
identify the RBAC roles in LDAP.

The following chapters will focus on how the policies are defined for the
two levels of access control (Fig. 3) and how the enforcement of these policies is
done on the network nodes.

5. Controlling the users login on the network nodes

The first level of access control (Fig. 3) makes sure that users are allowed
to log in (either locally from the computer’s console or remotely via ssh[6]) only
on the machines which are allocated to groups they belong in the organization.

In order to make a fresh SLC 5 node aware of centralized LDAP
configuration, its local services must be adjusted to look up the LDAP server to
read their configuration and other information they may need. The LDAP support
is enabled on the “Authentication Configuration” (as shown in Fig. 6) for “User
Information”, “Authentication” and other Options (especially the authorization

98 Marius Leahu, Vasile Buzuloiu, Dan Alexandru Stoichescu

based on access.conf). After this change, the following configuration files are

updated:

- the LDAP configuration file /etc/1dap.conf used by all tools from the
current node that need to know the identifier of central LDAP server. Its
content can be like the following one:

the server hostname where LDAP service is installed
host localhost

the Base Distinguish Name to use on the LDAP service
base ou=atlas,o=cern,c=ch

- the PAM generic configuration /etc/pam.d/system-auth includes calls to
pam_ldap.so plugin in all its stacks (auth, account, password, session).
Consequently, all system services (e.g. sshd, sudo, login) making use of PAM
stack for their user authentication, account information, user password
management and user session management will access the LDAP server as a
central information repository. The pam_access.so is also added in the
account stack to enforce the authorization rules defined in the
/etc/security/access.conf. The account stack definition looks like this:

account required pam_access.so

account required pam_unix.so broken_shadow

account sufficient pam_succeed_if.so uid < 500 quiet
account[default=bad success=ok user_unknown=ignore]
pam_Ildap.so

account required pam_permit.so

- the Name Service Switch[14] configuration file /etc/nsswitch.conf has
LDAP as second source of information for system services. For example, at
least the following services will lookup LDAP:

passwd: files ldap
shadow: files ldap
group: files ldap

netgroup: Idap
automount: Files ldap
sudoers: TFiles lIdap

A role based access control solution for Linux network 99

" Authentication Configuration = | " Authentication Configuration
User Information éAuthsntlcatmnl‘ Options | User Information Authentication| Opt\on5'|
Kerberos Options
[] Enable Kerberos Support [[] Cache User Information

Use Shadow Passwords
LDAP

g Password hashing algorithm | MD5 =
[“] Enable LDAP Support Configure LDAP... _

[] Local autherization is sufficient for local users

Smart Card [] Authenticate system accounts by network services

L1 Enable Smart Card Support Check access conf during account authorization

SMB [] Create home directories on the first login

[Enable SMB Support |

‘Winbind

[[] Enable Winbind Support

|X§ancel” @g»(‘ ‘xgenceIH @QK |

Fig. 6 "Authentication Configuration" in SLC5

At this stage, the node is ready to enforce login restrictions based on the

permissions defined in Zetc/security/access.conf [15].

The permissions and permission assignment to role from our RBAC

model are centralized in LDAP in the form of sudo roles. The example in Fig. 7

shows the main characteristics of a sudo role definition that transforms it in a

login restriction definition:

- sudo role name which represents the permission name must start with
LOGIN- keyword.

- permission is defined as the hostname where the login is allowed. The
hostname can be also a simple regular expression (for example, all the nodes
with the hostname starting with pc-tdag-control-), thus making the
permission valid for a group of machines obeying a hostname naming
convention (e.g. the hostname can have the structure <type of machine:
pc/sbc>-<group name>-<subgroup>-<index>).

- permission assignment to role is given by the netgroup name specified in the
sudoUser field.

- the other attributes of a sudo role in LDAP are set to default values as in the
example below.

100 Marius Leahu, [Vasile Buzuloiu,, Dan Alexandru Stoichescu

= &) ou=atlas, o=cemn,c=ch (1)

cn required . rdn
& ou=group (1)
. N LOGIN-RE-TDAQ:shifter
& ou=netgroup (12) erame)
& ou—people (1) o
a ﬁ ou=SUDOers (1) / description
[mm LS D T o |Log|n access control permission for TDAQ:shifter

The permission ‘ (2dd value)

cre name: LOGIN-* objectClass required

@ sudoRole (structural)
@ ftop
add value)

sudoCommand

The permission foinis

add value)

—~— sudoHost

[T |pc—ldaq—c0nlr0l—"
add value)

sudoOption

|Iaulhenlicale

add value)

The permission sudoRunAs
assignment to role Inobody
add value)

—~_ sudoUser
\

[+rE-TDAGISNIftEr
add value)

Fig. 7 Example of login restriction definition in LDAP

The access.conf file is generated by a shell script which runs
periodically and looks up in LDAP all permissions defined for the current node.
An example of its execution output is shown below:

[root@localhost am scripts]# ./amLoginRestriction -n pc-tdag-
control-001 -v
>>> ======= LOGIN RESCTRICTION CONFIGURATION ==========

ldapsearch -h localhost -b ou=atlas,o=cern,c=ch -x -LLL -S c¢n
(&(] (sudoHost=pc-tdag-control-001) (] (sudoHost=pc-tdag-control-

) (] (sudoHost=pc-tdaq-) (sudoHost=pc-*)))) (&(cn=LOGIN-
*)(objectClass=sudoRole))) sudoUser cn sudoHost

dn: cn=LOGIN-RE-TDAQ:shifter,ou=SUDOers,ou=atlas,o=cern,c=ch

cn: LOGIN-RE-TDAQ:shifter

sudoHost: pc-tdag-control-*

sudoUser: +RE-TDAQ:shifter

>>> PAM ACCESS configuration generated from LDAP information!
#

Login access control table.

Generated automatically by the script "./amLoginRestriction”
#

A role based access control solution for Linux network 101

SUDO RULE DN:
cn=LOGIN-RE-TDAQ:shifter,ou=SUDOers,ou=atlas,o=cern,c=ch
| @GRE-TDAQ:shifter | ALL

+ H H#*

| ALL EXCEPT root | ALL

We can check also the users who get the access to this node and it can be
observed that alice is also granted the permission through the permission

inheritance over role hierarchy:
[root@localhost am_scripts]# ./amLoginRestriction -n pc-tdag-
control-001 -s

>>> Users allowed to login to [pc-tdag-control-001]:
>>> Netgroup [RE-TDAQ:shifter]:

alice

mleahu

6. Controlling the access to sensitive command line tools

The second level of access control (Fig. 3) comes on top of the first level
by increasing the granularity of access control to the sensitive tools available on
the node.

The prerequisite of enabling this level of access control is the presence (by
default in SLC 5) of sudo[11] application on each node of the Linux network. The
application description provided in [11] states: “Sudo (su "do") allows a system
administrator to delegate authority to give certain users (or groups of users) the
ability to run some (or all) commands as root or another user while providing an
audit trail of the commands and their arguments”. Since we are interested in
having a centralized LDAP configuration of the second level of access control, the
sudo tool must be available with support for LDAP — by default in SLC 5. The
sudo configuration must be also adjusted to point to the right LDAP server and
base DN:

- [etc/ldap.conf must contain the Base DN where the sudo roles are defined
besides the server identifiers already mentioned in the previous chapter:

sudoers_base ou=SUDOers,ou=atlas,o=cern,c=ch

The protection of tools (e.g. shell scripts or binaries) subject to access
control must be done in two steps:
- restrict the file access permissions of the targeted tool to a generic Linux user
created only for this purpose. For example, the tool FarmToolsLauncher is
owned and allowed to be run only by farmtoolsuser:

102 Marius Leahu, [Vasile Buzuloiu,, Dan Alexandru Stoichescu

chown farmtoolsuser /sw/tdag/scripts/FarmToolsLauncher
chmod u=rwx /sw/tdaqg/scripts/FarmToolsLauncher
chmod og-rwx /sw/tdaq/scripts/FarmToolsLauncher

- prepare a sudo role in the LDAP to allow the execution of the protected tool.
Fig. 8 shows an example of sudo role for the tool FarmToolsLauncher
where:

o0 the permission name is by convention the role name

o0 the permission is represented by the tool identifier and the user to
run as

o0 the permission assignment to role is defined as the netgroup
corresponding to the role allowed to execute the tool

@& cn=RE-TDAQ:shifter —== pq permission name: role name

cn=RE-TDAQ:shifter,ou=SUDOQers ou=atlas, o=cern,c=ch
RE-TDAQ:shifter

Utilities to be run by the TDAQ:shifter role
Iswitdag/scripts/FarmToolsLauncher
ALL

lauthenticate

The permission |

farmtoolsuser
+RE-TDAQ:shifter
sudoRole
top

Fig. 8 Example of sudo role in LDAP

The permission
assignment to role

Let’s check now the sudo permissions for user alice:

sudo -1 -U alice

User alice may run the following commands on this host:
(farmtoolsuser) NOPASSWD: /sw/tdaqg/scripts/FarmToolsLauncher

Hence, the alice user is able to run the FarmToolsLauncher application
thanks to the permission defined in LDAP and permission inheritance over the
role hierarchy.

7. Conclusions

This paper presented an access control solution for Linux networks to
regulate the access of the organization employees to the network nodes and tools
running available on the nodes. The access control management is flexible thanks
to the RBAC model used in its design which maps naturally the organization

A role based access control solution for Linux network 103

structure to the roles and roles hierarchy defined in the access control

configuration. The solution implementation makes use of the Linux standard tools

and mechanisms to control the user’s login to the machines and the access to the
sensitive software tools on each network node. The access control configuration is
uniform over the network nodes and managed centrally in an LDAP repository.

The solution described by this paper can be further improved by:

- Preparation of a notification mechanism on the LDAP server which triggers
configuration updates on the network nodes when the configuration in LDAP
changes. In this way, the nodes won’t be forced to periodically poll the LDAP
server to check their pam_access configuration, but they’ll be notified when
changes occurred. Also, the changes propagation in the network will be
faster.

- Development of a dedicated policy management tool with Graphical User
Interface to replace the management done through the generic LDAP
administration tools.

- Centralization of logs generated by pam_access and sudo for an easier audit
of access control on the Linux network. An alarm system can be also
envisaged to notify organization administrators about events that occurred in
the network: for example, users which are repeatedly denied access to a node
(perhaps the user really needs access to that node and his reasons must be
understood) or users who attempt to run software which they are not
supposed to.

The access control granularity can be increased by moving policy
enforcement in the application themselves: if an application performs sensitive
tasks (e.g. changing voltages on a peripheral device used for data acquisition), the
access to them to be regulated by checking the permissions and roles defined in
the central LDAP (e.g. enable the button to increase/decrease the voltage only if
the user running the application has appropriate role and permissions). This would
require dedicated policy management tailored to the application needs and a set of
libraries which offer Application Programming Interface to interface the
application with the network access control infrastructure (access to LDAP roles,
permissions).

The solution described in this article has been successfully deployed in the
large Linux cluster (~3000 nodes) used for data acquisition in the CERN ATLAS
experiment and improvements, including those mentioned above, are being
analyzed and developed by the SysAdmin team.

104 Marius Leahu, [Vasile Buzuloiu,, Dan Alexandru Stoichescu

REFERENCES

[1] CERN, "European Organization for Nuclear Research," CERN, [Online]. Available:
http://www.cern.ch.

[2] CERN, "ATLAS TDAQ SysAdmin Team," [Online]. Available: http://atlas-tdag-
sysadmin.web.cern.ch.

[3] M.C. Leahu, M. Dobson and G. Avolio, "Role Based Access Control in the ATLAS," IEEE
Transactions on Nuclear Science, vol. 55, no. 1, pp. 386 - 391, February 2008.

[4] CERN, "Scientific Linux CERN 5," [Online]. Available:
http://linux.web.cern.ch/linux/scientific5/.

[5] R.Sandhu, D. Ferraiolo and R. K. D, "The NIST Model for Role Based Access Control:
Towards a Unified Standard," in 5th ACM Workshop Role-Based Access Control, Berlin,
2000.

[6] "OpenSSH," [Online]. Available: http://www.openssh.org/.

[7] "OpenLDAP," [Online]. Available: http://www.openldap.org/.

[8] "Linux PAM," [Online]. Available: http://www.linux-pam.org/.

[9] "php LDAP Admin," [Online]. Available: http://phpldapadmin.sourceforge.net.

[10] ORACLE, "System Administration Guide: Naming and Directory Services (DNS, NIS, and
LDAP)," [Online]. Available: http://docs.oracle.com/cd/E19082-01/819-3194/anis2-
14244/index.html.

[11] "Linux Sudo," [Online]. Available: http://www.sudo.ws/.

[12] ORACLE, "NIS Extension Guide: NIS Information in the LDAP Directory," [Online].
Available: http://docs.oracle.com/cd/E19513-01/806-4251-10/mapping.htm.

[13] "Sudo - OpenLDAP schema,” [Online]. Available:
http://www.sudo.ws/repos/sudo/file/dacfad7e7a95/doc/schema.OpenLDAP. [Accessed
September 2012].

[14] "Name Service Switch - The GNU C Library," [Online]. Available:
http://www.gnu.org/software/libc/manual/ntml_node/Name-Service-Switch.html.

[15] "PAM Access," [Online]. Available: http://linux.die.net/man/8/pam_access.

